
Journal of Computer Science 7 (7): 1052-1059, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Nurul Husna Mohd Saad, Department of Computer Science,
 Faculty of Computer Science and Information Technology, University Putra Malaysia,
 43400 UPM, Serdang, Selangor, Malaysia

1052

Multilingual Database Management System: A Performance Evaluation

Nurul Husna Mohd Saad and Hamidah Ibrahim

Department of Computer Science, Faculty of Computer Science and Information Technology,
University Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia

Abstract: Problem statement: The use of English as well as Arabic language is increasingly evident
in the aspects of international business and finance. Therefore, this study explored the management of
multilingual data in multilingual system in order to be able to cater two or more different speakers of
Internet users. Approach: The proposed method is divided into two ends: The front-end that consisted
of the Client and the Translator components and the back-end where the Management Module and the
Database are located. In this method, a single encoded table is needed to store information and
corresponding dictionaries are needed to store the multilingual data. The proposed method is based on
the framework proposed in previous work with some modification to suit with the characteristics of the
chosen languages on the case study. Results: Experimental evaluation had been done in storage
requirement and mathematical analysis had been used to show the time of each of database operations
for both of the traditional and the proposed method. Conclusion/Recommendations: The proposed
method had been found to be consistently performed in the developed multilingual system.

Key words: Multilingual data, database performance, database management system, encoded

representation, data dictionary

INTRODUCTION

 The world in which we live that was once
unconnected has now became globalized in every sense
of words. Though, the most apparent effect that can be
seen is from the aspect of language barriers. The
driving force for this phenomenon has been the
introduction of technology such as the Internet, fax
machines, satellite TV, IP telephony, and mobile
phones. And now with the era of computing at its peak,
almost every single thing-from information access to
commerce- has been computerized. But as we
mentioned before, globalization has caused difficulties
among countries with different language to
communicate and in this case making information
sharing impossible.
 In this study, we are going to focus on two most
popular Internet languages which are English and
Arabic. As we all know, the de facto language for
international business and finance is English. Arabic
language, however, is currently gaining popularity not
only in Arabic speaking countries but also for Curds,
Persians and Aurdo-speaking Indians (Jannoud, 2007).
In order to cater the non-native English speaking users,
a multilingual system should be able to produce the

information in the native language of the Internet users.
To have this done, a database management system that
can handle multilingual data efficiently is needed.
Nevertheless, to translate English to Arabic and vice
versa is not an easy task for a number of reasons. Our
main worry is because Arabic sentences are usually
long and contain only few punctuation marks. Due to
the complexity of the Arabic syntax, sometimes Arabic
sentences are syntactically ambiguous and require much
effort when trying to resolve such ambiguities
automatically (Sherif and Kondrak, 2007). Shirko et al.
(2010); Shaalan et al. (2004) and Mohammed and Aziz
(2011) have stressed the need for an efficient machine
translation (Arabic-to-English and English-to-Arabic,
respectively) in language processing due to the vast
number of ways to express the same sentence in either
languages. Although they have developed an effective
machine translation, they are nowhere close to covering
the issue of multilingual data management in database
environment. Another problem deals with the
occurrence of foreign words in Arabic text as
transliteration, where it involves not only just proper
names but also technical terms (Karimi et al., 2006).
Through these observations, we have realized the
significance of this issue and have developed a

J. Computer Sci., 7 (7): 1052-1059, 2011

1053

multilingual database management system to ensure the
availability of information in the native language of the
Internet users.
 In a multilingual database management system,
user of any language speakers can search and retrieve
data regardless of the language of those data. One might
say that multilingual database is quite the same as real-
time database since both databases deal in a multi-user
environment. However, a real difference between
multilingual database and real-time database transaction
processing is their approach in concurrency control. In
real-time database, concurrency control mechanism is
important to ensure the consistency of the database
while allowing a set of transactions to execute
concurrently (Ali, 2006). Concurrency control in
multilingual database on the other hand is quite the
same as in conventional database, only that they have to
ensure integrity between the languages involved. In this
work, we concentrated mostly on design and
implementation of the multilingual database
management system, but did not concentrate on
implementing the component of translator efficiently. A
multilingual system has been developed that focuses on
English and Arabic languages based on the framework
proposed in (Hoque and Arefin, 2009) but with some
modifications.

MATERIALS AND METHODS

 In this study, we implemented the important parts
of the system architecture in (Hoque and Arefin, 2009)
and applied it with our own algorithm. In this
Multilingual Database Management System (hereinafter
called MDBMS), its system architecture is divided into
two ends: The front-end and the back-end. The
component for Client and Translator is situated in the
front-end whereas the back-end comprises of the
Management Module and the Database. The overall
system architecture for MDBMS is shown in Fig. 1.
 A Clinic System which has been developed
specifically for this research to show the
implementation of the MDBMS is placed in the Client
component as seen in Fig. 1. In this component, users
can provide input in various languages (for the sole of
this research the languages have been limited to English
and Arabic only) and view them in another language. In
order for the Client to be able to display and treat the
information in Arabic language correctly, a special
Unicode character set (UTF-8) is needed to be
implemented into the Client to manipulate them
(Nandasara et al., 2008). The input provided by the
users in specific language needs to be translated first
before it can be inserted accordingly into the database.

This is where the Translator component comes in
handy. The Translator component is needed to translate
the information into the target language with the help of
a translator. For this research, Google Translate and
Google Transliteration APIs have been used in the
Translator component. As we have mentioned before,
the Google Transliteration API is needed as we have to
transliterate certain English words into Arabic words
(e.g., proper names and technical names) and vice versa
phonetically. However, transliteration and translation
should not be confused their definitions, where
translation involves a change in language while
preserving their meaning. With transliteration, it is the
sound of the words that are converted from one
alphabet to the other. The accuracy of the translated and
transliterated words is not our main focus here.

Management module: This module consists of a group
of components. These components are Query
Input/Response, Search Dictionaries, Dictionary-to-ET
Mapping and ET-to-Dictionary Mapping. We have
developed a new algorithm for each of these
components while still retaining the definition of their
functions which can be found in (Hoque and Arefin,
2009). The Management Module is responsible in
performing the mapping and querying of languages.

Database: The idea of every database is to store
information such as images, texts, and even media files.
Just like everything else, the same goes for information
storing where it will require spaces for them to be
stored in. In this system architecture the Database is
used as storage for the encoded tables and data
dictionaries. Since the Client component needs to be
manipulated using the UTF-8 character encoding in
order to handle the Arabic words, the same goes for the
Database, therefore the collation of the Database too
needs to be set to utf8_unicode_ci.

Fig. 1: System architecture for MDBMS

J. Computer Sci., 7 (7): 1052-1059, 2011

1054

Fig. 2: Storage of patient records in English

Fig. 3: Storage of patient records in Arabic

Fig. 4: Encoded table storing multilingual information

Fig. 5: Dictionary pname for name attribute

Fig. 6: Dictionary pstreet for street attribute

 To show the differences between existing Database
Management System (hereinafter called DBMS) and
the MDBMS, we have used the Clinic System to store
information in both English and the native language
Arabic using both the traditional and the MDBMS
approaches. Consider the storage of Patient relation in
English and Arabic languages that are shown in figures
2 and 3. These figures show the traditional approach of
the DBMS for storing relations for each language.
Hence, in this case data redundancy is relational to the
number of languages support. The MDBMS uses only
single encoded table to represent the multilingual
information regardless of the number of languages

support. The encoded representation of the relations
Patient in English and Arabic (Fig. 2 and 3,
respectively) is shown in Fig. 4. This idea of encoded
representation is adopted from (Hoque and Arefin,
2009) where data are stored in information theoretic
way in encoded form with minimum redundancy.
 Those two relations are encoded into a single
representation with respect to the type of their
attributes. For attributes with numeric and
alphanumeric fields, their values are represented
directly into the encoded table without having to
translate any of them at all. On the other hand, the
values for attributes with text field have to be translated
(or transliterate, depending on the word itself) and
placed in the dictionaries. This would auto-generate a
code that would represents the values in the encoded
table. For example, Age, Weight and Height in Fig. 2
and 3 are the attributes with numeric fields while SSN,
Zip, DOB and Phone are attributes with alphanumeric
fields and their representation in the encoded table are
shown in Fig. 4. The attributes for text fields such as
Name, Street, City, State and Gender are encoded into
the encoded table based on the corresponding code
generated in the dictionaries. These dictionaries are
shown in Fig. 5-9, respectively. These dictionaries are
created by storing values that do not already exist in
them so as to prevent data redundancy. Note that these
rules that are implemented in this framework are the
same as the rules applied in framework (Hoque and
Arefin, 2009). The only difference being the algorithms
used for each of the database operation.

J. Computer Sci., 7 (7): 1052-1059, 2011

1055

Fig. 7: Dictionary pcity for city attribute

Fig. 8: Dictionary pstate for state attribute

Fig. 9: Dictionary pgender for gender attribute

 In Fig. 5, it shows the dictionary for the attribute
Name where there are three name instances in English
and their corresponding values in Arabic in the following
columns. Another column is set to store the code (it is
auto-generated each time a new value is inserted) that
will represent these values in the encoded table.
For example, let’s consider the column Name in the
encoded table (Fig. 4) and the dictionary Pname (Fig.
5). In the column Name of the encoded table, codes 1, 2
and 3 represent Burke or ق��, Bethany or ����� and
Germane or ن�	�
, respectively. A data item that is
stored in different languages in this dictionary is
represented in the encoded table by the equivalent code
and thus making the storage in the encoded table
independent of the number of languages support. The
same can be said for dictionaries Pstreet, Pcity, Pstate
and Pgender which are shown in Fig. 6-9, respectively.

Database operations: In this study we proved that
the MDBMS approach could support all the
operations of normal databases (such as inserting,
deleting and updating) and perform them efficiently.
The insert and update operations should be treated
with great care in order to prevent data redundancy
and inconsistency in the dictionaries. When a new
record is to be inserted (or updated) into the encoded
table, if the data are of numeric or alphanumeric
type, then they will be directly inserted into the
encoded table without having to translate them.

Fig. 10: Algorithm for insert operation

Fig. 11: Algorithm for update operation

Alternatively for text data, after translating (or
transliterating) them the system then will check
related dictionaries for the existence of the data.

J. Computer Sci., 7 (7): 1052-1059, 2011

1056

Fig. 12: Record to be inserted

Fig. 13: Record in the encoded table

Fig. 14: Algorithm for delete operation

If the results return an empty set, then the data and their
translated values will be inserted into the corresponding
dictionaries, respectively. Otherwise, the system will
get the key equivalent to the data searched and used it
for their representation in the encoded table. Figure 10
and 11 show the algorithm used for insert and update
operation, respectively. Since we have modified the
framework adopted in (Hoque and Arefin, 2009), their
algorithms could not be implemented with such ease in
this research and hence is why the need for new
algorithms for these database operations.
 Consider the following example. To insert a new
record (as shown in Fig. 12) the system first identifies
SSN, Zip, DOB and Phone as alphanumeric attributes,
Age, Weight and Height as numeric attributes and
Name, Street, City, State and Gender as text attributes.
These numeric and alphanumeric values are directly
stored in the encoded table. Next, the dictionaries of
Pname, Pstreet, Pcity, Pstate and Pgender are searched
since they correspond to the attributes Name, Street,
City, State and Gender in the encoded table,
respectively. As dictionary Pname does not contain the
name Noelle, the value Noelle is inserted into the
dictionary with its translated value in Arabic language.
A code (in this case, code 4) has been generated at the
time of insertion, which is then used to represent Noelle
in the encoded table. The same goes for dictionaries
Pstreet, Pcity and Pstate since the values (Huntsville,
South Carolina and Timor-leste) needed do not exist in
those dictionaries. However, in dictionary Pgender, it
already contains the value Male. Therefore, the
information for attribute Gender is not inserted into the
dictionary. The code that corresponds to Male is then

grabbed (in this case, code 1) from dictionary Pgender.
The record is then represented in the encoded table as
shown in Fig. 13.
 The delete operation is the simplest operation of all
since it involves deleting from the encoded table only.
Data items in the dictionaries that correspond to a
record that is going to be deleted will not be removed
from their storage since those data items might be
needed for different types of operations in the future.
By doing so, it will reduce greatly the time for insert
and update operations since less data entry into the
dictionaries will be needed at this point onwards.
Figure 14 shows the algorithm used in the MDBMS for
delete operation.

RESULTS

 Patient schema has been considered in this
experiment to measure the performance of the proposed
MDBMS. A data generation program, Data Generator
2.1 (http://www.generatedata.com), has been used to
generate data items for the schema Patient. Ten
thousand of records were randomly generated for this
experiment.

Space requirement calculation: The Patient schema
has been implemented with five single dictionaries and
one encoded table. The dictionaries for Patient schema
are used to store the data items for the attributes Name,
Street, City, State and Gender. Each of these
dictionaries has three fields to store information in
English, Arabic and an auto-generated code (for the
purpose of mapping dictionary to encoded table).
 For the Clinic System, by using the MDBMS
approach, database is used as storage for text data and
their translated values in the dictionaries. Likewise,
database is needed too to store the codes that are
representing the text, numeric and alphanumeric data in
the encoded table. In contrast, database for the
traditional DBMS approach includes the storage of
information separately in each language.

J. Computer Sci., 7 (7): 1052-1059, 2011

1057

Fig. 15: Comparative storage requirement between

traditional DBMS and MDBMS approach

Table 1: Description of Notation
Symbol Description
TIO Time for insert operation
TDO Time for delete operation
TUO Time for update operation
TT Time to translate data
TD Time to delete a record
TI Time to insert a new record
TU Time to update a record
TS Time to search a dictionary
TC Time to insert a new record in a dictionary
L Number of languages

 The storage requirement for different number of
records that uses the traditional DBMS approach is
obtained by summing up the storage required to store
information in English and Arabic whereas for the
proposed approach, the storage requirement for
different number of records is obtained by summing up
the storage required to store data items in all the
dictionaries and also the encoded table. For illustration,
the summation of storage required for Fig. 2 and 3
would acquire the total storage requirement for the
traditional DBMS approach whilst the summation of
storage required for Fig. 4 (which is the encoded
table) and Fig. 5-9 (which are the corresponding
dictionaries for the encoded table) would acquire the
total storage requirement for the MDBMS approach.
From this experiment, a graph has been obtained as
shown in Fig. 15.
 Figure 15 illustrates the comparative storage
between the traditional DBMS approach and the
MDBMS approach. We can see that the MDBMS
approach outperforms the traditional DBMS approach
by about 77.08% in terms of storage requirement. These
results confirm with the results obtained in (Hoque and
Arefin, 2009) where with the increasing number of
records, the storage requirement for the MDBMS would
reduce significantly compared to the conventional
DBMS, since at this point off, the dictionaries would

have evolved enormously and therefore, further entry
into the dictionaries is not necessary.

DISCUSSION

Query performance: The MDBMS that has been
implemented has two parts for the time concern; one for
searching and storing the necessary information in the
dictionaries and another is for dictionary and encoded
table mapping at the time of different operations. Our
notations are summarized in Table 1.

Insert performance: For the existing DBMS, the insert
operation is quite direct. The attributes to be inserted
are translated into the target language and the attributes
are then inserted into the database respective to the
languages.
Let’s say that R is a record to be inserted which
contains N attributes (A1, A2, … , AN). Hence, the
insertion time for the conventional DBMS would be as
follows:

N

Io C Ti Ii 1
T (T) L(T)− =

= +∑ (1)

 In MDBMS, first only text attributes are translated
into the target language (Arabic). Since attributes of
type numeric and alphanumeric are inserted directly
into the encoded table in their original language
(English), therefore, those attributes don’t need to be
translated. Next the corresponding dictionaries are
searched to check the existence of the text data. Here,
the insert operation is broken into two scenarios. The
first scenario occurs when the values of the attributes
involved in the query do not exist in the corresponding
dictionaries. So, assume that from N attributes of record
R, only M attributes need to be translated where M≤N.
For the first scenario, let P be the attributes whose
values do not exist in the corresponding dictionary
where P ≤ M. The equation for the first scenario would
be as follows:

P

P Si Cii 1
T (T) L(T)

=
= +∑ (2)

 The second scenario occurs when the value of the
attribute involved in the query exists in the
corresponding dictionary. For this scenario, let Q be the
attributes whose values exist in the corresponding
dictionaries where Q≤ M. The equation for the second
scenario would then be as follows:

Q

Q Sii 1
T (T)

=
= ∑ (3)

J. Computer Sci., 7 (7): 1052-1059, 2011

1058

 From the Eq. 2 and 3, since P + Q = M, thus, it is
safe to say that the insertion time for the MDBMS
System would be as follows:

M

Io M Ti P Q Ii 1
T (T) T T T− =

= + + +∑ (4)

 These equations have clearly shown the difference
of insert time between the existing (Eq. 1) and the
proposed MDBMS (Eq. 4) where in the existing
DBMS, all the attributes of a record have to be
translated whilst in the proposed system only the
attributes of type text have to be translated.
Furthermore, the insertion of a record into a database
for the existing DBMS has to be done numerously
depending on the number of languages used whereas
for the proposed MDBMS, the insertion of a record into
a database has to be done only once.

Delete performance: The delete operation in both the
traditional DBMS and MDBMS is quite
straightforward. For the existing DBMS the delete
operation has to be done for each language respectively.
Hence, the delete time in this case would be as follows:

TDO-C = L (TD) (5)

 Whilst for MDBMS, the delete operation is done
directly from the encoded database without the
involvement of the dictionaries. For this reason, the
delete time in this case would then be as follows:

TDO-M = TD (6)

 From these equations, it has been observed that
delete time is not so much time consuming for the
proposed MDBMS (equation (6)) compared to the
existing DBMS (Eq. 5) since tuples are deleted directly
from the database without the involvements of
dictionaries.

Update performance: The update operation for both
the traditional and the proposed approach is more time
consuming than the other operations. For this
experiment, let’s assume that R is the record to be
updated which contains N attributes (A1, A2, ... , AN).
From N attributes, only M attributes need to be updated
and thus need to be translated. Hence, the update time
for the traditional approach would be as follows:

M

UO C Ti Ui 1
T (T) L(T)− =

= +∑ (7)

 The opposite can be said for the update operation
in the proposed MDBMS which is broken into three

scenarios. The first scenario occurs when the values of
the updated attributes are text data that do not exist in
the corresponding dictionaries. So, assume that X
attributes are attributes whose values do not exist in the
corresponding dictionaries where X ≤ M. The equation
for the first scenario would be as follows:

X X

X Si Cii 1 i 1
T (T T)

= =
= +∑ ∑ (8)

 The second scenario occurs when the values of the
updated attributes involved are text data that have
already existed in the corresponding dictionaries. From
here, let’s assume that Y attributes are attributes whose
values have already existed in the corresponding
dictionaries and where Y ≤ M. The equation for the
second scenario would then be as follows:

Y

Y Sii 1
T (T)

=
= ∑ (9)

 For third scenario assume that from M attributes
that need to be updated, Z is the number of attributes of
numeric or alphanumeric type where Z ≤ M. As
mentioned before, these types of attributes do not need
any translation. Therefore, they are updated directly
into the encoded table. Hence, no equation is needed for
this scenario. Since X + Y + Z = M, thus, the update
time for the proposed MDBMS would then be as
follows:

M Z

UO M Ti X Y Ui 1
T (T) T T T

−
− =

= + + +∑ (10)

 From these equations, it is observed that the update
time of the proposed MDBMS (Eq. 10) is slightly better
than the update time for the existing DBMS (Eq. 7).
This is because in the existing DBMS, the update
operation needed to be performed in each of the
databases separately to keep the consistency of
information stored in different languages. But in the
proposed MDBMS, the update operation only has to be
performed on a single encoded table.

CONCLUSION

 This study has implemented the Multilingual
Database Management System approach in (Hoque and
Arefin, 2009) with some modifications in its system
architecture and the algorithm used for the insert, delete
and update operations. The MDBMS in this study
focused on English and Arabic languages, different
from the MDBMS in (Hoque and Arefin, 2009). The

J. Computer Sci., 7 (7): 1052-1059, 2011

1059

MDBMS approach performed consistently. The
comparison to the traditional DBMS approach shows
that the MDBMS approach needs less storage
requirement. The MDBMS approach is found to be less
time consuming in insert, delete and update operations
than conventional DBMS approach. However, the
MDBMS has not been developed to deal with typing
errors. Let’s say, a user intended to insert a name, for
instance Noelle, which has already existed in the
dictionary Pname. Instead, in this case the user has
misspelled the name (i.e., Noeole) and during the insert
operation, the MDBMS would have interpreted it as a
new value since the search process in the dictionary
Pname for the value Noelle would return an empty
result. Therefore, the MDBMS would attempt to create
a new record in the dictionary and this would obviously
disrupt the consistency of the database. This little
inaccuracy could be improved in future to further
enhance the MDBMS.

REFERENCES

Ali, A.A., 2006. On optimistic concurrency control for

real-time database systems. Am. J. Applied Sci., 3:
1706-1710. DOI: 10.3844/.2006.1706.1710

Hoque, A.S.M.L and M.S. Arefin, 2009. Multilingual
data management in database environment.
Malaysian J. Comput. Sci., 22: 44-63.
http://mjcs.fsktm.um.edu.my/document.aspx?FileN
ame=743.pdf

Jannoud, I.A., 2007. Automatic Arabic hand written
text recognition system. Am. J. Applied Sci., 4:
857-864. DOI: 10.3844/ajassp.2007.857.864

Karimi, S., A. Turpin and F. Scholer, 2006. English to
Persian Transliteration. Proceedings of Symposium
on String Processing and Information Retrieval
(SPIRE’06), Lecture Notes in Computer Science,
Glasgow, UK, pp: 255-266. DOI:
10.1007/11880561_21

Mohammed, E.A. and M.J.A. Aziz, 2011. English to
Arabic machine translation based on reordering
algorithm. J. Comput. Sci., 7: 120-128. DOI:
10.3844/jcssp.2011.120.128

Nandasara, S.T., S. Kodama, C.Y. Choong, R.
Caminero and A. Tarcan et al., 2008. An Analysis
of Asian Language Web Pages. Int. J. Adv. ICT
Emerging Regions, 1: 12-23. DOI:
10.4038/icter.v1i1.448

Shaalan, K., A. Rafea, A.A. Mmonem, and H. Baraka,
2004. Machine translation of English noun phrases
into Arabic. Int. J. Comput. Process. Orient.
Languages, 17: 121-134. DOI:
10.1142/S021942790400105X

Sherif, T. and G. Kondrak, 2007. Substring-Based
Transliteration. Proceedings of the 45th Annual
Meeting on Association for Computational
Linguistics, Prague, Czech Republic, pp: 944-951.
http://webdocs.cs.ualberta.ca/~kondrak/papers/acl0
7Gen.pdf

Shirko, O., N. Omar, H. Arshad, and M. Albared, 2010.
Machine translation of noun phrases from arabic to
English using transfer-based approach. J. Comput.
Sci., 6: 350-356. DOI: 10.3844/jcssp.2010.350.356

