
Journal of Computer Science 7 (5): 707-714, 2011
ISSN 1549-3636
© 2011 Science Publications

Corresponding Author: Sandra Johnson, Department of Computer Science and Engineering, College of Engineering,
 Anna University, Guindy Chennai, 600025, Tamil Nadu, India
 707

Feature Subset Selection for Hot Method Prediction using Genetic

Algorithm wrapped with Support Vector Machines

Sandra Johnson and Valli Shanmugam
Department of Computer Science and Engineering, College of Engineering,

Anna University, Guindy, Chennai, 600025, Tamil Nadu, India

Abstract: Problem statement: All compilers have simple profiling-based heuristics to identify and
predict program hot methods and also to make optimization decisions. The major challenge in the
profile-based optimization is addressing the problem of overhead. The aim of this work is to perform
feature subset selection using Genetic Algorithms (GA) to improve and refine the machine learnt static
hot method predictive technique and to compare the performance of the new models against the simple
heuristics. Approach: The relevant features for training the predictive models are extracted from an
initial set of randomly selected ninety static program features, with the help of the GA wrapped with
the predictive model using the Support Vector Machine (SVM), a Machine Learning (ML) algorithm.
Results: The GA-generated feature subsets containing thirty and twenty nine features respectively for
the two predictive models when tested on MiBench predict Long Running Hot Methods (LRHM) and
frequently called hot methods (FCHM) with the respective accuracies of 71% and 80% achieving an
increase of 19% and 22%. Further, inlining of the predicted LRHM and FCHM improve the program
performance by 3% and 5% as against 4% and 6% with Low Level Virtual Machines (LLVM) default
heuristics. When intra-procedural optimizations (IPO) are performed on the predicted hot methods, this
system offers a performance improvement of 5% and 4% as against 0% and 3% by LLVM default
heuristics on LRHM and FCHM respectively. However, we observe an improvement of 36% in certain
individual programs. Conclusion: Overall, the results indicate that the GA wrapped with SVM derived
feature reduction improves the hot method prediction accuracy and that the technique of hot method
prediction based optimization is potentially useful in selective optimization.

Key words: Feature selection, genetic algorithm, hot method prediction, support vector machine,

virtual machine, Frequently Called Hot Methods (FCHM), Machine Learning (ML),
Intra-Procedural Optimizations (IPO), Total Prediction Accuracy (TPA), Hot Method
Prediction Accuracy (HMPA), Low Level Virtual Machine (LLVM)

INTRODUCTION

 Compiler optimizations are most effective when
targeted at the hot methods of the input program.
Method hotness, determined by execution time and call
frequency, is still detected and predicted by profiling in
both dynamic and static optimization systems.
Although profiling is accurate, it incurs a lot of
overhead which impedes program speed. The need for
improving the accuracy of the hot method predictive
models necessitates the focus on feature subset
selection since feature selection greatly influences the
performance of the machine learnt predictive models.
The main aim of this work is to implement the machine
learnt static hot method prediction technique using
Genetic Algorithms (GA) derived feature subsets. By
hot methods, we mean the long running and frequently

called program segments that form the vital targets for
various compiler optimization techniques (Sandra and
Valli, 0000).
 The relevant features are extracted from an initial
set of randomly selected ninety static program features,
using a GA (Koza, 1990) wrapped with the predictive
model based on the Support Vector Machine (SVM)
(Vapnik, 1997), a ML algorithm. The genetic algorithm
proven to be an effective search tool is used in this
work. The evaluation of features is based on the
feedback obtained from the predictive models. Hence,
the time required to converge at the final feature subset
is dependent on the number of generations chosen in
the GA.
 The model’s ability to achieve performance
improvement is investigated by optimizing the
predicted hot methods offline. The optimizations

J. Computer Sci., 7 (5): 707-714, 2011

708

applied are method inlining and Intra-Procedural
Optimizations (IPO) like constant propagation and loop
unrolling. The impact of optimizing the predicted hot
methods on program performance is evaluated on
UTDSP and MiBench benchmark programs. The results
obtained are compared against LLVM’s default
optimization heuristics.

Related work: The application areas of the GA include a
wide spectrum of problem solving domain such as
supply chain management (Radhakrishnan et al., 2009),
input allocation problem (Madan et al., 2010) and
various feature selection problems. Several researchers (
Vafaie and Jong, 1992; Kohavi and John, 1997; Yang
and Honavar, 1998; Pernkopf and O’Leary, 2001;
Fröhlich and Chapelle, 2003; Yu and Cho, 2006; Huang
and Wang, 2006; Faraoun and Rabhi, 2007; Rajavarman
et al., 2007; Ramirez and Puiggros, 2007; Xia et al.,
2009) have employed the genetic algorithm as a search
tool in feature subset selection in their work. All these
investigations have confirmed that the GA-generated
feature subsets perform better than the initial universal
set or the full feature set.
 GA is particularly useful when search is large.
Hence, the algorithm has found wide application in
compiler research. To find the best optimization
sequence which reduces the code size Cooper et al.
(1999) have used the GA. Cavazos and O’Boyle (2005)
have used the GA to tune dynamic compiler inlining
heuristics. Li et al. (2008) and Zhuo et al. (2008) have
used GA-based feature subset selection for optimizing
the SVM parameters. In our present work on hot method
prediction, the GA is used only as a feature selection
algorithm and the prediction models use the default SVM
parameters. Sandra et al. (Sandra and Valli, 2008a;
2008b) in their work have developed a basic hot method
prediction model to predict the call frequency, whereas in
this work two predictive models are built (Sandra and
Valli, 0000; 2010) one based on call frequency and
another the time spent in a method. In a previous work
on hot method prediction (Sandra and Valli, 0000) the
authors deal with the construction of an effective feature
set from a full set of ninety randomly chosen static
features using a ‘knock-out’ algorithm. Their model for
the long running hot methods guided by twenty nine
static features provides 68% prediction accuracy and the
one for the frequently called hot methods yields 61%
prediction accuracy on UTDSP and MiBench benchmark
programs when trained with ten features.
 The GA has been used in compiler based feature
generation problems (Leather et al., 2009), where, each
feature is a sentence in a grammar for the purpose of
loop unrolling optimization. In the present study, we
use the GA for selecting features specific to the
prediction of hot methods and then apply inlining and

intra-procedural optimizations to evaluate the effects of
prediction. Stephenson et al. (2003), in their work, have
used the GA to automatically search the solution space
of the priority function, while we have used it for
feature reduction.

MATERIALS AND METHODS

 In the construction of the predictive models, an
initial set of ninety static program features (Sandra and
Valli, 0000) has been used, for training and testing the
classifiers. The SVM classifier is trained offline with
the training dataset taken from the UTDSP and
MiBench benchmark suites to predict hot methods of a
new untrained program. Selecting the most relevant
feature for a particular learning problem is a key
challenge because any inappropriate feature included in
the final set is bound to misguide the predictive models.
Feature reduction from the full feature set is performed
using the standard GA.

Introduction to the genetic algorithm: The genetic
algorithm (Koza, 1990) is a powerful problem solving
strategy that is widely used as a search tool for feature
subset selection in any ML based classification
problem. It works on the central evolutionary principle
of the “survival of the fittest”. Evolution is a population
phenomenon and its forces operate on the individual’s
phenotypes that are manifestations of their genetic
makeup called genotype. Based on their contribution to
the individual’s reproductive fitness they are either
preserved or rejected during the selection process. The
adaptive value of the phenotypes is influenced by the
random variations introduced by the regular gene
recombination effected by crossovers in chromosome
segments and to a small extent the gene alterations
introduced by point mutations. Individuals that are
adaptively superior to others are selected to be the
parents of the next generation. Over many generations
of such progressive adaptation operating under
selection pressure, a population that is far superior to
the initial one appears. A GA is a programming
technique that mimics this evolutionary mechanism to
evaluate and select the best digital individual from
among a pool of randomly generated candidates or
solutions.
 The crossover operator generates new offspring
from parents by interchanging the genes between the
parents at the crossover point. Crossovers can be single
point, two point or homologue. Mutation alters the
genes at random points to generate new offspring.
Figure 1 shows these genetic operations.

J. Computer Sci., 7 (5): 707-714, 2011

709

Fig. 1: Crossover and mutation operators in GA

Fig. 2: Bitstring coding of chromosome

Fig. 3: Algorithm for Feature Subset Selection using

GA wrapped with SVM

Genetic algorithm in feature subset selection: An
initial population of solutions is generated wherein each
individual is represented by a chromosome. The feature
vector consisting of a set of randomly selected ninety
static program features is represented as a bitstring in
the chromosome. Every bit is either ‘0’ or ‘1’ in the
chromosome. The fi in Fig. 2 represents the mask value
of the ith feature. A ‘1’ includes the ith feature and a ‘0’
excludes the respective feature.
 The number of ‘1’s in the bitstring represents the
number of features selected. These bitstrings constitute
the genotype which should be converted to its
phenotype for evaluating its fitness value. The
phenotype of the genes in the chromosome is the
feature value extracted from each method in a
benchmark program. For each individual in the initial
population, the genotype of the chromosomes is
translated into its phenotype. That is, the feature vectors

for the training data set are created by extracting the
individual feature values of each method from the set of
training benchmark programs. The testing data set is
also constructed using the same chromosome from each
method in the test benchmark programs.
 A predictive model is constructed based on the
ML-based SVM algorithm, to predict hot methods. The
prediction accuracy obtained is fed to the GA to
evaluate the fitness of the chromosome. The GA uses a
metric called a fitness function that evaluates the fitness
of the bit string. The fitness criterion is designed on the
basis of the hot method prediction accuracy and the
number of features and is calculated using the formula
given in Eq. 1:

*a

CHROMO _ LEN

*n i
i 1

fitness (w prediction _ accuracy)

(w (CHROMO _ LEN f))
=

= +

− ∑
 (1)

 The wa in Eq. 1 represents the weight associated
with the prediction accuracy and wn is the weight
associated with the number of features. Those
individuals which exhibit a higher fitness value than
others are passed on to the next generation. In our
scheme of searching strategy, a high fitness value is
attributed to the chromosome when the prediction
accuracy is high with a small number of features. The
weights associated are changed for different runs and
finally set to 50% both for wa and wn. The
CHROMO_LEN is the total number of ninety static
features used in this work. The fi is the feature vector in
bitstring form as given in Fig. 2.
 Thus, the principle of the “survival of the fittest” of
the GA is applied to retain the individuals with a high
fitness value as “elitism” of the population to constitute
the next generation. The fittest chromosomes
representing the evolving individuals, survive the
selection procedure. Two terminating conditions are
used to stop the evolution process. One of them is the
maximum fitness value and the other is the number of
generations. If the terminating condition is reached, the
evolution process stops and the individual with the
highest fitness value is returned as the best solution.
Else, the evolution process continues with the two
genetic operators, namely, crossover and mutation. Two
individuals with the highest fitness value are chosen for
the crossover operation to produce two offsprings.
Crossover points are chosen randomly. Mutation is also
decided randomly and is applied on the two offsprings
in the new generation. The process is repeated for the
new generations of the population. The procedure for
feature subset selection using GA wrapped with SVM is
given in Fig. 3.

J. Computer Sci., 7 (5): 707-714, 2011

710

Evaluation of hot method prediction accuracy: To
test and evaluate the performance accuracy of our
prediction models, we use the standard ‘leave-one-out’
methodology under a subset of programs of MiBench
(Guthaus et al., 2001) and UTDSP (Lee, 1998)
benchmark suites that are successfully compiled in Low
Level Virtual Machine (LLVM) (Lattner and Adve,
2004).
 We use the following evaluation metrics (Sandra
and Valli, 0000) to measure the performance of the
predictive models. Total Prediction Accuracy (TPA) is
the ratio of the number of correct predictions of both
the hot and cold methods to the total number of
methods in the program. The Hot Method Prediction
Accuracy (HMPA) is defined as the ratio of the number
of predicted hot methods to the total number of
methods that are actually hot. Biased Hot Method
Prediction Accuracy (BHMPA) is the ratio of the
number of predicted hot methods to the total number of
methods that are actually hot. Bias can be either ‘hot’ or
‘cold’ and the ML-based optimizing compiler optimizes
all the methods in the program when the model is ‘hot
biased’ and optimizes nothing if the model is cold
biased. The bias factor is calculated using Eq. 2:

BHMPA TPABias
100 HMT

−
=

−
 (2)

 To ascertain that the prediction values are accurate,
we eliminate the bias using Eq. 3:

()()*

HMPA

BHMPA Bias BHMPA

=

−
 (3)

 A Hot Method Threshold (HMT) is set to find the
actual number of methods that are hot in a program and
a HMT of 50% is arbitrarily fixed for the evaluation of
the predictive models. In the case of the Long Running
Hot Methods (LRHM) predictive model, the ‘gprof’
tool is used to determine the execution time of each
method, while profiling is used to find the call
frequency of the methods for the Frequently Called Hot
Methods (FCHM) predictive model during the training
phase. The top 50% of the methods in both the models
are designated as hot and assigned the label (+). The
remaining methods are cold and are labeled (-1).

Optimization effects: Our goal is to show that the ML-
based hot method prediction technique could be a
viable alternative to the simple heuristics to decide
when to apply inlining and Intra-Procedural
Optimizations (IPO) for a new program. We compare
the execution time of programs subjected to the
selective optimization of hot methods predicted by the

ML-based prediction models with LLVM’s default
optimization heuristics to assess the impact of the new
approach on program performance.

RESULTS

 Genetic Algorithm Derived Feature Subsets: Based
on the parameters given in Table 1, the GA is used to
derive the bit string. The bit string is interpreted as a
feature subset vector. If the bit position ‘i’ is ‘1’ then
the ith feature is chosen. All the features whose
corresponding bit string positions are ‘0’ are not
included in the feature subset.
 The fitness function uses the predictive model built
by SVM to calculate the prediction accuracy of the
feature subset. For each derived bit string, a predictive
model is built and the Hot Method Prediction Accuracy
(HMPA) is calculated on each UTDSP benchmark
program using the standard ‘leave-one-out’ method.
The fitness function is the average HMPA of all the
UTDSP benchmark programs. The number of features,
i.e., the number of ‘1’s in the bit string is also used in
the fitness function.
 Figure 4 and 5 represent the derived feature vector
for the LRHM and the FCHM predictive models with
their respective thirty and twenty nine features. It is
found that twenty one features are common to the two
predictive models and only nine and eight features are
unique to the LRHM and FCHM predictive models
respectively. Table 2 gives the static feature subsets for
the two predictive models generated by GA.

Hot method prediction: The GA derived feature
subset of thirty and twenty-nine features are used in
building the LRHM and FCHM predictive models.
Table 3 presents the HMPA obtained from the UTDSP
and the MiBench benchmark programs. The two
benchmark suites are designed with programs that are
successfully compiled in LLVM compiler infrastructure.

Table 1: Parameters used for the genetic algorithm
Parameters Values
Population size 10.0
Number of Generations 50.0
Mutation Rate probability 0.1
Chromosome length 90.0

Fig. 4: Feature string for LRHM

Fig. 5: Feature string for FCHM

J. Computer Sci., 7 (5): 707-714, 2011

711

Table 2: Subset of Features generated by the GA wrapped with SVM
Features Common to LRHM and FCHM LRHM Features
-- --
Feature No. Static feature Feature No. Static feature
1 Number of Return Instruction 15 Number of Seteq Instruction
2 Number of Branch Instruction 20 Number of Setgt Instruction
11 Number of rem Instruction 25 Number of Store Instruction
12 Number of and Instruction 26 Number of GetElementPtr instruction
14 Number of Xor Instruction 27 Number of Phi node Instruction
24 Number of Load instruction 54 Number of constant global variables in a function
29 Number of CallInst in a method 62 Number of global variables which is a Null Value
32 Vanext instruction-used in llvm 1.5 and before 67 Number of derived type global variables
33 Vaarg instruction-used in llvm1.5 and before 68 Number of pointer type global variables
36 Number of Userop2 instruction
43 Number of instructions FCHM Features
44 Number of basic blocks 28 Number of Cast Instruction
45 Average number of incoming values
 in a phinode instruction 52 Number of back edges
46 Number of arguments 53 Number of defining edges
47 Is Variable argument? 55 Number of global variables having internal linkages
69 No of Array Global Variables 59 Number of global variables having link once linkages
70 No of Structure Global Variables 60 Number of global variables having weak linkages
77 Number of abstract global variables 61 Number of global variables having appending linkages
78 No of floating point array global variables 63 Number of global variables having initializers
84 Number of basic blocks with more
 than two predecessors
87 No of Basic Blocks with one successor
 And one predecessor

Table 3: Prediction accuracy for LRHM and FCHM on UTDSP and MiBench benchmark programs
 LRHM FCHM
 --- --
Benchmark TPA (%) BHMPA (%) BIAS HMPA (%) TPA (%) BHMPA (%) BIAS HMPA (%)
UTDSP
fft 100 100 0.00 100 100 100 0.00 100
fir 100 100 0.00 100 62 75 0.26 56
iir 100 100 0.00 100 0 0 0.00 0
latnrm 100 100 0.00 100 100 100 0.00 100
lmsfir 100 100 0.00 100 100 100 0.00 100
mult 100 100 0.00 100 100 100 0.00 100
adpcm 100 100 0.00 100 93 100 0.14 86
compress 37 56 0.38 35 100 100 0.00 100
edge_detect 75 83 0.16 70 75 50 -0.50 25
G721.MarcusLee 83 100 0.34 66 100 100 0.00 100
G721.WendyFung 91 100 0.18 82 86 81 -0.10 73
G722 75 85 0.20 68 75 50 -0.50 25
histogram 83 100 0.34 66 100 100 0.00 100
jpeg 85 80 -0.10 72 42 33 -0.18 27
lpc 100 100 0.00 100 100 100 0.00 100
spectral 43 58 0.30 41 100 100 0.00 100
trellis 88 86 -0.04 83 88 86 -0.04 83
V32.modem 75 75 0.00 75 50 100 1.00 0
UTDSP average 85 90 0.10 81 82 82 0.00 71
MiBench
basicmath 66 66 0.00 66 100 100 0.00 100
bitcount 100 100 0.00 100 100 100 0.00 100
qsort 50 50 0.00 50 100 100 0.00 100
susan 94 100 0.12 88 84 75 -0.18 62
dijkstra 100 100 0.00 100 100 100 0.00 100
patricia 100 100 0.00 100 100 100 0.00 100
stringsearch 100 100 0.00 100 100 100 0.00 100
rijndael 85 75 -0.20 60 57 0 -1.14 0
sha 100 100 0.00 100 100 100 0.00 100
CRC32 0 0 0.00 0 100 100 0.00 100
FFT 50 25 -0.50 13 83 50 -0.66 17
MiBench average 77 74 -0.05 71 93 84 -0.18 80
Overall average 82 84 0.04 77 86 83 -0.07 74

J. Computer Sci., 7 (5): 707-714, 2011

712

Table 4: Performance Improvement obtained on the predicted LRHM and FCHM of UTDSP and MiBench benchmark by optimization.
 LRHM FCHM
 -- ---
 Inlined- IPO- Inlined- IPO-
 LLVM LLVM LLVM LLVM
 default default default default
Benchmark heuristics heuristics Inlined-ML IPO-ML heuristics heuristics Inlined-ML IPO- ML
UTDSP
fft 6 -3 3 18 16 6 6 6
fir 29 23 20 17 4 -8 8 8
iir 15 -7 11 4 13 8 8 5
latnrm 10 0 13 10 3 10 6 13
lmsfir 12 0 9 9 -6 6 6 3
mult 17 3 0 17 11 4 7 11
adpcm 3 3 3 3 4 3 0 3
compress -31 0 9 9 16 6 0 -4
edge_detect 8 0 8 3 8 5 8 5
G721.MarcusLee 19 0 0 0 17 4 8 4
G721.WendyFung 23 4 4 12 4 -13 -9 -9
G722 0 0 0 0 4 4 0 0
histogram 6 3 3 6 10 -7 7 3
jpeg 13 4 8 8 25 7 4 7
lpc -1 -3 -4 -7 1 -4 -1 -5
spectral 8 7 7 3 7 5 3 3
trellis -18 -5 -15 -20 2 4 -2 -2
V32.modem -4 -4 0 0 16 12 16 8
UTDSP average 6 1 4 5 9 3 4 3
MiBench
basicmath -2 2 -2 -4 0 2 4 2
bitcount 0 0 0 7 7 0 0 7
qsort 24 24 12 18 12 30 12 36
susan -64 -66 2 1 -66 -1 2 2
dijkstra 1 0 0 0 1 -1 0 0
patricia 7 2 0 -2 7 -5 5 2
stringsearch 0 0 -20 0 13 0 7 13
rijndael -6 1 1 2 -7 2 0 1
sha -3 -4 1 -1 3 -4 1 -33
CRC32 25 8 17 8 34 0 17 17
FFT 9 0 2 11 8 0 9 2
MiBench average -1 -3 1 4 1 2 5 5
Overall average 4 0 3 5 6 3 5 4

Our present study of hot method prediction involving
the GA in feature reduction shows that the models can
achieve 81-71% HMPA on the UTDSP benchmark
suite for LRHM and FCHM. When the hot methods in
the benchmark programs of MiBench are predicted
using the feature subset derived from the UTDSP
benchmark, the HMPA obtained by the respective
predictive models for the LRHM and the FCHM are 71-
80%.

Results of optimization: The effects of inlining and IPO
using constant propagation on the predicted LRHM and
FCHM are evaluated on the MiBench and UTDSP
benchmark suites and the results are presented in Table 4.
The IPO performed on the predicted LRHM and FCHM
achieve an overall improvement of 5-4% respectively as
against 0-3% using the LLVM’s default set of
optimization heuristics. However, inlining of LRHM and
FCHM achieves 3-5% improvement on the program

execution speed as against 4-6% seen in the case of
LLVM’s default heuristics. Despite a small decrease in
the case of inlining, certain individual programs like
‘latnrm’ and ‘susan’ appear to have a positive impact.
For instance, from Table 4, it is seen that ‘latnrm’ has a
speedup of 13% when its LRHM are inlined and a
speedup of 6% when its FCHM are inlined.

DISCUSSION

 In a previous work (Sandra and Valli, 0000), the
authors have demonstrated that the predictive models
for LRHM and FCHM trained with the full set of ninety
features are capable of achieving 79-38% prediction
accuracies on the UTDSP benchmark suites and 52-
58% on MiBench. According to the present study,
based on GA generated feature subsets of thirty and
twenty-nine features to train the LRHM and FCHM
models, the accuracies are 81-71% respectively on the

J. Computer Sci., 7 (5): 707-714, 2011

713

UTDSP and 71-80% on the MiBench. This is an
improvement of 8-29% in predicting LRHM and
FCHM over the models trained with the full feature set.
In another approach (Sandra and Valli, 0000) where a
‘knock-out’ algorithm is implemented in order to
eliminate irrelevant features, the LRHM and FCHM
models have accuracies of 68- 61%. It is evident that
GA derived predictive models provide improvement in
prediction over the other models.

CONCLUSION

 This study describes the derivation of feature
subsets using the GA wrapped with the ML-based
algorithm SVM, to maximize the accuracy of the
prediction of long running and frequently called hot
methods, leading on to optimization and improvement
in program performance. The GA evaluates the fitness
of the feature subsets on UTDSP benchmark programs
using the SVM algorithm. The GA-generated feature
subsets containing thirty and twenty-nine features
respectively for the two predictive models when tested
on MiBench, predict the LRHM and FCHM with the
respective prediction accuracies of 71-80%. The
UTDSP benchmark suite achieves 81-71% for the
LRHM and FCHM predictive models. These
observations indicate that the GA-based approach in hot
method prediction yields comparable results.
 Future work in this GA based approach would
focus on incorporating SVM parameters in the GA bit
string coding.

REFERENCES

Cavazos, J. and M.F.P. O’Boyle, 2005. Automatic

tuning of inlining heuristics. Proceeding of the
ACM/IEEE Conference on Supercomputing, Nov.
12-18, Seattle, WA, USA., pp: 14. DOI:
10.1109/SC.2005.14

Cooper, K.D., P.J. Schielke and D. Subramanian, 1999.
Optimizing for reduced code space using genetic
algorithms. Proceeding of the Workshop on
Languages, Compilers and Tools for Embedded
Systems, May 05-05, Atlanta, GA, USA., pp: 1-9.
DOI: 10.1145/314403.314414

Faraoun, K.M. and A. Rabhi, 2007. Data
dimensionality reduction based on genetic selection
of feature subsets. J. Comput. Sci., 6: 9-19.
http://www.dcc.ufla.br/infocomp/artigos/v6.2/art02
.pdf

Fröhlich, H. and O. Chapelle, 2003. Feature selection
for support vector machines by means of genetic
algorithms. Proceeding of the 15th IEEE

International Conference on Tools with Artificial
Intelligence, Nov. 03-05, Sacramento, California,
USA., pp: 142. DOI: 10.1109/TAI.2003.1250182

Guthaus, M.R., J.S. Ringenberg, D. Ernst, T.M. Austin,
T. Mudge and R.B. Brown, 2001. MiBench: A
free, commercially representative embedded
benchmark suite. Proceedings of the IEEE 4th
Annual Workshop on Workload Characterization,
Dec. 02-02, Austin, TX, USA., pp: 3-14. ISBN: 0-
7803-7315-4

Huang, C-L. and C-J. Wang, 2006. A GA-based feature
selection and parameters optimization for support
vector machines. Expert Syst. Appli., 31: 231-240.
DOI: 10.1016/j.eswa.2005.09.024

Kohavi, R. and G.H. John, 1997. Wrappers for feature
subset selection. Artificial Intell., 97: 273-324.
DOI: 10.1016/S0004-3702(97)00043-X

Koza, J.R., 1990. Genetically breeding populations of
computer programs to solve problems in artificial
intelligence. Proceeding of the 2nd International
Conference on Tools for AI, Nov. 6-9, IEEE
Computer Society Press, Herndon, VA , USA., pp:
819-827. ISBN: 0-8186-2084-6

Lattner, C. and V. Adve, 2004. LLVM: A compilation
framework for lifelong program analysis and
transformation. Proceeding of the 2004
International Symposium on Code Generation and
Optimization, Mar. 20-24, San Jose, CA, USA., pp:
75-86. DOI: 10.1109/CGO.2004.1281665

Leather, H., E. Bonilla and M. O’Boyle, 2009.
Automatic feature generation for machine learning
based optimizing compilation. Proceeding of the
International Symposium on Code Generation and
Optimization, Mar. 22-25, IEEE Computer Society,
Seattle, Washington, pp: 81-91. DOI:
10.1109/CGO.2009.21

Lee, C., 1998. UTDSP benchmark suite.
http://www.eecg.toronto.edu/~corinna/DSP/infrastr
ucture/UTDSP.html

Madan, M. and S. Madan, 2010. Convalesce
optimization for input allocation problem using
hybrid genetic algorithm. J. Comput. Sci., 6: 413-
416. DOI: 10.3844/jcssp.2010.413.416

Pernkopf, F. and P. O’Leary, 2001. Feature Selection
for Classification using Genetic Algorithms with a
Novel Encoding. CAIP 2001, LNCS 2124,
Springer-Verlag, pp: 161-168. DOI: 10.1007/3-
540-44692-3_20

Radhakrishnan, P., V.M. Prasad and M.R. Gopalan,
2009. Optimizing inventory using genetic
algorithm for efficient supply chain management.
J. Comput. Sci., 5: 233-241. DOI: 10.1.1.165.8114

J. Computer Sci., 7 (5): 707-714, 2011

714

Rajavarman, V.N. and S.P. Rajagopalan, 2007. Feature
selection in data-mining for genetics using genetic
algorithm. J. Comput. Sci., 3: 723-725. DOI:
10.1.1.165.9111

Ramirez, R. and M. Puiggros, 2007. A genetic
programming approach to feature selection and
classification of instantaneous cognitive states.
Proceedings of the 2007 EvoWorkshops 2007 on
EvoCoMnet, EvoFIN,
EvoIASP,EvoINTERACTION, EvoMUSART,
EvoSTOC and EvoTransLog: Applications of
Evolutionary Computing, Springer-Verlag Berlin,
Heidelberg, pp: 311-319. DOI: 10.1007/978-3-540-
71805-5_34

Sandra, J. and S. Valli, 0000. Effective feature set
construction for hot method prediction using
support vector machines, under review-
unpublished.

Sandra, J. and S. Valli, 2008a. An approach to predict
hot methods using support vector machines.
Proceedings of the Sixteenth International
Conference on Advanced Computing and
Communication (ADCOM’08), Dec. 14-17,
Chennai, pp: 27-31. ISBN: 978-1-4244-2962-2

Sandra, J. and S. Valli, 2008b. Hot method prediction
using support vector machines. Ubiquitous
Comput. Commun. J., 3: 75-81.
http://www.ubicc.org/files/pdf/HMPusingSVM_25
0.pdf

Sandra, J. and S. Valli, 2010. A relearning virtual
machine for hot method prediction. Int. J. Soft
Comput., 5: 206-210. DOI:
10.3923/ijscomp.2010.206.210

Stephenson, M., S. Amarasinghe, M. Martin, U. M.
O’Reilly, 2003. Meta optimization: Improving
compiler heuristics with machine learning.
Proceeding of the ACM SIGPLAN Conference on
Programming Language Design and
Implementation, June 08-11, San Diego, CA,
USA., pp: 77-90. DOI: 10.1145/781131.781141

Vafaie, H. and K.D. Jong, 1992. Genetic algorithms as
a tool for feature selection in machine learning.
Proceeding of the 1992 IEEE International
Conference on Tools with AI, Nov. 10-13,
Arlington, VA , USA., pp: 200-203.
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnum
ber=246402

Vapnik, V.N., 1997. The Support Vector Method.
Artificial Neural Networks. ICANN’97. LNCS
1327, Springer-Verlag, DOI:
10.1007/BFb0020166, 261-271

Xia, Z., Sun, X., Qin, J. and Niu, C., 2009. Feature
selection for image steganalysis using hybrid
genetic algorithm. inform. Technol. J., 8: 811-820.
DOI: 10.3923/itj.2009.811.820

Yang, Y. and Honavar, 1998. Feature subset selection
using a genetic algorithm. IEEE Intell. Syst., 13:
44-49. DOI: 10.1109/5254.671091

Yu, E. and S. Cho, 2006. Ensemble based on GA
wrapper feature selection. Int. J. Comput. Indus.
Eng., 51: 111-116. DOI: 10.1016/j.cie.2006.07.004

Zhuo, L., J. Zheng, F. Wang, X. Li, B. Ai and J. Qian,
2008. A genetic algorithm based wrapper feature
selection method for classification of hyperspectral
images using support vector machine. Int. Arch.
Photogr., Remote Sens. Spatial Inform. Sci., 7147:
397- 402. DOI: 10.1117/12.813256

