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Abstract: Problem statement: All compilers have simple profiling-based heuristics to identify and 
predict program hot methods and also to make optimization decisions. The major challenge in the 
profile-based optimization is addressing the problem of overhead. The aim of this work is to perform 
feature subset selection using Genetic Algorithms (GA) to improve and refine the machine learnt static 
hot method predictive technique and to compare the performance of the new models against the simple 
heuristics. Approach: The relevant features for training the predictive models are extracted from an 
initial set of randomly selected ninety static program features, with the help of the GA wrapped with 
the predictive model using the Support Vector Machine (SVM), a Machine Learning (ML) algorithm. 
Results: The GA-generated feature subsets containing thirty and twenty nine features respectively for 
the two predictive models when tested on MiBench predict Long Running Hot Methods (LRHM) and 
frequently called hot methods (FCHM) with the respective accuracies of 71% and 80% achieving an 
increase of 19% and 22%. Further, inlining of the predicted LRHM and FCHM improve the program 
performance by 3% and 5% as against 4% and 6% with Low Level Virtual Machines (LLVM) default 
heuristics. When intra-procedural optimizations (IPO) are performed on the predicted hot methods, this 
system offers a performance improvement of 5% and 4% as against 0% and 3% by LLVM default 
heuristics on LRHM and FCHM respectively. However, we observe an improvement of 36% in certain 
individual programs. Conclusion: Overall, the results indicate that the GA wrapped with SVM derived 
feature reduction improves the hot method prediction accuracy and that the technique of hot method 
prediction based optimization is potentially useful in selective optimization. 
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INTRODUCTION 

 
 Compiler optimizations are most effective when 
targeted at the hot methods of the input program. 
Method hotness, determined by execution time and call 
frequency, is still detected and predicted by profiling in 
both dynamic and static optimization systems. 
Although profiling is accurate, it incurs a lot of 
overhead which impedes program speed. The need for 
improving the accuracy of the hot method predictive 
models necessitates the focus on feature subset 
selection since feature selection greatly influences the 
performance of the machine learnt predictive models. 
The main aim of this work is to implement the machine 
learnt static hot method prediction technique using 
Genetic Algorithms (GA) derived feature subsets. By 
hot methods, we mean the long running and frequently 

called program segments that form the vital targets for 
various compiler optimization techniques (Sandra and 
Valli, 0000).  
 The relevant features are extracted from an initial 
set of randomly selected ninety static program features, 
using a GA (Koza, 1990) wrapped with the predictive 
model based on the Support Vector Machine (SVM) 
(Vapnik, 1997), a ML algorithm. The genetic algorithm 
proven to be an effective search tool is used in this 
work. The evaluation of features is based on the 
feedback obtained from the predictive models. Hence, 
the time required to converge at the final feature subset 
is dependent on the number of generations chosen in 
the GA. 
 The model’s ability to achieve performance 
improvement is investigated by optimizing the 
predicted hot methods offline. The optimizations 
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applied are method inlining and Intra-Procedural 
Optimizations (IPO) like constant propagation and loop 
unrolling. The impact of optimizing the predicted hot 
methods on program performance is evaluated on 
UTDSP and MiBench benchmark programs. The results 
obtained are compared against LLVM’s default 
optimization heuristics. 
 
Related work: The application areas of the GA include a 
wide spectrum of problem solving domain such as 
supply chain management (Radhakrishnan et al., 2009), 
input allocation problem (Madan et al., 2010) and 
various feature selection problems. Several researchers ( 
Vafaie and Jong, 1992; Kohavi and John, 1997; Yang 
and Honavar, 1998; Pernkopf and O’Leary, 2001; 
Fröhlich and Chapelle, 2003; Yu and Cho, 2006; Huang 
and Wang, 2006; Faraoun and Rabhi, 2007; Rajavarman 
et al., 2007; Ramirez and Puiggros, 2007; Xia et al., 
2009) have employed the genetic algorithm as a search 
tool in feature subset selection in their work. All these 
investigations have confirmed that the GA-generated 
feature subsets perform better than the initial universal 
set or the full feature set.  
 GA is particularly useful when search is large. 
Hence, the algorithm has found wide application in 
compiler research. To find the best optimization 
sequence which reduces the code size Cooper et al. 
(1999) have used the GA. Cavazos and O’Boyle (2005) 
have used the GA to tune dynamic compiler inlining 
heuristics. Li et al. (2008) and Zhuo et al. (2008) have 
used GA-based feature subset selection for optimizing 
the SVM parameters. In our present work on hot method 
prediction, the GA is used only as a feature selection 
algorithm and the prediction models use the default SVM 
parameters. Sandra et al. (Sandra and Valli, 2008a; 
2008b) in their work have developed a basic hot method 
prediction model to predict the call frequency, whereas in 
this work two predictive models are built (Sandra and 
Valli, 0000; 2010) one based on call frequency and 
another the time spent in a method. In a previous work 
on hot method prediction (Sandra and Valli, 0000) the 
authors deal with the construction of an effective feature 
set from a full set of ninety randomly chosen static 
features using a ‘knock-out’ algorithm. Their model for 
the long running hot methods guided by twenty nine 
static features provides 68% prediction accuracy and the 
one for the frequently called hot methods yields 61% 
prediction accuracy on UTDSP and MiBench benchmark 
programs when trained with ten features.  
 The GA has been used in compiler based feature 
generation problems (Leather et al., 2009), where, each 
feature is a sentence in a grammar for the purpose of 
loop unrolling optimization. In the present study, we 
use the GA for selecting features specific to the 
prediction of hot methods and then apply inlining and 

intra-procedural optimizations to evaluate the effects of 
prediction. Stephenson et al. (2003), in their work, have 
used the GA to automatically search the solution space 
of the priority function, while we have used it for 
feature reduction. 
 

MATERIALS AND METHODS 
 
 In the construction of the predictive models, an 
initial set of ninety static program features (Sandra and 
Valli, 0000) has been used, for training and testing the 
classifiers. The SVM classifier is trained offline with 
the training dataset taken from the UTDSP and 
MiBench benchmark suites to predict hot methods of a 
new untrained program. Selecting the most relevant 
feature for a particular learning problem is a key 
challenge because any inappropriate feature included in 
the final set is bound to misguide the predictive models. 
Feature reduction from the full feature set is performed 
using the standard GA. 
 
Introduction to the genetic algorithm: The genetic 
algorithm (Koza, 1990) is a powerful problem solving 
strategy that is widely used as a search tool for feature 
subset selection in any ML based classification 
problem. It works on the central evolutionary principle 
of the “survival of the fittest”. Evolution is a population 
phenomenon and its forces operate on the individual’s 
phenotypes that are manifestations of their genetic 
makeup called genotype. Based on their contribution to 
the individual’s reproductive fitness they are either 
preserved or rejected during the selection process. The 
adaptive value of the phenotypes is influenced by the 
random variations introduced by the regular gene 
recombination effected by crossovers in chromosome 
segments and to a small extent the gene alterations 
introduced by point mutations. Individuals that are 
adaptively superior to others are selected to be the 
parents of the next generation. Over many generations 
of such progressive adaptation operating under 
selection pressure, a population that is far superior to 
the initial one appears. A GA is a programming 
technique that mimics this evolutionary mechanism to 
evaluate and select the best digital individual from 
among a pool of randomly generated candidates or 
solutions.  
 The crossover operator generates new offspring 
from parents by interchanging the genes between the 
parents at the crossover point. Crossovers can be single 
point, two point or homologue. Mutation alters the 
genes at random points to generate new offspring. 
Figure 1 shows these genetic operations.  
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Fig. 1: Crossover and mutation operators in GA 
 

  
Fig. 2: Bitstring coding of chromosome 
 

 
 
Fig. 3: Algorithm for Feature Subset Selection using 

GA wrapped with SVM 
 
Genetic algorithm in feature subset selection: An 
initial population of solutions is generated wherein each 
individual is represented by a chromosome. The feature 
vector consisting of a set of randomly selected ninety 
static program features is represented as a bitstring in 
the chromosome. Every bit is either ‘0’ or ‘1’ in the 
chromosome. The fi in Fig. 2 represents the mask value 
of the ith feature. A ‘1’ includes the ith feature and a ‘0’ 
excludes the respective feature. 
 The number of ‘1’s in the bitstring represents the 
number of features selected. These bitstrings constitute 
the genotype which should be converted to its 
phenotype for evaluating its fitness value. The 
phenotype of the genes in the chromosome is the 
feature value extracted from each method in a 
benchmark program. For each individual in the initial 
population, the genotype of the chromosomes is 
translated into its phenotype. That is, the feature vectors 

for the training data set are created by extracting the 
individual feature values of each method from the set of 
training benchmark programs. The testing data set is 
also constructed using the same chromosome from each 
method in the test benchmark programs. 
 A predictive model is constructed based on the 
ML-based SVM algorithm, to predict hot methods. The 
prediction accuracy obtained is fed to the GA to 
evaluate the fitness of the chromosome. The GA uses a 
metric called a fitness function that evaluates the fitness 
of the bit string. The fitness criterion is designed on the 
basis of the hot method prediction accuracy and the 
number of features and is calculated using the formula 
given in Eq. 1: 
 

*a

CHROMO _ LEN

*n i
i 1

fitness (w prediction _ accuracy)

(w (CHROMO _ LEN f ))
=

= +

− ∑
   (1) 

 
 The wa in Eq. 1 represents the weight associated 
with the prediction accuracy and wn is the weight 
associated with the number of features. Those 
individuals which exhibit a higher fitness value than 
others are passed on to the next generation. In our 
scheme of searching strategy, a high fitness value is 
attributed to the chromosome when the prediction 
accuracy is high with a small number of features. The 
weights associated are changed for different runs and 
finally set to 50% both for wa and wn. The 
CHROMO_LEN is the total number of ninety static 
features used in this work. The fi is the feature vector in 
bitstring form as given in Fig. 2. 
 Thus, the principle of the “survival of the fittest” of 
the GA is applied to retain the individuals with a high 
fitness value as “elitism” of the population to constitute 
the next generation. The fittest chromosomes 
representing the evolving individuals, survive the 
selection procedure. Two terminating conditions are 
used to stop the evolution process. One of them is the 
maximum fitness value and the other is the number of 
generations. If the terminating condition is reached, the 
evolution process stops and the individual with the 
highest fitness value is returned as the best solution. 
Else, the evolution process continues with the two 
genetic operators, namely, crossover and mutation. Two 
individuals with the highest fitness value are chosen for 
the crossover operation to produce two offsprings. 
Crossover points are chosen randomly. Mutation is also 
decided randomly and is applied on the two offsprings 
in the new generation. The process is repeated for the 
new generations of the population. The procedure for 
feature subset selection using GA wrapped with SVM is 
given in Fig. 3. 
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Evaluation of hot method prediction accuracy: To 
test and evaluate the performance accuracy of our 
prediction models, we use the standard ‘leave-one-out’ 
methodology under a subset of programs of MiBench 
(Guthaus et al., 2001) and UTDSP (Lee, 1998) 
benchmark suites that are successfully compiled in Low 
Level Virtual Machine (LLVM) (Lattner and Adve, 
2004).  
 We use the following evaluation metrics (Sandra 
and Valli, 0000) to measure the performance of the 
predictive models. Total Prediction Accuracy (TPA) is 
the ratio of the number of correct predictions of both 
the hot and cold methods to the total number of 
methods in the program. The Hot Method Prediction 
Accuracy (HMPA) is defined as the ratio of the number 
of predicted hot methods to the total number of 
methods that are actually hot. Biased Hot Method 
Prediction Accuracy (BHMPA) is the ratio of the 
number of predicted hot methods to the total number of 
methods that are actually hot. Bias can be either ‘hot’ or 
‘cold’ and the ML-based optimizing compiler optimizes 
all the methods in the program when the model is ‘hot 
biased’ and optimizes nothing if the model is cold 
biased. The bias factor is calculated using Eq. 2: 
 

BHMPA TPABias
100 HMT

−
=

−
 (2) 

 
 To ascertain that the prediction values are accurate, 
we eliminate the bias using Eq. 3: 
 

( )( )*

HMPA

BHMPA Bias BHMPA

=

−
 (3) 

 
 A Hot Method Threshold (HMT) is set to find the 
actual number of methods that are hot in a program and 
a HMT of 50% is arbitrarily fixed for the evaluation of 
the predictive models. In the case of the Long Running 
Hot Methods (LRHM) predictive model, the ‘gprof’ 
tool is used to determine the execution time of each 
method, while profiling is used to find the call 
frequency of the methods for the Frequently Called Hot 
Methods (FCHM) predictive model during the training 
phase. The top 50% of the methods in both the models 
are designated as hot and assigned the label (+). The 
remaining methods are cold and are labeled (-1). 
 
Optimization effects: Our goal is to show that the ML-
based hot method prediction technique could be a 
viable alternative to the simple heuristics to decide 
when to apply inlining and Intra-Procedural 
Optimizations (IPO) for a new program. We compare 
the execution time of programs subjected to the 
selective optimization of hot methods predicted by the 

ML-based prediction models with LLVM’s default 
optimization heuristics to assess the impact of the new 
approach on program performance. 
 

RESULTS 
 
 Genetic Algorithm Derived Feature Subsets: Based 
on the parameters given in Table 1, the GA is used to 
derive the bit string. The bit string is interpreted as a 
feature subset vector. If the bit position ‘i’ is ‘1’ then 
the ith feature is chosen. All the features whose 
corresponding bit string positions are ‘0’ are not 
included in the feature subset. 
 The fitness function uses the predictive model built 
by SVM to calculate the prediction accuracy of the 
feature subset. For each derived bit string, a predictive 
model is built and the Hot Method Prediction Accuracy 
(HMPA) is calculated on each UTDSP benchmark 
program using the standard ‘leave-one-out’ method. 
The fitness function is the average HMPA of all the 
UTDSP benchmark programs. The number of features, 
i.e., the number of ‘1’s in the bit string is also used in 
the fitness function. 
 Figure 4 and 5 represent the derived feature vector 
for the LRHM and the FCHM predictive models with 
their respective thirty and twenty nine features. It is 
found that twenty one features are common to the two 
predictive models and only nine and eight features are 
unique to the LRHM and FCHM predictive models 
respectively. Table 2 gives the static feature subsets for 
the two predictive models generated by GA. 
 
Hot method prediction: The GA derived feature 
subset of thirty and twenty-nine features are used in 
building the LRHM and FCHM predictive models. 
Table 3 presents the HMPA obtained from the UTDSP 
and the MiBench benchmark programs. The two 
benchmark suites are designed with programs that are 
successfully  compiled in LLVM compiler infrastructure.  
 
Table 1: Parameters used for the genetic algorithm 
Parameters Values 
Population size 10.0 
Number of Generations 50.0 
Mutation Rate probability 0.1 
Chromosome length 90.0 
 

 
 
Fig. 4: Feature string for LRHM 
 

 
 
Fig. 5: Feature string for FCHM 
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Table 2: Subset of Features generated by the GA wrapped with SVM 
Features Common to LRHM and FCHM LRHM Features 
---------------------------------------------------------------- ------------------------------------------------------------------------------------------------ 
Feature No. Static feature Feature No. Static feature 
1 Number of Return Instruction 15 Number of Seteq Instruction 
2 Number of Branch Instruction 20 Number of Setgt Instruction 
11 Number of rem Instruction 25 Number of Store Instruction 
12 Number of and Instruction 26 Number of GetElementPtr instruction 
14 Number of Xor Instruction 27 Number of Phi node Instruction 
24 Number of Load instruction 54 Number of constant global variables in a function 
29 Number of CallInst in a method 62 Number of global variables which is a Null Value 
32 Vanext instruction-used in llvm 1.5 and before  67 Number of derived type global variables 
33 Vaarg instruction-used in llvm1.5 and before   68 Number of pointer type global variables 
36 Number of Userop2 instruction       
43 Number of instructions  FCHM Features 
44 Number of basic blocks 28 Number of Cast Instruction 
45 Average number of incoming values 
 in a phinode instruction 52 Number of back edges 
46 Number of arguments 53 Number of defining edges 
47 Is Variable argument? 55 Number of global variables having internal linkages 
69 No of Array Global Variables 59 Number of global variables having link once linkages 
70 No of Structure Global Variables 60 Number of global variables having weak linkages 
77 Number of abstract global variables 61 Number of global variables having appending linkages 
78 No of floating point  array global variables 63 Number of global variables having initializers 
84 Number of basic blocks with more 
  than  two predecessors     
87  No of Basic Blocks with one successor 
 And one predecessor     
 
Table 3: Prediction accuracy for LRHM and FCHM on UTDSP and MiBench benchmark programs 
 LRHM    FCHM 
 ------------------------------------------------------------------- ---------------------------------------------------------------------------- 
Benchmark TPA (%) BHMPA (%) BIAS HMPA (%) TPA (%) BHMPA (%) BIAS  HMPA (%) 
UTDSP 
fft 100 100 0.00 100 100 100 0.00 100 
fir 100 100 0.00 100 62 75 0.26 56 
iir 100 100 0.00 100 0 0 0.00 0 
latnrm 100 100 0.00 100 100 100 0.00 100 
lmsfir 100 100 0.00 100 100 100 0.00 100 
mult 100 100 0.00 100 100 100 0.00 100 
adpcm 100 100 0.00 100 93 100 0.14 86 
compress 37 56 0.38 35 100 100 0.00 100 
edge_detect 75 83 0.16 70 75 50 -0.50 25 
G721.MarcusLee 83 100 0.34 66 100 100 0.00 100 
G721.WendyFung 91 100 0.18 82 86 81 -0.10 73 
G722 75 85 0.20 68 75 50 -0.50 25 
histogram 83 100 0.34 66 100 100 0.00 100 
jpeg 85 80 -0.10 72 42 33 -0.18 27 
lpc 100 100 0.00 100 100 100 0.00 100 
spectral 43 58 0.30 41 100 100 0.00 100 
trellis 88 86 -0.04 83 88 86 -0.04 83 
V32.modem 75 75 0.00 75 50 100 1.00 0 
UTDSP average 85 90 0.10 81 82 82 0.00 71 
MiBench 
basicmath  66 66 0.00 66 100 100 0.00 100 
bitcount  100 100 0.00 100 100 100 0.00 100 
qsort  50 50 0.00 50 100 100 0.00 100 
susan  94 100 0.12 88 84 75 -0.18 62 
dijkstra  100 100 0.00 100 100 100 0.00 100 
patricia  100 100 0.00 100 100 100 0.00 100 
stringsearch  100 100 0.00 100 100 100 0.00 100 
rijndael  85 75 -0.20 60 57 0 -1.14 0 
sha  100 100 0.00 100 100 100 0.00 100 
CRC32  0 0 0.00 0 100 100 0.00 100 
FFT  50 25 -0.50 13 83 50 -0.66 17 
MiBench average 77 74 -0.05 71 93 84 -0.18 80 
Overall average 82 84 0.04 77 86 83 -0.07 74 
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Table 4: Performance Improvement obtained on the predicted LRHM and FCHM of UTDSP and MiBench benchmark by optimization. 
 LRHM     FCHM 
 ------------------------------------------------------------ ------------------------------------------------------------------- 
 Inlined- IPO-   Inlined- IPO-   
 LLVM LLVM   LLVM LLVM 
 default default   default default   
Benchmark heuristics heuristics Inlined-ML IPO-ML heuristics heuristics Inlined-ML IPO- ML 
UTDSP 
fft 6 -3 3 18 16 6 6 6 
fir 29 23 20 17 4 -8 8 8 
iir 15 -7 11 4 13 8 8 5 
latnrm 10 0 13 10 3 10 6 13 
lmsfir 12 0 9 9 -6 6 6 3 
mult 17 3 0 17 11 4 7 11 
adpcm 3 3 3 3 4 3 0 3 
compress -31 0 9 9 16 6 0 -4 
edge_detect 8 0 8 3 8 5 8 5 
G721.MarcusLee 19 0 0 0 17 4 8 4 
G721.WendyFung 23 4 4 12 4 -13 -9 -9 
G722 0 0 0 0 4 4 0 0 
histogram 6 3 3 6 10 -7 7 3 
jpeg 13 4 8 8 25 7 4 7 
lpc -1 -3 -4 -7 1 -4 -1 -5 
spectral 8 7 7 3 7 5 3 3 
trellis -18 -5 -15 -20 2 4 -2 -2 
V32.modem -4 -4 0 0 16 12 16 8 
UTDSP average 6 1 4 5 9 3 4 3 
MiBench 
basicmath  -2 2 -2 -4 0 2 4 2 
bitcount  0 0 0 7 7 0 0 7 
qsort  24 24 12 18 12 30 12 36 
susan  -64 -66 2 1 -66 -1 2 2 
dijkstra  1 0 0 0 1 -1 0 0 
patricia  7 2 0 -2 7 -5 5 2 
stringsearch  0 0 -20 0 13 0 7 13 
rijndael  -6 1 1 2 -7 2 0 1 
sha  -3 -4 1 -1 3 -4 1 -33 
CRC32  25 8 17 8 34 0 17 17 
FFT  9 0 2 11 8 0 9 2 
MiBench average -1 -3 1 4 1 2 5 5 
Overall average 4 0 3 5 6 3 5 4 

 
Our present study of hot method prediction involving 
the GA in feature reduction shows that the models can 
achieve 81-71% HMPA on the UTDSP benchmark 
suite for LRHM and FCHM. When the hot methods in 
the benchmark programs of MiBench are predicted 
using the feature subset derived from the UTDSP 
benchmark, the HMPA obtained by the respective 
predictive models for the LRHM and the FCHM are 71-
80%. 
 
Results of optimization: The effects of inlining and IPO 
using constant propagation on the predicted LRHM and 
FCHM are evaluated on the MiBench and UTDSP 
benchmark suites and the results are presented in Table 4. 
The IPO performed on the predicted LRHM and FCHM 
achieve an overall improvement of 5-4% respectively as 
against 0-3% using the LLVM’s default set of 
optimization heuristics. However, inlining of LRHM and 
FCHM achieves 3-5% improvement on the program 

execution speed as against 4-6% seen in the case of 
LLVM’s default heuristics. Despite a small decrease in 
the case of inlining, certain individual programs like 
‘latnrm’ and ‘susan’ appear to have a positive impact. 
For instance, from Table 4, it is seen that ‘latnrm’ has a 
speedup of 13% when its LRHM are inlined and a 
speedup of 6% when its FCHM are inlined.  
 

DISCUSSION 
 
 In a previous work (Sandra and Valli, 0000), the 
authors have demonstrated that the predictive models 
for LRHM and FCHM trained with the full set of ninety 
features are capable of achieving 79-38% prediction 
accuracies on the UTDSP benchmark suites and 52-
58% on MiBench. According to the present study, 
based on GA generated feature subsets of thirty and 
twenty-nine features to train the LRHM and FCHM 
models, the accuracies are 81-71% respectively on the 
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UTDSP and 71-80% on the MiBench. This is an 
improvement of 8-29% in predicting LRHM and 
FCHM over the models trained with the full feature set. 
In another approach (Sandra and Valli, 0000) where a 
‘knock-out’ algorithm is implemented in order to 
eliminate irrelevant features, the LRHM and FCHM 
models have accuracies of 68- 61%. It is evident that 
GA derived predictive models provide improvement in 
prediction over the other models. 
 

CONCLUSION 
 
 This study describes the derivation of feature 
subsets using the GA wrapped with the ML-based 
algorithm SVM, to maximize the accuracy of the 
prediction of long running and frequently called hot 
methods, leading on to optimization and improvement 
in program performance. The GA evaluates the fitness 
of the feature subsets on UTDSP benchmark programs 
using the SVM algorithm. The GA-generated feature 
subsets containing thirty and twenty-nine features 
respectively for the two predictive models when tested 
on MiBench, predict the LRHM and FCHM with the 
respective prediction accuracies of 71-80%. The 
UTDSP benchmark suite achieves 81-71% for the 
LRHM and FCHM predictive models. These 
observations indicate that the GA-based approach in hot 
method prediction yields comparable results.  
 Future work in this GA based approach would 
focus on incorporating SVM parameters in the GA bit 
string coding. 
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