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Abstract: Problem statement: Diabetic Retinopathy (DR) is globally the primary cause of visual 
impairment and blindness in diabetic patients. Retinal image is essential and crucial for ophthalmologists 
to diagnose diseases. Many of technique can achieve good performance on retinal feature are clearly 
visible. Unfortunately, it is a normal situation that the retinal images in Thailand are low-quality images. 
The existing algorithm cannot detect low-quality image. Therefore, this study is part of a larger effort to 
develop a new method for detection of exudates in low quality retinal image. Approach: In this study, 
we presented a new method towards the development for detecting exudates pathologies of DR. The 
color retinal images are segmented using Fuzzy C-Means (FCM) clustering and morphological methods 
and following key preprocessing step, i.e., color normalization, contrast enhancement, remove noise and 
color space selection. This enables its difference in our methods compared to other approach and the 
algorithm can achieve good performance even on low-quality retinal images. Result/Conclusion: The 
result shows that accuracy values increase when the FCM clustering is combined with morphological 
methods techniques. If any applications need to detect maximum number of exudates pixels or require 
execution speed, the FCM clustering technique could be used in isolation. However, if the applications 
require higher accuracy, the FCM clustering combined with morphological methods should be chosen. 
This system intends to help ophthalmologists in DR screening process to detect symptoms faster and 
more easily. This is not a final result application but it can be a preliminary diagnosis tool or decision 
support system for ophthalmologists. Human ophthalmologists are still needed for the cases where 
detection results are not very obvious. 
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INTRODUCTION 

 
 DR is a severe eye disease and a major cause of 
blindness. Exudates lipid leakages from blood vessels 
are visible signs of an early stage of retinal abnormality 
in DR. DR need regular screening because early 
detection of exudates could help prevent blindness. 
Unfortunately, it is a normal situation that the retinal 
images in Thailand are low-quality images. Thus, 
retinal image segmentation in low-quality images is 
difficult; take a long time and the expensive 
computational cost has become a bottleneck that limits 
clinical application. Many techniques have been 
employed to the exudates detection. The thresholding 
and region growing technique are widely used. Kavitha 
Kavitha and Shenbaga (2005) proposed median filtering 
and morphology operation for blood vessels detection. 

Multilevel threshoding is used to extract bright regions 
assumed to be the optic disc or exudates. They detect 
the optic disc as the converging point of blood vessels 
and then classifiy the other bright regions as exudates. 
Li and Chutatape (2003) proposed exudates extraction 
technique by using a combination of region growing 
and edge detection techniques. Usher et al. (2004) 
detected the candidate exudates region using a 
combination of region growing and edge detection 
techniques. The system failed to detect small exudates 
and low quality images. Clustering has also been 
proposed as a possible solution to the exudates 
detection problem. Zhang and Chutatape (2005) used 
local contrast enhancement and Fuzzy C-Means (FCM) 
clustering in Luv color space to segment candidate 
bright lesion areas. Osareh et al. (2001) used FCM 
clustering to segment color retinal images into 
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homogeneous regions, then train neural network and 
support vector machine to separate exudates and non-
exudates areas. The system work well only on Luv 
color space but in the case of non-uniform 
illumination the detection accuracy is low. The main 
difficulty with clustering methods is determining is 
determining the number of cluster to use. A few other 
attempts are based on neural network, naïve Bayes, 
specialized features and morphological methods. 
Gardner et al. (1996) proposed an automatic detection 
of DR using back propagation neural network. 
Compared with the result of the ophthalmologist, the 
network achieved a sensitivity of 88.4% and a 
specificity of 83.5% for the detection of DR. The 
techniques did not work well on low contrast images. 
 From the above studies, the exudates detection 
can be broken down to two situations: low quality 
image and multimodal image (see Fig. 1). The existing 
algorithm can achieve good performance when these 
two situations are not combined together. For example, 
it is difficult to exudates detection an images taken at 
different times and different fields of view. To solve 
this problem, we proposed a new method for exudates 
detection using FCM and morphological method to 
detect and treat DR in an early stage. 
 

MATERIALS AND METHODS 
 
Patients: The digital retinal images are taken from 
patients with non-dilated pupils using a KOWA-7 non-
mydriatic retinal camera with a 45° field of view and 
taken at Mahasarakham Hospital. The images are stored 
in JPEG image format files (.jpg) with lowest 
compression rates. The image size is 700×500 pixels at 
24 bits per pixel. The patient’s pupils are not dilated at 
the screening process. All retinal images of 2084 image 
comprised of 968 images with exudates and 1116 
images without exudates are tested on a Core2 Duo 
1.60 GHz PC using MATLAB for algorithms. The 
overall procedure detection of exudates demonstrated in 
Fig. 2. The method following key preprocessing step, 
i.e., color normalization, contrast enhancement, remove 
noise and color space selection. This enables us to 
assess the accuracy accurately and its difference in our 
methods compared to other approach.  
 
Data preparation: We put our data through four 
preprocessing steps before commencing the detection 
of exudates. The retinal color in different patients is 
variable being strongly correlated to skin pigmentation 
and iris color. Thus, the first step is to normalize the 
color of the retinal images across the data set. We 
selected a retinal image as a reference and then 
applied histogram specification to modify the values 
of each image in the database such that its frequency 
histogram matched the reference image distribution. 

 
 (A) 

  
 (B) 
 
Fig. 1: Example of low quality images and 

multimodal image taken from the same 
patients, (A) typical normal image, (B) 
abnormal image indicates exudates 

 

 
 
Fig. 2: The procedure of the proposed exudates detection 
 
The contrast of retinal images is not sufficient due to 
the intrinsic attributes of lesions and decreasing color 
saturation, especially in the periphery. Consequently, in 
the second preprocessing step, the contrast between the 
exudates and the retinal background is enhanced using a 
local contrast enhancement method to facilitate later 
segmentation. While the contrast enhancement 
improves the contrast of exudates, it may also enhance 
the contrast of some non-exudates background pixels. 
Therefore, a median filtering operation is applied in 
third preprocessing step. Finally, is to choose an 
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appropriate representation using color space definition. 
We have experimented with various color spaces such 
as RGB, YIQ, HIS, HSL, Lab and Luv color space 
model. The reasons for the features selection and their 
details are explained below.  
 
Retinal color normalization: One of the main 
obstacles for detection of retinal exudates is the wide 
variability in the color of retinal image from different 
patients. These variations are strongly correlated to skin 
pigmentation and iris color. Thus, the color of exudates 
in some region of an image may appear dimmer than 
the background color of other regions. As a result, the 
exudates can wrongly be classified as the background. 
In fact, without some type of color normalization the 
larger variation in the natural retinal pigmentation 
across the patient dataset can hinder discrimination of 
the relatively small variations between the different 
lesion types. The three methods tested were grey-world 
(Vanrell et al., 2001), histogram equalization (Finlaysona 
et al., 2004) and histogram specification (Osareh et al., 
2002). The result of each technique is shown in (Fig. 3A-
D). We found that the histogram specification to be 
most appropriate for the restoration of the retinal image. 
Therefore, we selected a retinal image as a reference 
and applied the described histogram specification 
technique to modify the values of each image in the 
dataset such that its frequency histogram matched the 
reference image distribution. The histogram 
specification technique was independently applied to 
each individual RGB channel to match the shapes of 
three specific histograms of the reference image. Here, 
the reference histograms were taken from an image, 
which represents a frequent retinal pigmentation color 
among our image dataset. This image was chosen in 
agreement with the expert ophthalmologist. The color 
normalization process improves the clustering ability of 
the different lesion types and removes the variation due 
to the retinal pigmentation differences between 
individuals. The results of retinal color normalize is 
illustrated in (Fig. 3E-G).  
 
Contrast enhancement: The retinal images taken at 
standard examinations are sometimes poorly contrasted 
and contain artifacts. The retinal image contrast is 
decreased as the distance of a pixel from the center of 
the image increased. Moreover, non-uniformity of 
illumination raises the intensity levels in some regions 
of an image, while other regions farther away from the 
optic disc may suffer from a reduction of brightness. 
Thus, the exudates or similar lesions in such regions are 
not distinguishable from the background color near the 
disc. The retinal image quality has a great impact on the 

features of retinal lesions, especially exudates. 
Consequently, preprocessing techniques are necessary 
to improve the contrast of these images. Since 
histogram specification does not provide an efficient 
scheme, we apply local contrast enhancement (Chang 
We, 1998) to a transformation of the values inside small 
windows in the image in a way that all values are 
distributed around the mean and show all possible 
intensities. The techniques of local contrast 
enhancement are described below. 
 Given each f in the initial image and a small M×M 
running window w, then the image is filtered to produce 
the new image pixel f(i, j) Eq. 1: 
 

w w min

w max w min

(f ) (f )
f (i, j) 255

(f ) (f )

 Ψ − Ψ  =  
 Ψ − Ψ   

 (1) 

 
where, the ψ is defined as: 
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w
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−
  < > −Ψ +   σ   

  (2) 

 
 And fmax and fmin are the maximum and minimum 
intensity values in the whole image, while <f>w and σw 
indicate the local window mean and standard deviation 
which are defined as Eq. 3 and 4: 
 

w 2
(i, j) w (k,l)

1
f f (i, j)

M ∈

< > = ∑  (3) 

 
 

2
w w2

(i, j)w (k,l)

1
(f (i, j) f )

M
σ = − < >∑   (4) 

 
where, (k, l) represents the location of each pixel 
within window w. The size of window M should be 
chosen to be large enough to contain a statistically 
representative distribution of the local variations of 
pixels. On the other hand, it must be small enough to 
not be influenced by the gradual variation of the 
contrast between the retinal image center and the 
periphery. Here, the window size was empirically set 
to 69×69 for our processing, although the other values 
may be also appropriate. The local contrast 
enhancement depends on the mean and variance of the 
intensity values within the considered local region. 
The exponential function (Eq. 2) produces significant 
enhancement when the contrast is low (σw is small), 
while it provides less enhancement if the contrast is 
already high (σw is large). The examples of color retinal 
images after the contrast enhancement (Fig. 3H). 
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 (A) (B) 

  
 (C) (D) 

  
 (E) (F) 

  
 (G) (H) 
 
Fig. 3: The result of data preparation, (A) typically image, (B) result of grey word normalization, (C) result of 

histogram equalization, (D) result of histogram specification, (E) The reference image RGB histogram, (F) 
low quality image, (G) result after color normalization of (F), (H) contrast enhanced version of (G) 



J. Computer Sci., 8 (8): 1304-1313, 2012 
 

1308 

Remove noise: While the contrast enhancement 
improves the contrast of exudates, it may also enhance 
the contrast of some non- exudates background pixels 
(e.g., noise), so that these pixels can wrongly be 
identified as exudates. Here, after to contrast 
enhancement, there are several ways to remove or 
reduce noise in an image such as linear filtering, 
adaptive filtering, median filtering. Median filtering is 
better able to remove these outliers without reducing 
the sharpness of the image. The benefit of median filter 
is simultaneously reducing noise and preserving edges. 
Therefore, a median filtering operation is applied in this 
preprocessing step. 
 
Color space selection: The first task in image 
processing is to choose an appropriate representation 
using a color space definition. There are several 
different color spaces in the literature and each has its 
own advantages. Indeed, there is no color spaces that 
better than the others and suitable for all kinds of 
images. To select the most appropriate color space, we 
conduct a quantitative analysis and utilize the 
evaluation function value J = trace (Sb/Sw) as a 
measure of color space efficiency (Fukunaga, 1990). 
This function estimates the class separate of our 
exudates and non-exudates pixels classes in different 
color space and was measured using within-class and 
beteween class scatter matrices. The within-class 
scatter matrix (Sw) indicates the distribution of 
sample points around their respective mean vectors 
and (Sb) represents the scatter of samples around the 
mean vector of class mixture. In fact the numerator 
of function J represents the overall color difference 
of exudates and non-exudates sample points, while 
the denominator denotes the variations of the color 
distribution for these two classes. A higher value of J 
shows that the classes are more separated, while the 
numbers within each class are closer to each other. 
We have experimented with various color spaces 
such as RGB, YIQ, HIS, HSL, Lab and Luv color 
space, it is obvious that Luv color space (Xiang et 
al., 2009) the most appropriate space for our 
segmentation (Table 1). 
 

Optic localization: Optic Disc (OD) localization is 
indispensable in our automatic exudates detection 
approach, since it illustrates similar attributes to the 
exudates in terms of color, brightness and contrast. By 
detecting it we can remove it from the exudates 
classification process. To locate OD in this study, two 
techniques are combine Morphological Reconstruction 
(MR) and Otsu algorithms are presented. The 
implementation steps of using a MR methods and Otsu 
algorithm to detect the OD boundary is as follows. 

Table 1: A comparative analysis of the different color spaces 
Color space  YIQ RGB HLS HIS Lab Luv 
J 2.16 2.21 2.54 2.78 3.19 3.47 

 
Step 1 Conversion to gray-scale image: The OD is the 
exit point of retinal nerve fibers from the eye and exit 
point for retinal vascular. It is a regions inside the OD, 
but applying in Eq. 5 solves this problem and the result 
is much smoother image, which is depicted in Fig. 4A. 
In this step, we using gray-scale closing operator (Ø) 
applied to the intensity or lightness channel (CI). The 
difinitions for closing operation by structuring element 
B are defined as:  
 

1(B )
1 IOD (C )= φ  (5) 

 
where, B1 is the morphological structuring element. This 
stage, a flat disc shaped structuring element with a fixed 
redius of eight is used. It is evident that this approach 
produces a more homogeneous region while preserving 
the OD edges. 
 
Step 2 Binary segmentation: The examples above 
illustrate the used of grayscale reconstruction in OD 
analysis tasks. However, it is probably for binary 
segmentation that this operation is most useful. 
Therefore, a threshold is applied to binary segmentation 
and threshold image was then used as a mask. The 
resulting image is binarized by thresholding shown in 
Fig. 4B and the thresholded image is then used as a 
mask. All the pixels in the mask are inverted before they 
are overlaid on the original image to remove candidate 
bright regions. The result, OD3, is shown in Fig. 4C. The 
MR by dilation, R, is then applied on the previous 
overlaid image using Eq. 6. 
 

I3 C 2OD (x) R (OD )=  (6) 

 
Step 3 Maker image: The dilation of maker image 
(OD2) under masker image (CI) are repeated until the 
contour of image maker image fits under the mask 
image. The reconstructed image is shown in Fig. 4D. 
 
Step 4 Appling ostu’s algorithm: The different between 
the original image and the reconstructed image is 
thresholded at grey level α2 using Eq. 7. The value of α2 

is different from image to image depending on automated 
selection using the Otsu’s algorithm. As a result, high 
intensities are reconstructed while the rest is removed, as 
shown in Fig. 4E.  
 

24 I 3OD T (C OD )α= −  (7) 
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 (A) (B) (C) 
 

   
 (D)  (E)  (F)   
 
Fig. 4:  (A) Intensity image after closing, (B) thresholded image, (C) maker image, (D) reconstructed image, (E) 

thresholded result of difference image, (F) OD area localized 
 
Step 5 identification of OD: Typically, the OD can 
be seen brighter than the surrounding area. Despite 
its brightness, an accurate localization is not an easy 
task as some part are obscured by crossing blood 
vessels and in some case, such as the affected of 
bright the lesions. However, the shape of OD is 
round; therefore the OD region selection process 
needs to be made specific to the largest one among 
the regions and compactness whose shapes are 
circular. The compactness of OD regions is defined 
by the value of V, as defined using Eq. 8. 
 

2

4 (A)
V

(P)

π=  (8) 

 
where, A is the number of pixels in the region and P 
is the total number of pixels around the boundary of 
each region. The selected result, OD5, is dilated with 
a binary dilation operator (δ) in Eq. 9 to ensure that 
all pixels in the OD area are covered. This step, a flat 
disc-shaped structuring element with a fixed radius 
of six (M2) is used.  
 

 
2(M )

seg 5OD (OD )= δ  (9) 
 
 All OD area in original image is masked out using 
the previous output. The result is illustrated in Fig. 4F. 

Coarse segmentation using FCM clustering: The FCM 
is a data clustering algorithm in which each data point 
belongs to a cluster, to a degree specified by a 
membership grade. Cannon et al. (1986) originally 
introduced this technique. FCM partitions a collection 
of n vectors, cj, j = 1,…,n, into c fuzzy groups and finds 
a cluster center in each group, such that a cost function 
based on a distance function is minimized. Because of 
the fuzzy partition, a given data point can belong to 
several groups with a degree of membership specified by 
a grade between 0 and 1, such that the constrains in Eq. 10 
are statisfied. These values are collected in a membership 
matrix, U. However, imposing normalization stipulates 
that the summation of degrees of memberships for a data 
set must always be equal to unity: 
 

 
C

ij
i 1

u 1, j 1,...,n.
=

= ∀ =∑  (10) 

 
 The cost function or objective function for FCM is: 
 

N C 2m
m 1 c ij i j A

j 1 i 1

J (U,c ,...,c ) (u ) x c
= =

= −∑∑  (11) 
 

 
where, m is an exponential weighting function that 
controls the fuzziness of the membership function, N is 
number of features, 5 for our case. C is number of cluster 
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(In our case, experimentally vary from 2-8), uij is the 
degree of membership of xi in the cluster j, xi is the ith of 
d-dimensional measured data, cj is the d-dimension 
center of the cluster and ||·|| is the Euclidean distance 
between the ith cluster and the jth data point. The 
squared distance between ith and jth shown in Eq.11 is 
computed in A-norm via Eq.12. 
 

22 T
ij i j i j i jA

d x c (x c ) A(x c ).= − = − −  (12) 

  
 With these observations, we can decompose Jm into 
its basic elements to see what property of the points (xi) 
is measures Eq. 13a-13d: 
 

2
ijd  = squared A-distance from  

point xi to center of cj  (13a) 
 

m 2
ij ij(u ) d  = squared A-error incurred by representing xi by 

  
cj weighted by the membership of xi in cluster j (13b) 
 

C
m 2

ij ij
i 1

(u ) d
=
∑ = sum of squared A-error due to xi partial 

replacement by all C of the center (cj) (13c) 
 

N C
m 2

ij ij
j 1 i 1

(u ) d
= =
∑∑  = overall weight sum 

 
of generalized A-error (13d)  
 
 Fuzzy partitioning is carried out through an iterative 
optimization of the objective function shown above, with 
the update of membership uij and the cluster centers cj by 
using Eq. 14 and 15, respectively: 
 

ij 2/ (m 1)
C

ij

k 1 kj

1
u

d

d

−

=

=
 
 
 
 

∑

  (14) 

 
N

m
ij i

i 1
j N

m
ij

j 1

u x
c

u

=

=

=
∑

∑
  (15) 

 
 This iteration will stop when Eq. 16 is satisfied: 
 

( )(k 1) (k)
ij ij ijmax u u T+ − <  (16) 

 

where, T is a termination criterion, K is the iteration 
number. This procedure converges to a local minimum or 
a saddle point of J. The input to the FCM algorithm is a 
set of feature. The number of cluster is required at the 

beginning and the algorithm is composed of the 
following step: 
Step 1:  Initialize the fuzzy partition matrix U = 

(uij)(U
(0)) by generating random numbers in 

the range 0-1 subject to Eq. 17. 
 

N C

ij
i 1 j 1

u 1
= =

=∑∑  (17) 

 
Step 2: At k-step; calculate the centers vectors C(k) = (cj) 

with (U(k)) according to Eq. 15. 
Step 3: Update the fuzzy partition matrix U(k), U(k+1) by 

the new computed uij according to Eq. 14. 
Step 4: Compute the objective function according to Eq. 

11. If the difference between adjacent values of 
the objective function is less than Termination 
criterion (T) the stop the iteration; otherwise 
return to step 2. 

 
Fine segmentation using MR: The result from the FCM 
clustering was a rough estimation of the exudates. In 
order to get a better, a fine segmentation using MR was 
applied in this step. The MR is a part of morphological 
image processing. MR is based on dilation on two 
images, a maker and a mask.  
 The resulting image from coarse segmentation was 
used as a maker while original intensity image (fI) was 
used as a mask. All the pixels in the marker were 
inverted before they were overlaid on original image. 
The MR by dilation, R, was then applied on the 
previous overlaid image using Eq. 18. The dilations of 
marker image under mask image were repeated until the 
contour of maker image fits under the mask image:  
 
 

I2 f 1rx (x) R (rx )=  (18) 
 
 Using Eq. 19, the final result is obtained by 
applying a threshold operation at automatically selected 
grey level α1 to the difference between the original 
image (fI) and the reconstructed image (rx2):  
 

1seg I 2MR T (f rx )α= −  (19) 
 
Performance measurement: (1) Clinical performance 
indices, performance of all algorithm is measure by 
four values, namely, True Positive (TP, is a number of 
exudates pixels correctly detected), False Positive (FP, 
is a number of non-exudates pixels wrongly detected as 
exudates pixels), True Negative (TN, is a number of 
non-exudates pixels which are correctly identified as 
non-exudates pixels) and False Negative (FN, is a 
number of exudates pixels that are not detected). To 
evaluate classifier performance, we use Sensitivity 
(SE), Specificity (SP) and Accuracy (AC) on a per-
pixels basis. (Satisfying, SE = TP/TP+FN, SE is 
percentage of the actual exudates pixel are detected, SP 
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= TN/TN+FP, SP is percentage of non-exudates pixels 
that are correctly classified as non-exudates pixels and 
AC = TP+TN/TP+FP+FN+TN, AC is overall per-pixel 
success rate of the classifier). (2) We evaluate 
performance on the test set quantitatively by comparing 
the classifier’s result to ground truth. In order to 
facilitate the experts to produce a ground-truth image, a 
first draft of ground-truth image is created by us. Then, 
this first draft image is shown to ophthalmologists 
together with the original image. The ophthalmologists 
then made some changes by adding some missing 
exudates pixels and/or removing some misunderstood 
non-exudates pixels until it is accepted by experts. 
 

RESULTS AND DISCUSSION 
 
 The result from the FCM algorithm is list of cluster 
centers and n membership-grades for each pixel, where 
n is the number of desired clusters. A pixel will be 
assigned to the cluster with highest membership-grade. 

However, the problem of using the FCM clustering  
technique is that the numbers of desired clusters, n, has 
to be specified beforehand. To determine the suitable 
value of n, we tried values ranging from 2-8. The SE, 
SP and AC of exudates detection that we received from 
of data are 96.7, 71.4 and 79%, respectively. The results 
for images using n = 8 are shown in Fig. 5. 
 The result from the FCM clustering coarse 
segmentation is used as input to the fine segmentation 
using MR. After fine segmentation, most of the 
classified exudates regions are true exudates pixels, 
which give a smaller TP value; however, it also reduces 
the FP value because misclassification of non-exudates 
pixels is also lower. The average values of SN, SP and 
AC of validation results. The FCM clustering followed 
by MR successfully with SN, SP and AC of 92.06, 
92.92 and 92.49%, respectively. From experimental 
results, if FCM clustering is the only technique used; it 
gives a high TP value with a high FP value.

 

    
 (A) (B) (C) 

  
 (D) (E) (F) 

  
  (G)  (H) 
 
Fig. 5: The FCM clustering results with n = 8, (A) cluster 1, (B) cluster 2, (C) Cluster 3, (D) cluster 4, (E) 

cluster 5, (F) cluster 6, (G) cluster 7, (H) cluster 8 
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 (A) (B) 

   
(C) (D) 

 
Fig. 6: Comparison of exudates detection, (A) original image, (B) coarse segmentation using FCM clustering, (C) 

fine segmentation using MR and (E) ground-truth image 
 
Using FCM clustering followed by MR, gives higher 
AC with a lower FP value. Comparing with baseline 
algorithm, the results indicate that the FCM clustering 
followed by MR performs better in accuracy. The 
comparison of exudates detection from the FCM 
clustering from the eight clusters resulting from coarse 
segmentation and result of FCM clustering followed by 
MR and ground-truth image are displays in Fig. 6. 
 

CONCLUSION 
 
 In this study, we have investigated and proposed 
methods to automatically detect exudates from low 
quality images and multimodal images taken from DR 
with non-dilated pupils. The study is based on the FCM 
clustering segmentation and morphological techniques. 
Five input features based on the characteristics of 
exudates, namely, retinal color normalization, local 
contrast enhancement, median filtering, RGB color 
space was transformed to Luv space and OD 
localization, are selected. The performance of algorithm 
is measured against ophthalmologist hand-drawn 
ground-truth. The SE, SP and AC are also used to 
evaluate the system. The result shows that accuracy 
values increase when the FCM clustering is combined 
with MR techniques. If any applications need to detect 

maximum number of exudates pixels or require 
execution speed, the FCM clustering technique could 
be used in isolation. However, if the applications 
require higher accuracy, the FCM clustering combined 
with MR should be chosen.  
 Overall, our experimental results show that careful 
preprocessing step, feature selection and appropriate 
classifier together provide exudates detection 
performance even on low quality images and 
multimodal images. This system intends to help 
ophthalmologists in DR screening process to detect 
symptoms faster and more easily. This is not a final 
result application but it can be a preliminary diagnosis 
tool or decision support system for ophthalmologists. 
Human ophthalmologists are still needed for the cases 
where detection results are not very obvious. 
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