Journal of Computer Science 7 (8): 1133-1140, 2011
ISSN 1549-3636
© 2011 Science Publications

A Discrete Event Simulation Framework for Utility Accrual Scheduling
Algorithm in Uniprocessor Environment

Idawaty Ahmad, Shamala Subramaniam, Mohamed Othman
and Zuriati Zulkarnain
'Department of Communication Technology and Network,
Faculty of Computer Science and Information Tecbgpl
University Putra Malaysia, 43400 UPM,
Serdang, Selangor DE, Malaysia

Abstract: Problem statement: The heterogeneity in the choice of simulation fplas for real time
scheduling stands behind the difficulty of devehgpa common simulation environment. A Discrete
Event Simulation (DES) for a real time schedulingm@in encompassing event definition, time
advancing mechanism and scheduler has yet to belaged.Approach: The study focused on the
proposed and the development of an event base®@isevent simulator for the existing General tytili
Scheduling (GUS) to facilitate the reuse of theodtgm under a common simulation environment. GUS
is one of the existing TUF/UA scheduling algoriththat consider the Time/Utility Function (TUF) of
the executed tasks in its scheduling decision.stheduling optimality criteria are based on maxingjz
accrued utility accumulated from execution of aks in the system. These criteria are named &ty Uti
Accrual (UA). The TUF/ UA scheduling algorithms adesign for adaptive real time system
environment. The developed GUS simulator has déribe set of parameter, events, performance
metrics and other unique TUF/UA scheduling elenaeabrding to a detailed analysis of the base model.
Results: The Accrued Utility Ratio (AUR) is investigated catompared to the benchmark of the
modeled domain. Successful deployment of the GU&ilasior was proven by the generated results.
Conclusion: Extensive performance analysis of GUS simulator loa deployed using the developed
simulator with low computational overhead. Furteehancements were to extend the developed GUS
simulator with detail performance metrics togethéh a fault tolerance mechanism to support albbédia
real time application domain.

Key words: Real Time Scheduling, Discrete Event Simulation §DETime/Utility Function (TUF),
General Purpose Language (GPL)

INTRODUCTION Utility AN

Real-time scheduling is fundamentally concerned
with satisfying application time constraints. In  auy positive b = = -
adaptive real time system an acceptable deadling ™«
misses and delays are tolerable and do not haa gre
consequences to the system.

One of the scheduling paradigms in adaptive real 0 %
time system environment is known as Time/Utility L @ Deadline Time
Function (TUF) (Idawatgt al., 2009; Wuet al., 2004; ' S
Jensenet al., 1985). A TUF of a task specifies the i ——

quantified value of utility gained by the systerteathe

completion of a task shown in Fig. 1. The urgentg o

task is captured as a deadline on X-axis and the

importance of a task is measured by utility in Ysax Fig. 1: The step TUF

time B

Corresponding author: ldawaty Ahmad, Department of Communication Techggland Network,
idawaty@fsktm.upm.edu.my
1133



J. Computer i, 7 (8): 1133-1140, 2011

; " . Statement of problem
Presentation of solution

Performance
lanalysis technique

Define study

Measurement Simulation Analytical

Parameter
estimation

Interpret

Experiment |
\ y

Validation i

/

4
Develop

Fig. 2: Performance Analysis Techniques (Law, 2003)

With reference to Fig. 1, in the event of the task
being computed at time A, which denotes the range
between the start of execution and the stipulated

Validationand |
verification
deadline, the system gains a positive utility. Hoare
if the task is completed at time B, which causdisifa

of deadline compliance requirement, the systenf'g' 3: The Simulation Study Life Cycle ((Law, 2003
acquires zero utility. When the tasks charact@sstire  Tapie 1: The simulation tools used in the TUF/UAextuling domain

expressed using TUFs, the value of utility for eachexisting algorithms Simulation tools Year
executed task is accumulated and the total attainelgl%AIESiA g:mgggg %ggg
utility are measured. _ . GUs OMNET++ 2004
The scheduling optimization goal is to maximize msa OMNET++ 2006
the sum of the tasks’ accrued utilities which i®okm  GCMUA ns2 2009
Gamma ns2 2010

as Utility Accrual (UA) (Wuet al., 2004; Jensed al.,
1985). The scheduling algorithms that consider the
UA as a criterion are known as TUF/UA
scheduling algorithms.

GUS is a uniprocessor TUF/UA scheduling
algorithm that manages the independence tasks a
tasks that have dependencies with other tasket (li,
2006). The dependencies are due to the sharing

This study presents the development of a DES for
one of the TUF/UA scheduling algorithms i.e., GUf8l a

a comprehensive model development. The model can be
/Aflopted and customized for further analysis witeea

&ibjective: The GUS simulator is built from the scratch

resources via the single unit of resource requesten (0 €nable customization requirements of any researc
In enhancing and developing the GUS algorithm and to provide the freedom to understand, configure
performance analysis and its respective tools ard UF modules, draw desired scheduling environment
evident. The performances are measured by usin nd plot the necessary performance graphs. In cua_jer
analytical, simulation and measurement methods a valuate and validate the performance of the dedign

shown in Fig. 2 (Law, 2003). Analytical model usesSirﬂug"t?r' a_ simulation dmoldel dfor the  TUF/UA
mathematical notation and simulaton model useScheduling environmentis deployed.

computer program to imitate the behavior of a syste MATERIALSAND METHODS

Problem statement: The benchmark model of GUS Approach: The steps taken for developing the GUS
was developed using OMNET+hat is one of the simulator is shown in Fig. 3 specifying various phdo
available discrete event simulation tools (& al., be followed (Karatza,2000; Law, 2003).

2006). Table 1 depicts the existing TUF/UA scheuyli

algorithms and its simulation tools. It is obsertedt  gydy definition phase: The first stage in the
Fhe SIMSCRIPT, OMNET++ and ns2 tools are used Wsimulation life cycle is the study definition phase this
investigate the performance of thesgorithms. h h blem f lati d the obiectiies
Though there exists the simulation tools, theresdwua phase, t € problem formu ations and t € objec ¢se
exist a detailed description and a developed Géner&tudy are identified. Concurrently, the input andpat
Purpose Language (GPL) DES for the TUF/UA requirements of the developed model are also iithti
scheduling domain specifically the GUS algorithrheT

lack of uniformity in the choice of simulation platms  Analysis phase: In the analysis phase, the main
is a clear limitation for investigating the perfantes components such as entities, queues, events or
of the TUF/UA scheduling algorithms. resources are identified in the simulation model.

1134



J. Computer i, 7 (8): 1133-1140, 2011

DES simulation

Scheduling
algorithms

I
[ Put the Task Arrival event on the event list and schedule it to occur at 0.0000

Any event in the event list? -
Yes

Select the most imminent event
Advanced clock

(| Read input variables and intalizethesvstem state vasiables |
Initialization

Event generation Initialization

Task arrival event

Event
v scheduler
Task termination

event

Resource request event

Resource release event

me advancing
mechanism
Tos
. Executean event Resource request
c Ln Random number Taskarrival
Statistical results I
generator Task termination
task_request()

Resourcerelease

Entities and resources Eask terminate (ﬂ
= task_release()

Source Task TUF Queuing Resource task_generate()
| model model model model model

Fig. 4: Simulation framework

Termination of
simulation?

Parameter estimation phase: To obtain a convincing
model, the values of parameters that quantify ffece
in the model must indeed represent reality. Thus
parameter estimation must be set with precision an
similar to the real system. One of the methods#dize
this in this research is estimating parameters byig. 5: Flowchart of the simulation program

absorbing the benchmark model which is the Gu%iscrete simulation framework: A discrete event
algorithm (Liet al., 2006). simulation framework is developed to verify the
performance of the GUS scheduling algorithm. Ineord
Model development phase: This phase consists of the to precisely remodel and further enhance the GUS
development of the conceptual model as a computeslgorithm, DES written in C language in Visual C++
program. This also constitutes the verification andenvironment is the best method to achieve thisotilje
validation steps as shown in Fig. 3. Verificatisnthe Figure 4 shows the developed GUS simulator
process used to determine the model correctness. -|-|_I|ramework. It consists of the fm.” major components
validation phase is the process of determininghd t l.e., the DES simulation, scheduling algorithm,iteed
) ) ; . and resources components.
simulation model is an accurate representationhef t
system and performs its stipulated intention. Thestm DES simulation component: The core component to
definitive test of a simulation model's validity is execute the developed simulator consists of thateve
establishing that its output data closely resenthle  events scheduler, time advancing mechanism, random
output data that would be observed from the benckma number generator, Termination Of Simulation (TOS)
model i.e., GUS (Liet al., 2006). Validation of the and statistical results.
developed simulator is given in the results section A flow chart of the execution of the simulator is
depicted in Fig. 5. It illustrates the structure tbe
Experimentation and result analysis phase: The simulation program and the events involved. The
simulation model is executed in a series of pardmet initialization triggers the deployment of the eatir
simulation runs which are performed to satisfyahmes  simulation. Relating the norm of an idle system tamk
of the simulation study. Based on the resumalgsis, can depart without invoking its creation (i.e., Kas
Various conclusions are drawn. Conclusions of thisArrival Event). Thus, the assumption of the event
study are given in the conclusion section. arrival schedule is set to 0.0000.
1135

Yes
Compute and print the
results




J. Computer i, 7 (8): 1133-1140, 2011

Referring to Fig. 5, after initialization the ngxte-  arrival time follows exponential distribution witihean
requisite mandatory step is to scan the eventalist value of C_AVG/load.
select the event with the earliest time of occureen Tasks are generated via a Task Arrival event. The
Mapping the selection to DES is embedded in the tim details of this event are depicted in Fig. 7. Evimye
advancing mechanism (i.e., simulation clock). Thethe Task Arrival event is executed, the system
simulation clock is then advanced to the time ofincrements the counter representing the number of
occurrence of the selected event. The simulaton thegenerated task i.e., ntg by one. Each task is ededc
executes the selected event and updates the syt  with an Initial time and Termination time.
variables affected by the event. Each of the idiedti
events is auctioned by calling an assediavent
routine which results in the addition of future etgeto
the event list. The execution of event routinedaee to
achieve the stipulated two purposes to:

Task Enque algorithm is by Resource
order of arrival

TUnordered task list (utlist)

q q q
(T3,R5) | (TN,RS) | (T6,RM))

* Model the deployment of an event and
e Track the resource consumption status of the event

Referring to Fig. 5, the defined events and their
respective routine descriptions in this researeh a
follows:

«  Task Arrival event Fig. 6: Interaction of entities and resources

* Resource Request event PO
* Resource Release event —— = \
. Task Term'nat'on event ‘ Increasing by one the nu&l:a:r:oitg‘f:]le)rated task in the system ’
The completion of the simulation will be done Capture thecurrentclocktime ie., sclock |
upon the convergence of the repetitive structure to —_—
predefined value which also known as TOS. TOS is [ R e s I
critical in determining the validity of the acquire i —F I
. . . Calculate the termination time as time for this task
results. It must represent the system in entiretythis [ (Terminate time = sclock + C_AVG) I
research, the simulator is terminated if one o$é¢hivo L :
. . . K Schedule the Task Termination event for this task and place it ‘
conditions is fulfilled: [ in the event list
. The event |ISt |S empty Schedule the first resoiric[?i;zu:zi\t'eﬁ;fcrthistask and place ]
» The arrival of task termination event for the final ' 1
task (i.e., the Nth task) is executed T
_— — Does the number of tasks T — Yes
. . . == Exceed the MAX TASKS? S
Entities component: Entities are the representation of T (PMAXTASKS) __—
objects in the system (Karatza, 2000; Law, 200R). F Rl
6 shows the interaction between the entities and |, L
resource models that are dESIgned throughout the4 Schedule the next Task Arrival event and place it in the event list
simulator. i.e., the source and tasks entities, the
resources and a queue of an unordered task listcham QL
as utlist ( stp )

Source model: Simulating the source model involves Fig- 7: Task arrival event
the representation of the load generation of thetesy
under study. It is vital to accurately represert khad
to ensure the algorithms deployed are tested on the

Exec time

Hold time

actual scenario. I I .
.. . ] T
A source injects a stream of tasks into the system T Termination Time
The maximum numbers of tasks are 1000 and denotec te time
as MAX_TASKS. Upon generation, a task is executed Request a Release a

resource resource

for 0.50 seconds (i.e., the average execution time

denoted as C_AVG). Given the task average execution

time C_AVG and a load factor load, the tasks interFig. 8: Task model
1136



J. Computer i, 7 (8): 1133-1140, 2011

The arrival time of the task into the system isaled as head_utlist
the Initial time. It measures this value by captgrthe

current clock time denoted as schlock. The Ternanat v
tidi:

time represents the absolute deadline of a task. il

HoldTime j:

HoldTime iz

AbortTime f: AbortTime j:
Task model: A micro abstraction of a source is the — —
task model. Each task is associated with an integer | |
number, denoted as tid. Each task is associateu wit pending requests
an integer number, denoted as tid. Figure 8 shows a ) )
task as a single flow of execution. Fig. 9: Unordered task list (queuing model)

During the lifetime of a task, it may request ame )
more resources. For each request, a task spettiies Queuing model: The constant amount of resources and

duration to hold the requested resource. This i®igel surplusing demands results in resource unavaifgbili
as Hold Time. The Exec Time denotes the remaining he simulator provides a mechanism to retain thk'sa
execution time of a task at a particular instamitidlly, at ~ requests for resources which are temporarily
Initial time the value of Exec Time is equal to G/@.  unavailable in an unordered task list named astut
This value is reduced as the task is executed thdil queue implementation via the pointer based sirigle |
Termination time and the value of Exec Time becomedist is used to deploy the utlist as shown in Big.

zero. It is assumed that a task releases all resslit Referring to Fig. 9, the utlist consists of a sampe
acquires before it ends, complying with conditidrihe  of pending request. A request for a resource is
Hold Time<Exec Time. The following assumptions are represented by a quadruple ReqResourceltem=<tid,rid
made for the task model implemented in this researc  Hold time, Abort Time>. Thus, an element in thdsutl

consists of ReqResourceltem structure. A next point

«  Independent task model, whereas each task has o USed to link an element to the next elementhi t

dependency on other task during execution. Théitlist. The head_utlist points to the first elememtd
execution of a task has no correlation to thet@il_utlist points to the final element in the atli

previously executed task
. Task can be preemptive’ i.e., a task can be de|ayéaeSOUTC€S component: The resource model represents

or suspended to allow another task to be executed the physical and logical resources. Logical resegan
be defined as the management of physical resource
o ) _ ) whereby the “N” physical resources are treated\’ “
TUF model: The timing constraint of a task is designedinstances. When the resource is currently being bgl
using the step TUF model in this research €Lal., 5 task, resource is in the BUSY state. When a resou
2006). A TUF describes a task contribution to thejs not held by any task (i.e., in IDLE state).

system as a function of its completion time. Thepst When a task request a resource, the resource
TUF model is shown in Fig. 1. The maximum utility request event is depicted in Fig. 10.
that could possibly be gained by a task is denated Referring to Fig. 10, every time thievent is
MaxAU. The random value of MaxAU abides normal executed' the System increments the counter re"j'ngge
distribution (10, 10) i.e., the mean value andarme is the number of request in a taski.e., Treqb‘yrone_
set 10 to conform to the benchmark. The Initialeti|m  \When a new request for a resource from a task Treq
the starting time for which the function is definfithe  arrived in the system, the availability of the resied
Termination time is the latest time for which tlhudtion resource is checked. If the resource is in IDLEBesta
is defined. That is, MaxAU is defined in within thme which means it is available, task Treq is scheddted
interval of [Initial time, Termination time]. The immediately use the resource and the resourceseslea
completion of a task within this interval will y@l event is scheduled in the event list. The statuthef
positive utility i.e., MaxAU to the system. The resource is changed to BUSY state and the owner of
completion of a task breaching the stipulated dead! this resource is assigned to the task Treq. The GUS
causes the value of MaxAU to become zero. If thescheduling algorithm is implemented into the system
Termination time is reached and the task has nhied  for the case when the resource is currently in BUSY
its execution, it accrues zero utility to the syste state being used by the owner task.

1137



J. Computer i, 7 (8): 1133-1140, 2011

[ Aurrival of a new request from task Treq for resource R

]

Increasing by one the number of request
in task Treq (Treq.nrr++)

Busy Idle

Current status of resource R

Schedule the resource release event for
task Treq and place it in the event list

!

Change the status of resource R to be in busy
state and the owner of resource R is Treq
res [R]. Owner = Treq
res [R]. Status = busy

Execute the TUF/UA
scheduling algorithms

Fig. 10: A resource request event

[ Capture the current time denoted as sclock }

ABORT NORMAL
Task Execution Mode

Calculate the Expected
PUD=0.0000

CompletionTime
(Comp_T=sclock + HoldTime )

Comp_T > Termination time

{PUD:MOXAU/HU.‘GTNHE ] { PUD=0.0000 ]

| ]
2

Task Towner is currently using resource Ra ;

Event: Task Treq makes a new request to hold resource Ra
1. Compute the PUD of the owner task : Towner.PUD
2. Compute the PUD of the requesting task : Treq.PUD
3.1f (Treg.PUD < =Towner.PUD)
3-1. Resume the execution of the owner task : ( Towner.HoldTime)
3-2. Queue the requesting task (Treg) in the utlist

4. else (Treq.PUD > Towner.PUD )

4-1. Abort the owner task Towner : (Towner.AbortTime) ABORT
4-2. Queue Treq in the utlist

Event: Task Towner releases the resource Ra
1. Select the highest PUD task among the requested tasks in the ufflist to hold
resource Ra

Fig. 12: GUS Scheduling algorithm

Table 2: Simulation parameters

Parameter Range Description

iat Exponential (C_AVG/load) Task inter-arrival #m

HoldTime Normal (0.25, 0.25) Duration for holding a
resource

MaxAU Normal (10, 10) Task maximum utility

AbortTime  Any random number that Duration for clepn

is less than HoldTime time of a task

Fig. 11 shows the computation flow of PUD for aktas
at a particular time unit denoted as sclock. Theert
execution mode of a task is checked which maybe
either the NORMAL or ABORT mode.

The PUD of a task that is currently executing in
ABORT mode is zero as depicted in Fig. 11. This is
because the maximum utility i.e., MaxAU for an
aborted task is zero and consequently does notiescr
utility to the system. For a task that is currently
executing in NORMAL mode, the expected completion
time of the task (i.e., Comp_T) alculated.

If the task is to be executed at current time selock,
the expected completion time of a task is equattock
+ HoldTime where the HoldTime is defined as theetim
taken for a task to hold the respective resourcéhd

completion time exceeds the Termination time of the
task, the utility becomes zero and consequentlyPthB

Scheduling algorithm component: The scheduling is equals to zero. If the task is scheduled to detap
algorithms component consists of the benchmark GU$xecution before Termination time, the executiorthef
algorithm. GUS is a TUF/UA uniprocessor schedulingtask will yield positive utility i.e., MaxAU.
algorithm that considers the step and arbitrarypsha Figure 12 elaborates the GUS scheduling algorithm
TUFs. The main objective of GUS is to maximize thefor the execution of an independent task model. Mée
utility accrued to represents that the most impuartask ~ new request from task Treq arrives into the system,
is to be scheduled first in the system. GUS uses &US accepts the new request for resource Ra.
greedy strategy where task whose execution yiéids t Referring to Fig. 12, when the resource Ra is
maximum PUD over others is selected to determingurrently being used by another task i.e., task reow
which task to be scheduled at a particular instant. GUS firstly calculates the PUD of both tasks. la dase

The PUD of a task measures the amount of utilitythat the requesting task i.e., Treq posses a hiRUér as
that can be accrued per unit time by executingdbk.  compared to task Towner, GUS has tailored mechanism
It essentially measures the Return on InvestmiRal)(  to abort the current owner task (i.e., Towner) graht
for executing the task at currenbckl time. the resource to the requesting task (i.e., Treq ).

1138

Fig. 11: Calculation of PUD



J. Computer i, 7 (8): 1133-1140, 2011

task i.e., MaxAU is computed using normal distribat
with mean value of 10 and variance of 10. It isuassd
that the amount of available resources in the sysi,
MAX_RESOURCES are 5.

The performances of real time scheduling
algorithms are measured by the metrics which relthe
respective application specifications. The AccrUitity
Ratio (AUR) metric defined in (Jensehal., 1985) has
been extensively utilized in the existing TUF/UA
scheduling algorithms and is considered as thedatdn
metric in this domain (Wet al., 2004, Liet al., 2006).

AUR is defined as the ratio of accrued aggregate
utility to the maximum possibly attained utilityq&ation
(1) shows that each task i has its maximum value of
utility which is denoted as MaxAU(i). After a taskas
completed its execution, it will yield a value dezebas
Util(i). These values are then accumulated fortadks
i.e., MAX_TASKS. The AUR is calculated as:

90 &

80
Overloaded

AUR (%)

-+ GUS

—&— GUS-Simulator

" N

Average load

Fig. 13: AUR Results of the developed simulator and,, | _ D [0) )
the benchmark model - 3T MaxAU i)
i=1
The abortion procedures taken some processing RESULTS

time denoted as Abort Time while the request fraskt

Treq is inserted into a utlist queue that contajniine _ .

pending requests which are stil waiting to be  EXtensive experiments were done to ensure the
scheduled. After task Towner has releases resace developed GUS simulator is validated. The simufatio

GUS selects the highest PUD task among the tasks fjodel is validated by ensuring that its output détaely
the utlist to hold the resource Ra. resemble the output data that was observed from the

benchmark model i.e., GUS. A result obtained from

Experimental setting: The developed simulator has Simulator is compared with the result publishedtia
been tailored to map the characteristica o literature by wusing the same assumptions and

uniprocessor scheduling. Table 2 summarizes thXPerimental setting (Lét al., 2006). Figure 13 depicts
simulation parameter  settings that aredus the AUR results of the developed GUS simulator thed

throughout this research (Liet al., 2006). A original GUS. The result obtained using the sinmaoitais

source generates a stream of 1000 tasks. Givetagke comparable to the result published with the sasmeds.

average execution time C_AVG and a load factor,loadincre':;g%rg |0]£j g?(?rft;ett]:suﬁg F\;S ;ﬁzurhturxgggnf an
the average task inter arrival time i.e., iat ikgkated ' '

age s is increased; a lower accrued utility is record&te
as the division of C_AVG over load and furtherizéll  geveloped GUS simulator is validated with less than
an exponential distribution to be further derivedeflect 504 as compared to the benchmark model.

the intended system model. In all the simulation

experiments, the value of C_AVG is set at 0.50 @@t DISCUSSION
the range value of load is from 0.20-1.50. Theedéfft _ _ .
value of load are to provide the derivation of eiifig With the obtained result, this study has proveat th

mean arrival rates of tasks. The arrival of tasks ithe simulation of TUF/UA scheduling algorithm caa b
assumed to follow the exponential distribution. Thedeployed in a common platform of discrete event
system is said to be overloaded when (load >1.00§imulator as a solution to the heterogeneity probdd
represented also as the mean arrival rate of @&ngs  the simulation tools.

(i.e., iat). This complementary representationoafd can

be utilized to show congestion as the iat is aegsal CONCLUSION
value to the execution ability to process a task.
The value of the HoldTime and AbortTime In the past the research of utility accrual rémlet

parameters are derived by the normal distributidsth w  scheduling mainly uses the simulation tools as
mean and variance is 0.25. The maximum utility of amethodology to investigate the performances. With t
1139



J. Computer i, 7 (8)

development of a discrete event simulation thislystu

has provided the design of the developed GUS

scheduling algorithm by using DES. The aim of the
developed simulation framework was not only to
develop a GUS model for the research problem zat al
to provide a platform for future investigations aiving
TUF/UA real time scheduling.

A number of extensions to this research can be

carried out and are given as follows:

The GUS algorithm can be deployed in network
and distributed environment. Flow control and
routing algorithms should be integrated into the
research. Thus, increasing the feasibility in dctua
implementation of the algorithm

The implementation of the fault tolerance in the
TUF/UA scheduling domain

REFERENCES
Ahmad, I., M.F. Othman, I. Ahmad and M.F. Othman,
2009. Enhanced utility accrual scheduling

algorithms for adaptive real time system. J. Comp.

Sci., 5: 783-787.
10.3844/JCSSP.2009.783.787
Jensen, E.D., C.D. Locke and H. Tokuda, 1985. Aetim
driven scheduling model for real time operating
systems. Carnegie-Me//on  University.  http:
/[citeseerx.ist.psu.edu/viewdoc/download?doi=10.1

.1.13.7022&rep=repl&type=pdf

DOl:

: 1133-1140, 2011
Karatza, H., 2000. A comparative analysis of
scheduling policies in a distributed system using
simulation. J. Simulat., 1. 12-20. http:
//ducati.doc.ntu.ac.uk/uksim/journal/issue-
/HelenKaratza/HelenKaratza.pdf
Law, A., 2003. How to conduct a successful simatati
study. Proceeding of the 2003 Winter Simulation
Conference, IEEE Xplore Press, USA., pp: 66-70.
DOI: 10.1109/WSC.2003.1261409
Li, P., H. Wu, B. Ravindran and E.D. Jensen, 2006.
utility accrual scheduling algorithm for real-time
activities  with  mutual exclusion resource
constraints. |IEEE Trans. Comput., 55: 454-469.
DOI: 10.1109/TC.2006.47
Wu, H., B. Ravindran, E.D. Jensen and P. Li, 2004.
CPU scheduling for statistically-assured real-time
performance and improved energy efficiency.
Proceeding of the 2nd IEEE/ACM/IFIP
International Conference on Hardware/Software
Codesign and System Synthesis, Sept. 8-10, IEEE
Xplore Press, USA., pp: 110-115.
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arn
umber=1360490

1140



