
Journal of Computer Science 7 (8): 1133-1140, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding author: Idawaty Ahmad, Department of Communication Technology and Network,
 idawaty@fsktm.upm.edu.my

1133

A Discrete Event Simulation Framework for Utility Accrual Scheduling

Algorithm in Uniprocessor Environment

Idawaty Ahmad, Shamala Subramaniam, Mohamed Othman
and Zuriati Zulkarnain

1Department of Communication Technology and Network,
Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 UPM,
Serdang, Selangor DE, Malaysia

Abstract: Problem statement: The heterogeneity in the choice of simulation platforms for real time
scheduling stands behind the difficulty of developing a common simulation environment. A Discrete
Event Simulation (DES) for a real time scheduling domain encompassing event definition, time
advancing mechanism and scheduler has yet to be developed. Approach: The study focused on the
proposed and the development of an event based discrete event simulator for the existing General Utility
Scheduling (GUS) to facilitate the reuse of the algorithm under a common simulation environment. GUS
is one of the existing TUF/UA scheduling algorithms that consider the Time/Utility Function (TUF) of
the executed tasks in its scheduling decision. The scheduling optimality criteria are based on maximizing
accrued utility accumulated from execution of all tasks in the system. These criteria are named as Utility
Accrual (UA). The TUF/ UA scheduling algorithms are design for adaptive real time system
environment. The developed GUS simulator has derived the set of parameter, events, performance
metrics and other unique TUF/UA scheduling element according to a detailed analysis of the base model.
Results: The Accrued Utility Ratio (AUR) is investigated and compared to the benchmark of the
modeled domain. Successful deployment of the GUS simulator was proven by the generated results.
Conclusion: Extensive performance analysis of GUS simulator can be deployed using the developed
simulator with low computational overhead. Further enhancements were to extend the developed GUS
simulator with detail performance metrics together with a fault tolerance mechanism to support a reliable
real time application domain.

Key words: Real Time Scheduling, Discrete Event Simulation (DES), Time/Utility Function (TUF),

General Purpose Language (GPL)

INTRODUCTION

 Real-time scheduling is fundamentally concerned
with satisfying application time constraints. In
adaptive real time system an acceptable deadline
misses and delays are tolerable and do not have great
consequences to the system.
 One of the scheduling paradigms in adaptive real
time system environment is known as Time/Utility
Function (TUF) (Idawaty et al., 2009; Wu et al., 2004;
Jensen et al., 1985). A TUF of a task specifies the
quantified value of utility gained by the system after the
completion of a task shown in Fig. 1. The urgency of a
task is captured as a deadline on X-axis and the
importance of a task is measured by utility in Y-axis.

Fig. 1: The step TUF

J. Computer Sci., 7 (8): 1133-1140, 2011

1134

Fig. 2: Performance Analysis Techniques (Law, 2003)

 With reference to Fig. 1, in the event of the task
being computed at time A, which denotes the range
between the start of execution and the stipulated
deadline, the system gains a positive utility. However,
if the task is completed at time B, which causes failure
of deadline compliance requirement, the system
acquires zero utility. When the tasks characteristics are
expressed using TUFs, the value of utility for each
executed task is accumulated and the total attained
utility are measured.
 The scheduling optimization goal is to maximize
the sum of the tasks’ accrued utilities which is known
as Utility Accrual (UA) (Wu et al., 2004; Jensen et al.,
1985). The scheduling algorithms that consider the
UA as a criterion are known as TUF/UA
scheduling algorithms.
 GUS is a uniprocessor TUF/UA scheduling
algorithm that manages the independence tasks and
tasks that have dependencies with other tasks (Li et al.,
2006). The dependencies are due to the sharing of
resources via the single unit of resource request model.
In enhancing and developing the GUS algorithm,
performance analysis and its respective tools are
evident. The performances are measured by using
analytical, simulation and measurement methods as
shown in Fig. 2 (Law, 2003). Analytical model uses
mathematical notation and simulation model uses
computer program to imitate the behavior of a system.

Problem statement: The benchmark model of GUS
was developed using OMNET++ that is one of the
available discrete event simulation tools (Li et al.,
2006). Table 1 depicts the existing TUF/UA scheduling
algorithms and its simulation tools. It is observed that
the SIMSCRIPT, OMNET++ and ns2 tools are used to
investigate the performance of these algorithms.
Though there exists the simulation tools, there does not
exist a detailed description and a developed General
Purpose Language (GPL) DES for the TUF/UA
scheduling domain specifically the GUS algorithm. The
lack of uniformity in the choice of simulation platforms
is a clear limitation for investigating the performances
of the TUF/UA scheduling algorithms.

Fig. 3: The Simulation Study Life Cycle ((Law, 2003)

Table 1: The simulation tools used in the TUF/UA scheduling domain
Existing algorithms Simulation tools Year
LBESA SIMSCRIPT 1985
DASA SIMSCIRPT 1996
GUS OMNET++ 2004
MSA OMNET++ 2006
GCMUA ns2 2009
Gamma ns2 2010

 This study presents the development of a DES for
one of the TUF/UA scheduling algorithms i.e., GUS and
a comprehensive model development. The model can be
adopted and customized for further analysis with ease.

Objective: The GUS simulator is built from the scratch
to enable customization requirements of any research
and to provide the freedom to understand, configure
TUF modules, draw desired scheduling environment
and plot the necessary performance graphs. In order to
evaluate and validate the performance of the designed
simulator, a simulation model for the TUF/UA
scheduling environment is deployed.

MATERIALS AND METHODS

 Approach: The steps taken for developing the GUS
simulator is shown in Fig. 3 specifying various phase to
be followed (Karatza,2000; Law, 2003).

Study definition phase: The first stage in the
simulation life cycle is the study definition phase. In this
phase, the problem formulations and the objectives of the
study are identified. Concurrently, the input and output
requirements of the developed model are also identified.

Analysis phase: In the analysis phase, the main
components such as entities, queues, events or
resources are identified in the simulation model.

J. Computer Sci., 7 (8): 1133-1140, 2011

1135

Fig. 4: Simulation framework

Parameter estimation phase: To obtain a convincing
model, the values of parameters that quantify the effect
in the model must indeed represent reality. Thus,
parameter estimation must be set with precision and
similar to the real system. One of the methods to realize
this in this research is estimating parameters by
absorbing the benchmark model which is the GUS
algorithm (Li et al., 2006).

Model development phase: This phase consists of the
development of the conceptual model as a computer
program. This also constitutes the verification and
validation steps as shown in Fig. 3. Verification is the
process used to determine the model correctness. The
validation phase is the process of determining if the
simulation model is an accurate representation of the
system and performs its stipulated intention. The most
definitive test of a simulation model’s validity is
establishing that its output data closely resemble the
output data that would be observed from the benchmark
model i.e., GUS (Li et al., 2006). Validation of the
developed simulator is given in the results section.

Experimentation and result analysis phase: The
simulation model is executed in a series of parametric
simulation runs which are performed to satisfy the aims
of the simulation study. Based on the result analysis,
Various conclusions are drawn. Conclusions of this
study are given in the conclusion section.

Fig. 5: Flowchart of the simulation program

Discrete simulation framework: A discrete event
simulation framework is developed to verify the
performance of the GUS scheduling algorithm. In order
to precisely remodel and further enhance the GUS
algorithm, DES written in C language in Visual C++
environment is the best method to achieve this objective.
 Figure 4 shows the developed GUS simulator
framework. It consists of the four major components
i.e., the DES simulation, scheduling algorithm, entities
and resources components.

DES simulation component: The core component to
execute the developed simulator consists of the events,
events scheduler, time advancing mechanism, random
number generator, Termination Of Simulation (TOS)
and statistical results.
 A flow chart of the execution of the simulator is
depicted in Fig. 5. It illustrates the structure of the
simulation program and the events involved. The
initialization triggers the deployment of the entire
simulation. Relating the norm of an idle system, no task
can depart without invoking its creation (i.e., Task
Arrival Event). Thus, the assumption of the event
arrival schedule is set to 0.0000.

J. Computer Sci., 7 (8): 1133-1140, 2011

1136

 Referring to Fig. 5, after initialization the next pre-
requisite mandatory step is to scan the event list and
select the event with the earliest time of occurrence.
Mapping the selection to DES is embedded in the time
advancing mechanism (i.e., simulation clock). The
simulation clock is then advanced to the time of
occurrence of the selected event. The simulator then
executes the selected event and updates the system state
variables affected by the event. Each of the identified
events is auctioned by calling an associated event
routine which results in the addition of future events to
the event list. The execution of event routines is done to
achieve the stipulated two purposes to:

• Model the deployment of an event and
• Track the resource consumption status of the event

 Referring to Fig. 5, the defined events and their
respective routine descriptions in this research are as
follows:

• Task Arrival event
• Resource Request event
• Resource Release event
• Task Termination event

 The completion of the simulation will be done
upon the convergence of the repetitive structure to a
predefined value which also known as TOS. TOS is
critical in determining the validity of the acquired
results. It must represent the system in entirety. In this
research, the simulator is terminated if one of these two
conditions is fulfilled:

• The event list is empty
• The arrival of task termination event for the final

task (i.e., the Nth task) is executed

Entities component: Entities are the representation of
objects in the system (Karatza, 2000; Law, 2003). Fig.
6 shows the interaction between the entities and
resource models that are designed throughout the
simulator. i.e., the source and tasks entities, the
resources and a queue of an unordered task list named
as utlist.

Source model: Simulating the source model involves
the representation of the load generation of the system
under study. It is vital to accurately represent the load
to ensure the algorithms deployed are tested on the
actual scenario.
 A source injects a stream of tasks into the system.
The maximum numbers of tasks are 1000 and denoted
as MAX_TASKS. Upon generation, a task is executed
for 0.50 seconds (i.e., the average execution time
denoted as C_AVG). Given the task average execution
time C_AVG and a load factor load, the tasks inter

arrival time follows exponential distribution with mean
value of C_AVG/load.
 Tasks are generated via a Task Arrival event. The
details of this event are depicted in Fig. 7. Every time
the Task Arrival event is executed, the system
increments the counter representing the number of
generated task i.e., ntg by one. Each task is associated
with an Initial time and Termination time.

Fig. 6: Interaction of entities and resources

Fig. 7: Task arrival event

Fig. 8: Task model

J. Computer Sci., 7 (8): 1133-1140, 2011

1137

The arrival time of the task into the system is denoted as
the Initial time. It measures this value by capturing the
current clock time denoted as schlock. The Termination
time represents the absolute deadline of a task.

Task model: A micro abstraction of a source is the
task model. Each task is associated with an integer
number, denoted as tid. Each task is associated with
an integer number, denoted as tid. Figure 8 shows a
task as a single flow of execution.
 During the lifetime of a task, it may request one or
more resources. For each request, a task specifies the
duration to hold the requested resource. This is denoted
as Hold Time. The Exec Time denotes the remaining
execution time of a task at a particular instant. Initially, at
Initial time the value of Exec Time is equal to C_AVG.
This value is reduced as the task is executed until the
Termination time and the value of Exec Time becomes
zero. It is assumed that a task releases all resources it
acquires before it ends, complying with condition of the
Hold Time≤Exec Time. The following assumptions are
made for the task model implemented in this research:

• Independent task model, whereas each task has no

dependency on other task during execution. The
execution of a task has no correlation to the
previously executed task

• Task can be preemptive, i.e., a task can be delayed
or suspended to allow another task to be executed

TUF model: The timing constraint of a task is designed
using the step TUF model in this research (Li et al.,
2006). A TUF describes a task contribution to the
system as a function of its completion time. The step
TUF model is shown in Fig. 1. The maximum utility
that could possibly be gained by a task is denoted as
MaxAU. The random value of MaxAU abides normal
distribution (10, 10) i.e., the mean value and variance is
set 10 to conform to the benchmark. The Initial time is
the starting time for which the function is defined. The
Termination time is the latest time for which the function
is defined. That is, MaxAU is defined in within the time
interval of [Initial time, Termination time]. The
completion of a task within this interval will yield
positive utility i.e., MaxAU to the system. The
completion of a task breaching the stipulated deadline
causes the value of MaxAU to become zero. If the
Termination time is reached and the task has not finished
its execution, it accrues zero utility to the system.

Fig. 9: Unordered task list (queuing model)

Queuing model: The constant amount of resources and
surplusing demands results in resource unavailability.
The simulator provides a mechanism to retain the task’s
requests for resources which are temporarily
unavailable in an unordered task list named as utlist. A
queue implementation via the pointer based single link
list is used to deploy the utlist as shown in Fig. 9.
 Referring to Fig. 9, the utlist consists of a sequence
of pending request. A request for a resource is
represented by a quadruple ReqResourceItem=<tid,rid,
Hold time, Abort Time>. Thus, an element in the utlist
consists of ReqResourceItem structure. A next pointer
is used to link an element to the next element in the
utlist. The head_utlist points to the first element and
tail_utlist points to the final element in the utlist.

Resources component: The resource model represents
the physical and logical resources. Logical resource can
be defined as the management of physical resource
whereby the “N” physical resources are treated as “M”
instances. When the resource is currently being held by
a task, resource is in the BUSY state. When a resource
is not held by any task (i.e., in IDLE state).
 When a task request a resource, the resource
request event is depicted in Fig. 10.
 Referring to Fig. 10, every time this event is
executed, the system increments the counter representing
the number of request in a task i.e., Treq.nrr by one.
When a new request for a resource from a task Treq
arrived in the system, the availability of the requested
resource is checked. If the resource is in IDLE state
which means it is available, task Treq is scheduled to
immediately use the resource and the resource release
event is scheduled in the event list. The status of the
resource is changed to BUSY state and the owner of
this resource is assigned to the task Treq. The GUS
scheduling algorithm is implemented into the system
for the case when the resource is currently in BUSY
state being used by the owner task.

J. Computer Sci., 7 (8): 1133-1140, 2011

1138

Fig. 10: A resource request event

Fig. 11: Calculation of PUD

Scheduling algorithm component: The scheduling
algorithms component consists of the benchmark GUS
algorithm. GUS is a TUF/UA uniprocessor scheduling
algorithm that considers the step and arbitrary shape
TUFs. The main objective of GUS is to maximize the
utility accrued to represents that the most important task
is to be scheduled first in the system. GUS uses a
greedy strategy where task whose execution yields the
maximum PUD over others is selected to determine
which task to be scheduled at a particular instant.
 The PUD of a task measures the amount of utility
that can be accrued per unit time by executing the task.
It essentially measures the Return on Investment (RoI)
for executing the task at current clock time.

Fig. 12: GUS Scheduling algorithm

Table 2: Simulation parameters
Parameter Range Description
iat Exponential (C_AVG/load) Task inter-arrival time
HoldTime Normal (0.25, 0.25) Duration for holding a
 resource
MaxAU Normal (10, 10) Task maximum utility
AbortTime Any random number that Duration for cleanup
 is less than HoldTime time of a task

Fig. 11 shows the computation flow of PUD for a task
at a particular time unit denoted as sclock. The current
execution mode of a task is checked which maybe
either the NORMAL or ABORT mode.
 The PUD of a task that is currently executing in
ABORT mode is zero as depicted in Fig. 11. This is
because the maximum utility i.e., MaxAU for an
aborted task is zero and consequently does not accrues
utility to the system. For a task that is currently
executing in NORMAL mode, the expected completion
time of the task (i.e., Comp_T) is calculated.
If the task is to be executed at current time i.e., sclock,
the expected completion time of a task is equal to sclock
+ HoldTime where the HoldTime is defined as the time
taken for a task to hold the respective resource. If the
completion time exceeds the Termination time of the
task, the utility becomes zero and consequently the PUD
is equals to zero. If the task is scheduled to complete
execution before Termination time, the execution of the
task will yield positive utility i.e., MaxAU.
 Figure 12 elaborates the GUS scheduling algorithm
for the execution of an independent task model. When a
new request from task Treq arrives into the system,
GUS accepts the new request for resource Ra.
 Referring to Fig. 12, when the resource Ra is
currently being used by another task i.e., task Towner,
GUS firstly calculates the PUD of both tasks. In the case
that the requesting task i.e., Treq posses a higher PUD as
compared to task Towner, GUS has tailored mechanism
to abort the current owner task (i.e., Towner) and grant
the resource to the requesting task (i.e., Treq).

J. Computer Sci., 7 (8): 1133-1140, 2011

1139

Fig. 13: AUR Results of the developed simulator and

the benchmark model

 The abortion procedures taken some processing
time denoted as Abort Time while the request from task
Treq is inserted into a utlist queue that containing the
pending requests which are still waiting to be
scheduled. After task Towner has releases resource Ra,
GUS selects the highest PUD task among the tasks in
the utlist to hold the resource Ra.

Experimental setting: The developed simulator has
been tailored to map the characteristics of a
uniprocessor scheduling. Table 2 summarizes the
simulation parameter settings that are used
throughout this research (Li et al., 2006). A
source generates a stream of 1000 tasks. Given the task
average execution time C_AVG and a load factor load,
the average task inter arrival time i.e., iat is calculated
as the division of C_AVG over load and further utilized
an exponential distribution to be further derived to reflect
the intended system model. In all the simulation
experiments, the value of C_AVG is set at 0.50 sec and
the range value of load is from 0.20-1.50. The different
value of load are to provide the derivation of differing
mean arrival rates of tasks. The arrival of tasks is
assumed to follow the exponential distribution. The
system is said to be overloaded when (load >1.00)
represented also as the mean arrival rate of 0.50 seconds
(i.e., iat). This complementary representation of load can
be utilized to show congestion as the iat is at its equal
value to the execution ability to process a task.
 The value of the HoldTime and AbortTime
parameters are derived by the normal distribution with
mean and variance is 0.25. The maximum utility of a

task i.e., MaxAU is computed using normal distribution
with mean value of 10 and variance of 10. It is assumed
that the amount of available resources in the system i.e.,
MAX_RESOURCES are 5.
 The performances of real time scheduling
algorithms are measured by the metrics which rely on the
respective application specifications. The Accrued Utility
Ratio (AUR) metric defined in (Jensen et al., 1985) has
been extensively utilized in the existing TUF/UA
scheduling algorithms and is considered as the standard
metric in this domain (Wu et al., 2004; Li et al., 2006).
 AUR is defined as the ratio of accrued aggregate
utility to the maximum possibly attained utility. Equation
(1) shows that each task i has its maximum value of
utility which is denoted as MaxAU(i). After a task i has
completed its execution, it will yield a value denoted as
Util(i). These values are then accumulated for all tasks
i.e., MAX_TASKS. The AUR is calculated as:

MAX _ TASKS

i 1
MAX _ TASKS

i 1

Utill(i)
AUR

MaxAU(i)
=

=

= ∑

∑
 (1)

RESULTS

 Extensive experiments were done to ensure the
developed GUS simulator is validated. The simulation
model is validated by ensuring that its output data closely
resemble the output data that was observed from the
benchmark model i.e., GUS. A result obtained from
simulator is compared with the result published in the
literature by using the same assumptions and
experimental setting (Li et al., 2006). Figure 13 depicts
the AUR results of the developed GUS simulator and the
original GUS. The result obtained using the simulation is
comparable to the result published with the same trends.
 Figure 13 depicts the AUR result under an
increasing load. From the results, as the number of load
is increased; a lower accrued utility is recorded. The
developed GUS simulator is validated with less than
5% as compared to the benchmark model.

DISCUSSION

 With the obtained result, this study has proven that
the simulation of TUF/UA scheduling algorithm can be
deployed in a common platform of discrete event
simulator as a solution to the heterogeneity problem of
the simulation tools.

CONCLUSION

 In the past the research of utility accrual real time
scheduling mainly uses the simulation tools as
methodology to investigate the performances. With the

J. Computer Sci., 7 (8): 1133-1140, 2011

1140

development of a discrete event simulation this study
has provided the design of the developed GUS
scheduling algorithm by using DES. The aim of the
developed simulation framework was not only to
develop a GUS model for the research problem but also
to provide a platform for future investigations involving
TUF/UA real time scheduling.
 A number of extensions to this research can be
carried out and are given as follows:

• The GUS algorithm can be deployed in network

and distributed environment. Flow control and
routing algorithms should be integrated into the
research. Thus, increasing the feasibility in actual
implementation of the algorithm

• The implementation of the fault tolerance in the
TUF/UA scheduling domain

REFERENCES

Ahmad, I., M.F. Othman, I. Ahmad and M.F. Othman,

2009. Enhanced utility accrual scheduling
algorithms for adaptive real time system. J. Comp.
Sci., 5: 783-787. DOI:
10.3844/JCSSP.2009.783.787

Jensen, E.D., C.D. Locke and H. Tokuda, 1985. A time
driven scheduling model for real time operating
systems. Carnegie-Me//on University. http:
//citeseerx.ist.psu.edu/viewdoc/download?doi=10.1
.1.13.7022&rep=rep1&type=pdf

Karatza, H., 2000. A comparative analysis of
scheduling policies in a distributed system using
simulation. J. Simulat., 1: 12-20. http:
//ducati.doc.ntu.ac.uk/uksim/journal/issue-
/HelenKaratza/HelenKaratza.pdf

Law, A., 2003. How to conduct a successful simulation
study. Proceeding of the 2003 Winter Simulation
Conference, IEEE Xplore Press, USA., pp: 66-70.
DOI: 10.1109/WSC.2003.1261409

Li, P., H. Wu, B. Ravindran and E.D. Jensen, 2006. A
utility accrual scheduling algorithm for real-time
activities with mutual exclusion resource
constraints. IEEE Trans. Comput., 55: 454-469.
DOI: 10.1109/TC.2006.47

Wu, H., B. Ravindran, E.D. Jensen and P. Li, 2004.
CPU scheduling for statistically-assured real-time
performance and improved energy efficiency.
Proceeding of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 8-10, IEEE
Xplore Press, USA., pp: 110-115.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn
umber=1360490

