Journal of Computer Science 8 (3): 382-388, 2012
ISSN 1549-3636
© 2012 Science Publications

Aspect Oriented Decision
Making Model for Byzantine Agreement

"Murugan, S. an@v. Ramachandran
YFaculty of Computer Science and Engineering,
Sathyabama University, Jeppiaar Nagar, Rajiv GaBdHai,
Chennai-600 119 Tamilnadu, India
Department of Information Science and Technology,
Anna University, College of Engineering, Guindy,
Chennai-600 025 Tamilnadu, India

Abstract: Problem statement: The main aim of this research study is to develognhanced strategy
for decision making whether to commit or rollbackemuest to a Web service in the presence of
Byzantine faults using aspects. The proposed stxtignds the Lamport’s algorithm for Byzantine
agreement to have an effective decision while hagdthe service request. When the service is
initiated based on the request, its execution biehavs being monitored before, after and at tiheeti

of execution and being handled with aspect concermsovide the corresponding responses as input
to the Lamport’s Byzantine agreement algorithm. @eeision on the client requests is based on the
outcome of the aspect advices before, after anahdrthe execution of the servicégproach: This
approach identifies the inception of the processchistarts to exhibit abnormal behaviour before,
after or during the execution of the service arsligiates that helps in resolving the faulty sendnd
identifies the root cause of the problem to reciifyAspect oriented advices do not require any
external invocation as it executes with the sendoel hence no additional overhead involved in
processing the service requdResults: In the existing methodology only the around adweeision is
considered for reaching an agreement in the preseh®Byzantine faults. An enhancement in the
decision making process is proposed by includirgdtate of the services: before, after and around
advices of the aspect€onclusion: The obtained experimental results based on the ogemp
methodology depict that the performance measurayn&aorrip Time is slightly increased when
compared with the existing Lamport’'s algorithm fByzantine Agreement and this performance
overhead is not a major concern as the proposedoap produces an enhanced decision by
considering aspect concerns and also determinesrigm of the fault. The change in execution
behaviour of Byzantine algorithm when aspects mtr@duced is compared with the implementation of
the algorithm without aspects in various distrildugavironments.

Key words: Agreement algorithm, various distributed environtsenomputing environment, Aspect
Oriented Programming (AOP), Round Trip Time (RTNlodel View Controller
Framework (MVC)

INTRODUCTION behaviour, which may go undetected often, as it
continues to study and produces results which are
In today's complex distributed business systemjllegitimate that causes business loss, customer
reliability of individual element is of major conte dissatisfaction, loss of reputation and variouseoth
which is to be maintained at higher level to kekp t factors. Fault handling is the major issue in the
other components in the system intact and hence tdistributed computing environment. The fault datect
make the entire system available. Identifying andand elimination is a straight forward process wtten
elimination of faults in the complex business sysis service stops its execution or throws exceptiowloen
a major challenging task. Sometimes the identifiedhe hardware begins to malfunction. But when the
faults behave abnormally by exhibiting Byzantine system executes with faults without any notificatior

Corresponding Author: Murugan, S., Faculty of Computer Science and Ermging Sathyabama University Jeppiaar Nagar,
Rajiv Gandhi Salai Chennai, 600 119 Tamilnadu,dndi
382

J. Computer i, 8 (3): 382-388, 2012

not revealing any symptom and produces inapprapriathandling mechanism using aspects doesn’t requiye an
results, it becomes more complicated to identifg &x modification even when the application modules are
those faults. This kind of uncharacteristic behaviof either extended or altered and this nature maksscés
faults is referred to as Byzantine fault or Byzaeti more flexible and extensible.
behaviour which is more common in this age of Many aspect oriented application programming
Internet, where systems are infused with fault$ &ne interfaces are available as open source for diftere
very difficult to identify, locate and eliminate. programming paradigms. AspectJ, 2011 is used for
The Byzantine Generals problem (Lampetrtal., implementation of the proposed decision making rhode
1982) is built around an imaginary General in deéen for Byzantine agreement. In AOP, Joinpoints arel wel
who makes a decision to attack or retreat and musiefined check points in the flow of the application
communicate the decision to his lieutenants. Thevhich may be (i) method call or return, (i) bean
general and some of the lieutenants may be traitorgperations (set and get) and (iii) exception haneifery
Traitors cannot be relied for proper communicatin point. A collection of joinpoints is termed as piints.
orders; worse yet, they may actively alter messages Advices are codes that will execute on some caoti
an attempt to subvert the process. The generals af@e before, after or around the joinpoint. Aspictike
collectively known as processes. The general wh@ class which includes pointcuts and advices for
initiates the order is the source process. Thersrsient implementing the cross-cutting concerns. Conceferse
to the other processes are messages. The general ag a specific purpose i.e., a portion of code fbich the
lieutenants those send faulty messages are traforogaspect is introduced. Weaver combines the classés a
and termed as faulty processes. Loyal general@ya | aspects for constructing the actual application.
lieutenants are correct processes. The order rteatedr Ji-De and Ying (2010) have developed an
attack is a message with a single bit of informatbor exception softening methodology to handle the
0. Lamportet al. (1982) proposed an algorithm to exception faults effectively in Aspectd environment
eliminate the Byzantine fault in which an agreemient They have analyzed and summarized several exception
arrived based on the messages that are exchangelilt types of Aspectd and illustrated the way with
among the processes. appropriate examples to analyze the impact of
In order to identify and handle the faults exception faults on program control flow. Seviaal.
effectively, the proposed model allows the system t (2007) envisaged the role of Aspect Oriented
maintain the state and values of the parametemdyef Programming in distributed component services with
after and during execution of the services that argespect to distribution, fault tolerance and load
invoked for accomplishing a task. The current objecbalancing. Usually the code for providing QoS
oriented programming paradigms are capable oparameters (both functional and non-functional) is
handling exceptions effectively but explicit insttions ~ Merged with the business logic and hence it isévatal
are to be written to handle abnormalities, whichais develop, maintain and reuse the code. In the peapos
tedious process. The method of capturing the sthte @Spects based model for Byzantine agreement, the
the service for fault handling is referred to asssr ~ Byzantine — behaviour identification ~module ~is
cutting concerns. Fault tolerance mechanisms trat a cOmpletely decoupled from the Web service, which is
implemented using software are capable of handlingn€ant for its intended task (Domokos and Majzik,
both hardware and software failures. Software base 005) have modelled the fault tolerant structuresgs

fault tolerant techniques have been developed usig@iﬁiﬁfct?gg t?):cs gimzvr\{glrksilss erﬁfggedv];%cﬁm?ag
reflection and meta-programming. Aspect Oriente y :

Proarammin AOP) is an extension of meta_dependability model that is used to determine the-n
9 Ng () - X functional properties of the system. In order tpiiave
programming that offers a provision for handlingss-

- h be pl di ¢ hthe reliability and availability of distributed adt
cutting concerns that can be plugged into any ef th ;o nteq systems, Herresbal. (2001) have introduced

widely —adopted ~programming languages. AOPgpiect replication mechanisms and presented a
improves the software quality by reducing codergpjication model, JReplica, which is a Java fault
tangling anq separating the concerns. By using AOPygjerance language based on Aspect Oriented
fault handling code is separated from the actuaprogramming. This replication model separates the
implementation of the business logic and the aspect specification of the replication code from the ftiooal
advices do not require any explicit invocation Bsyt pehaviour of objects by providing a high degree of
get triggered along with the service and does theransparency. JReplica provides faciliies to the
appropriate process of collecting the requiredprogrammers to introduce new behaviors for spauifyi
information. As the aspects are modularized, that fa different fault tolerant requirements. To enhanhe t
383

J. Computer i, 8 (3): 382-388, 2012

reliability of the Web services, it is not only messary The instance at which the service exhibits the
to handle the crash faults but also efforts shdwgdd faulty value or behaves abnormally i.e., beforagraf
taken to monitor and to handle the Byzantine fadlts and around the execution of the service is detexdchin
to the untrusted communication environment in whicha straight forward manner.
they operate. Zhao (2007) had developed a Byzantine An on-line debit transaction from a customer
Fault Tolerance framework for Web services, whichaccount in a bank is considered as a case study to
operates on top of the standard SOAP messagingnalyze and to test the aspects oriented decisiking
framework with minimum changes in the Web model for Byzantine agreement. It is assumed thiatt f
applications. The Byzantine Fault Tolerancegservices namely primary service (receives and
framework is implemented as a pluggable modulgyocesses the request from the client), autheititat
and hence this model also supports inclusion of neweyyice, transaction service and balance verificati
fault tolerance requirements. service are involved for processing the transaction
))) request. When all the services agreed mutually, the
Byzantine agreement using aspect oriented 5mount is debited from the customer account. When
programming: The proposed model is an extension t04ny one of the services provides a negative regpons
the existing Lamport's algorithm for elimination of e transaction is declined. When there is a nelii
Byzantine behaviour and this approach uses inhereRfryice which exhibits Byzantine behaviour then the
aspects for tolerating Byzantine type of faultshie Web genuine transactions are also declined.
services application environment. The proposed c&spe In order to apply Lamports algorithm for
oriented model for elimination of Byzantine behavids Byzantine Agreement in distributed services
shown in Fig. 1, in which there are ‘n’ Web sersice onyironment, the minimum requirement is 3f+1>tf)
coor.dmatlng with each othe_r, against which the e&sp processes (Lampoet al., 1982) and hence in the case
Advices (ag, B, v)) are defined and are labeled @s gy,qy 4 total of four processes (one primary servi
(before advice)p (around advice) angl (after advice). e services) are considered. In this Web apisica
These adV|Fes are_weaved to_ge_the_r and prow_dempats ' the client provides the initial set of input foamsaction
o Lampqrts a'gF’r_'thm for e_l|m|nat|ng Byzantineutts like authentication (customer and pin verification)
and the final decision taken is bas_ed on th_e resplR, , selection of account type, transaction type (only
Ba, Yd.}' In the response set obtained using I‘amport%Nithdrawal is considered) and amount to be witharaw
algorithm, each entity refers to the “commit” ooltback” Once the request for the transaction is initiatié
decision based on the collection of ‘before advicg, “before advice” of the primary service gets trigeer
.rimd also the “before advice” of the coordinating
aspects those have been weaved inherently. Thiy entl‘gé}/é?gséd;zz, ?rizsnzgtehse ;2?:{” Caerse (iﬁé(ﬁjhda;gggesmyg: fing
Wh'Ch. occurs many t.|mes in the response set veill i service) have been fetched at this stage and weaved
the f|nal dec!S|on_, |.e.,_the output of the Lamjsort together. The Lamport's Byzantine Agreement
maximum occuttence of the. value.either ‘sommi or AGOTIM s invoked Using the sef of “before afc
. . . . s responses to reach possible agreement. The decision
rollback’ is considered as the final decision. Tasponse taken in this phase is labeled ag™ The next process

due to an advice which is different from other adsiis . e .
i starts with verifying the account balance and & th
the one that behaves abnormally and the servicejtich . . . S .
. . . . point of time the “around advice” of all the inveld
this advice belongs to, is the faulty service. . .
services get activated and the messages that are
Wenrer collected are weaved together. The set of “around
Wb advice” responses is fed into the Byzantine Agregme
T s Algorithm and the result obtained is identified“$g’".
L | T (before) When all the processes have completed the request,
post commit transactions are performed with whigh t

T @)1 Lamppost’s| Ba| Byzantine “after advice” messages are collected and weaved to

wS,

algorithm agreement

.EB 1) RAN pass them to Byzantine Agreement Algorithm and

, T l e “after advice” result is available inyg".
State and parameter In this case study, each responsg Bq, O vq
monttering o represents a value “commit” or “rollback” and tfheat
decision whether to debit or not is arrived basedhe
Fig. 1: Aspect oriented model for byzantine agreeme value which occurs more times in the set. The
384

J. Computer i, 8 (3): 382-388, 2012

checkpoint at which the system starts violating or The aspect and the “AuthenticationService” are
exhibiting abnormal behaviour is identified and weaved together through “pointcuts”. The pointcut
appropriate action is taken against the traitosmrgice processMessage () inherently monitors the state and
by reporting it to the concerned authority by theywef parameters of the method “verifyUser()” as defimed
generating fault reports. the service “AuthenticationService”. The method
signature of “verifyUser ()" specifies two paranmste
Implementation: A set of interfaces has been defined both of type String, hence pointcut is also defined
while implementing the proposed aspect orientedvith the same number and type of parameters wisich i
decision making model for Byzantine agreement. Thegiven below:
interfaces used for implementing the Byzantine

algorithm are: public pointcut processMessage(String uname, String
o S) pwd): execution(public
Service interface - qu.malntalnlr\g the list of boolean VerifyUser(String, St”ng)) and args (uname
participant services pwd);
NodeValue interface - For retrieving current

message value that is The advices before, after and around are

passed from_ one service 10 ,ssociated with the pointcut. The following code

. . another Service . __fragment shows the around advice of the pointcut
MapRepository interface -.For defining _the .Se.rv'ces‘processMessage()”. The state of the parameters are
hierarchy, for |dgnt|fy|ng logged and depends on the service the logging

the path in Wh'Ch. the variable is different. In case of

message communication »ihenticationService the parameter “username” is

takes place, for specifying logged. The response generated by the

the number of messages “AuthenticationService” is captured by the around

excha_nged b_etween the advice and passed to Lamport’s algorithm. The

. participant services message from all the other services of around &dvic
Broadcast interface - For maintaining the numberis transferred in this manner. A similar kind of
of repetitions and . the approach is adopted for other aspects with befade a
message transfer details after advices. The around advice of the service

AspectValue interface - For storing the adv'ces“AuthenticationService" is given below:

message value - Vector based parameters are
used for before, after and))
around advices boolean around(String uname, String

pwd):processMessage(uname, pwd) {

The above interfaces except Aspectvalue interface !/ Write the String variable uname (user namej int
are implemented to establish the Lamport's algorith €109 _
as a Web service in the distributed environmenchsu ~ // obtain the response created by the service
as RMI, Servlets and AXIS2 based SOAP communication !/ Pass the message to the Lamport's Algorithm for
environment. The Web service designed for Lamportdurther processing
algorithm is further extended and deployed in thblip
cloud environment. Aspects are introduced to erdnéme

decision arrived by the Lamport’s algorithm for Bytine The values received from the aspect advices are
agreement by the way of injecting before, afteramsdind processed separately to arrive at an agreement and
advices to the developed Web service. for reporting the faults. The aspect code is shawn

To elucidate aspects with Web service forFig. 2, which consists of two pointcuts for prodegs
Byzantine agreement, “AuthenticationService” forthe messages and for identifying the faulty node.
verifying the user credentials is considered. TheThree advices before, after and around are defined
“AuthenticationService” declares a method “veriflgds for message processing pointcut and the after advic
()" for validating the user credential and its sigre is is defined for fault node identification. The paint
given below: processMessage() is defined and it is associatdd wi

the method “BFTSolution ()", which is the
Public boolean verifyUser(String username, Stringimplementation of the Byzantine Agreement
password) Algorithm.

385

J. Computer i, 8 (3): 382-388, 2012

Public aspect ByzantineAOP {
Public pointcut processMessages (): execution (public boolean BFTSolution ()):

0.08
Public pointcut after Decision (): execution (public Vector identify faulty node (}):)) E
Object around (): processMessages () ~ 2000
{ 2 0.06
AspectValues.around = getValues (); 15.00 0.05
Boolean around = LamportBAA (AspectValues.around):

return around; £ 0.04

2 10.00 a

} z 003

""" R 0.02
...... 5.00

Boolean [] after (): after Decision () { 001

Vector serviceids = new Vector (Service.getNoServices); 0.00 0

Enumeration enumService = serviceids.elements ():

< 0
25.00 0.09

Round trip time (MS)

Throughput (kbps)

Boolean [] faultyServices = new Boolean [serviceids.size]: Before Around After Before Around After
While (enumService. has More Elements ()) advice advice advic advicel ddvics iddnic
FaultyServices [i] = (boolean) fault Detection (getServices().elementAt (i));
return faultyServices; . .
3y o Fig. 3: Throughput and RTT of aspect advices for
Public static Vector getValues() { v .
Vector inter Values=new Vector (Service.getServices()): byzantme agreement algorlthm

For (int i=0:i<Service.getServices():i++) {
InterValues[i].addElement (NodeValue.getSourceValue ()):
eturn interValues; . . .
Fm e - RTT is decreased on subsequent invocation of
7 Bt ety -EetE By zaineNode(tervited, before, o, e Byzantine algorithm for aspect advices before, adou
| Retum isFauly; and after. This analysis reveals that introducisgeat
advices for tolerating Byzantine behavior doeshtvs
Fig. 2: Pointcut and advices for byzantine agreemenany Increase n RTT or de_crease in throughput. §'”°
algorithm there is no external invocation and hence no aulditi

overhead in processing these advices are required.

For the advices before, after and around, the A comparison study has been carried out on the
respective methods are invoked for taking the dmtis performance of Byzantine Agreement algorithm with
at that instance and the results are retainechking the injection of around advice aspects and without
final decision. Based on the values collected forinvolving any aspect in various distributed envirent
identifying and reporting the faulty node, a pointcalled ~ paradigms. Figure 4 shows the execution behavior of
“afterDecision ()" is used. The functionality ofistaspect Byzantine Agreement Algorithm in Remote Method
is to identify the service which behaves abnormally Invocation (RMI) with and without aspects. The

The anomalies are analyzed for abnormal behavioaverage round trip time (log based) is moderataly if
with respect to any external force, which is resiole the algorithm is implemented with aspects when
for the fault or due to human intervention or doeahy compared with the implementation without aspecte T
other factors. The information gathered helps intesting is done by varying the number of processes
eliminating the Byzantine behaviour of the faulty number of messages.
service and thereby extended to prevent other casvi The performance measure, round tnp time for the
from being affected by similar kind of behaviour. Byzantine agreement algorithm using Web servlets by

varying the number of messages is shown in Fig. 5.

Performance analyss: The performance measures gy exhibits a better execution time when compared
namely Round Trip Time (RTT) and throughput haswith servlets.

been computed for execution of the proposed Bymanti While the Byzantine Agreement algorithm is

Agreement algorithm with advices (before, around an . . .
after). Round trip time is the time that elapsetsvieen |mplemented as a Web service using AXI_SZ.Apaf:he the
Fig. 6 shows that the average round trip time ig/ve

the initiation and obtaining the response of thevise | h d with imol tai ing RMI
by the client. Throughput is estimated as the tsize €ss when compared with impiementations using

of the data transferred divided by the durationthu and Web servlets. Involving aspects in Web services
test run. In the proposed study, RTT gr(,leu(,myreduces the execution time considerably than ahgrot

decreases in the order of the advices (before,narou €nvironment.

}

and after) associated with the Lamport's algoritind The execution times of the Byzantine Agreement
throughput increases in the order after, around andlgorithm with and without aspects while implemagti
before advices, which is shown in Fig. 3. the same in the Model View Controller Framework

The average round trip time and throughput forf(MVC) using Struts and in the public Cloud
Lamport’s algorithm for Byzantine Agreement is QL08 environment using Google App Engine are shown in
ms and 12.53 kbps respectively. Introducing aspectbig. 7 and 8 respectively. These two environments
into Lamport’s algorithm doesn’t show any major exhibit a higher execution time when compared
impact in terms of execution. with RMI, Web servlets and Web sees.

386

10000

1000

100

Round trip time (ms)

A WA | A

6 Messages

A-with aspects
WA- without aspects

WA

7 Messages

A WA

8 Messages

A

J. Computer i, 8 (3): 382-388, 2012

=.6 Processes
= 7 Processes
= 8 Processes

=9 Processes

WA

9 Messages

Inducing aspects into Model View Controller
Framework and in public cloud environment consumes
higher execution time than the Lamport’s algoritfon
Byzantine agreement is implemented without aspects.
Table 1 shows the average throughput for the
Byzantine agreement algorithm implemented using
various distributed environment paradigms. Among
the tested distributed environments, it is observed
that the Web service implementation provides a
better throughput which is followed by Java Remote
Method Invocation when aspects are introduced for

Fig. 4: Round Trip Time for Byzantine Agreementtwit 2chiéving Byzantine agreement whereas cloud
in Remote Method Platform generates low throughput.

and without

Aspects
Invocation (RMI) Environment

10000

1000

100

(=]

Round trip time (ms)

WA

5 M

6 M

A wa

didid

A
7N

II il |

. WA | A | WA
1.

8 M

A-with aspects
WA- without aspects

10000

1000 1

,_.
=3
S

= 6 Processes
= 7 Processes

8 Processes
"9 Processes

—_
o

Round trip time (ms)

—_

Alwala[wal a

7 M

WA A WA
87\,{

5 M

6 M

A-with aspects
WA- without aspects

Fig. 5: Log Based Round Trip Time for Byzantine Fig. 7: Round Trip Time for Byzantine Agreementtwit

Agreement with and without Aspects in Web and without Aspects in Model View Controller
Servlets Environment Framework (using Struts)

10000
10000

_ 1000 , , o
o i] [£ 100 I ‘
g 100 | | = 6 Processes = u ‘ I ‘ l = 6 Processes
= ‘ = 7 Processes e = 7 Processes
= 10 | = 8 Processes AU = 8 Processes
é ‘ l J I 1 ‘] = 9 Processes - " PRiovesses
=]
~ 1 : 1 | L - | | L

A AW | A AW [A AW | A AW a fwa[a [wala [wala

5 M 6 M 7 Messages | 8 Messages 5 Messag 6 . -

it A-with aspects
A-with aspects WA- without aspects

WA- without aspects

Fig. 6: Round Trip Time for Byzantine Agreementtwit Fig- 8: Round Trip Time for Byzantine Agreementtwit

and without Aspects in Web Services and. without Aspects in Public Cloud
Environment Environment
Table 1: QoS measure-throughput of the proposedriyre fault tolerance model in distributed envimamt paradigms
Number of services {n
Throughput with aspects (kbps) Throughput thqeets (sec)
Platform R=6 n=7 n==8 n=9 n==6 n=7 n==8 n=9
RMI 2.0313 0.3963 0.0301 0.0034 0.3533 0.1195 @026 0.0032
Web container 0.4514 0.1641 0.0366 0.0035 0.4063 1280. 0.0193 0.0023
Web service 2.0313 0.4924 0.0453 0.0038 0.8125 00.30 0.0341 0.0035
MVC 4.0625 0.2462 0.0356 0.0032 1.0156 0.3779 @040 0.0037
Cloud platform 2.0313 0.2083 0.0166 0.0018 2.0313 2621 0.0330 0.0035

387

J. Computer ci., 8 (3): 382-388, 2012
The case is reverse when the agreement algorithm REFERENCES
is implemented without aspects i.e., the throughgiut
Struts based implementation is high which is fokolw Domokos, P. and |. Majzik, 2005. Design and Analysi
by the cloud environment. Even though cloud of Fault Tolerant Architectures by Model Weaving.
environment yields a low throughput, the aspects ca Proceedings of the 9th IEEE International
still be introduced because of the features supgdny Symposium on High-Assurance Systems
the cloud platform are not available in the other Engineering, Oct. 12-14, |IEEE Xplore Press,
distributed paradigms. Germany, pp: 15-24. DOI: 10.1109/HASE.2005.8
Herrero, J.L., F. Sanchez, O. Sanchez and M. Toro,

2001. Fault Tolerance AOP Approach. The

Pennsylvania State University.

An enhanced model for identifying Byzantine Ji-De, Z. and Y. Ying, 2010. Analysis of exceptianlt
behaviour of Web services using aspects is propivsed types based on Aspect]. Proceedings of the
this study. The proposed approach is an extensitimet International Conference on Computer Application
existing Lamport's algorithm for Byzantine Agreeren and System Modeling, Oct. 22-24, IEEE Xplore
in which the state and parameters before, afteraind Press, Taiyuan, pp: 287-289. IEEE. DOl
the time of execution of the services are consitiéoe 10.1109/ICCASM.2010.5619408
decision making process. The proposed model enbanck@MPort, L., R. Shostak and M. Pease, 1982. The
the decision making in the presence of Byzantindtsa byzantine —generals problem. ~ACM Trans.
and also determines the checkpoint where the fault Programm. Languages Syst., 4: 382-401. DOL:
transpires. The origin of the fault location isntiéed .10'1145/357172'357176

. L . . Sevilla, D., J.M. Garcia and A. Gomez, 2007. Aspect
and appropriate action is taken against the fadtyice . . 1
by the way of generating the fault reports andfyiotg o.r|er.1ted. programing techniques to support
y y OO 9 Lrep ? distribution, fault tolerance and load balancing in
to the authorities. By introducing aspects into the

: . . the CORBA-LC component model. Proceedings of
Byzantine agreement algorithm, performance isswes d .4 6th IEEE International Symposium on Network
not arise, as the advices are not invoked by ahgrot

CONCLUSION

external resources, as they are being triggeredyaigth
the service itself. The methodology adopts an ecérn

Computing and Applications, Jul. 12-14, |EEE
Xplore Press, Cambridge MA, pp: 195-204. DOI:
10.1109/NCA.2007.8

decision making approach for tolerating Byzantinezhao, W., 2007. BFT-WS: A byzantine fault tolerance

faults using aspects by considering the advicesréef
after and around the execution of the service hawttore

an accurate decision is arrived rather than thésidac

taken considering only the around advice as ix#se in

the existing Lamport’s algorithm.

388

framework for web services. Proceedings of the
11th International |IEEE EDOC Conference
Workshop, Oct. 15-16, IEEE Xplore Press,
Annapolis, Maryland, pp: 89-96. DOI:
10.1109/EDOCW.2007.6

