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Abstract: Problem statement: Traditionally, cryptographic applications designed hardware
have always tried to take advantage of the simyliaf implementation functions over GF(p), p =
2, to reduce costs and improve performance. Orcoinérast, functions defined over GF(p); p > 2,
possess far better cryptographic properties tha()Ginctions.Approach: We generalize some
of the previous results on cryptographic Booleancfions to functions defined over GF(p); p > 2.
Results: We generalize Siegenthaler’'s construction to fonst defined over finite field. We
characterize the linear structures of functions @&#€(p) in terms of their Walsh transform valuese W
then investigate the relation between the autotaiioa coefficients of functions over GF(p) andithe
Walsh spectrum. We also derive an upper bounchidimension of the linear space of the functions
defined over GF(p). Finally, we present a methodctmstruct a bent function from semi-bent
functions. Conclusion: Functions defined over GF(p) can achieve betteptographic bounds than
GF(2) functions. In this paper we gave a generidinaof several of the GF(2) cryptographic
properties to functions defined over GF(p), wheis @n odd prime.
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INTRODUCTION This example illustrate the fact that functioniov
GF(p) can possess high correlation immunity and hig
The existence of a tradeoff between thealgebraic degree. Thus motivated by the better d®un
cryptographic properties in GF(2) functions has anthese functions can achieve, various cryptographic
immense consequences on the security of theroperties have already been extended from GF(2) to
cryptosystem using these functions. For instanice, t other finite fields. For example, (Liet al, 1998)
algebraic degree and the correlation immunity oider presented a series of constructions of correlation-
Boolean functions are two important security measur immune function over finite fields. Later, (Hu and
It is well known that a cryptographic function thets a  Xiao, 2003) investigated the existence, construgtio
high resistance to correlation attacks may haveva | and enumeration of resilient functions. Li and Clsi
linear complexity to counter the linear synthegiste  (2005) extended the concept of the Strict Avalanche
Berlekamp-Massey algorithm (Massey, 1969). Criterion (SAC) to GF(p) functions. Due to its
In the special case where p = 2, the Siegenthalemportance in cryptography and coding theory, bent
inequality (Siegenthaler, 1984) states that if mcfion  function and its properties were generalized in
f(x) with n variables is a correlation-immune ofler m  (Kumaret al, 1985).
then its algebraic degree ai-m. Moreover, if f(x) is an The concept of hyper-bent function was extended
m-resilient, n£ n - 2, then d n-m-1. It is clear from to functions over GF(p) in (Youssef, 2007). A new
the Siegenthaler inequality that we cannot constauc characterization of semi-bent and bent quadratic
function over GF(2) with the maximum order of functions on finite fields was given in (Khoet al,
correlation immunity (n-1) and algebraic degree2006). The author in (Li, 2008) generalized the
higher than 1. On the other hand, when the functiorrounting results of rotation symmetric Boolean
is defined over GF(p), it is possible to constraat  functions to the rotation symmetric polynomials ove
(n-1)-correlation immune function with algebraic finite fields GF(p). Cusiclket al (2008) gave a lower
degree greater  than 1. For example,bound on the number of n-variable balanced symmetri
letf(x): 20 0s K, such thaf(x,,x,)=x,+x3. Then, polynomials over finite fields GF(p). Recently,
f(x) is a resilient function of degree 1 and its functions defined over GF(p) have been used togsep
algebraic degree equals 3 (letial, 1998). a new a group re-keying protocol based on modular
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polynomial arithmetic (Sudhat al, 2009). In this
paper, we generalize some of the previous results
cryptographic binary functions to functions defined
over GF(p), where p is an odd prime.

Preliminaries: We present some definitions and
algebraic preliminaries required to prove our resul
If 00 F then f can be uniquely expressed in

the following form:

p-1 p-1 p-1

i,=0i,0  in=0

where, ai._in0F,. This representation of f is called the
algebraic normal formof f. The largest;i+ ir + ... iy
with gyj...in # 0 is called thalgebraic degreef f. The
function f is calledbalancedif its output is uniformly
distributed.

Definition 1: Let pbe a prime and u 2@ be the g-th
root unity in C, where i =/-1. The Walsh transform of
a function f:F' O O F, is defined as follows Eq. 1:

F(W): z uf(x)—<W.X>

n
XOF)

1)

The autocorrelation function is defined as Eq. 2:

AC(a) = Yyl )

n
XOF)

where, W,al i and <w.x>denotes the dot product
between w and X, i.e., <w.x>=PnY " w,x mod p.
j=1

We will denote by |X| the magnitude of the complex
numberX. Most of the properties of the cryptographic
functions can be measured using theWalsh transform

the autocorrelation function.

Definition 2: A function f:F'O 0. F is bent if and
only if |F (W) = p4for all wOF (Kumaret al, 1985).

Definition 3: A function f:F' O . F is semi-bent if

and only if the absolute values of its Walsh transf
are |p 1% and 0 that occur with frequency pand
p"p" Y, respectively.

Definition 4: The derivative of a function f(x) with
respect to a vectag[] F! is defined as £(X) = f(x+e)-f(x).

The vector e is called a linear structure of f>Jd(x) = ¢

(o)

(6): 809-814, 2012

(constant) for anX OF . The set of all linear structures of
f(x) form a subspace called linear subspage V

Generalization of siegenthaler’'s construction: A
simple and useful method to construct Boolean
functions is through direct constructions. Direct
constructions can produce functions that are optima
with respect to the designed property. Lots of aese
efforts have been put into these construction tectas

in GF(2). Thus, it is significant to extend these
constructions from GF(2) to GF(p). Siegenthaler,
(1984) proposed a method to construct a Boolean
functionf of order n by combining two functiong, ff,

of order n-1, such that
f:R*xE 00 F (XXx,)~ (X, 0)f, (X)Ox f (X), wher

e X =(X;,e0n X, = 1).

In the following, we generalize the Siegenthaler’s
construction method to functions over GF(p). Wenals
derive some cryptographic properties of the consadi
functions.

Letf,,f, f,:R*00 F,. Consider a function

In other words, f
the

f:F 00 F,where f=[f, [f,[.f].

denotes the function whose truth table is
concatenation of the truth tables qfff....f, in the
given order.

Algebraic Normal Form (ANF):
X =(Xy, X p0es X,;) AN X= (Xq, Xp, .-, Xn1, Xn), then:

Let

f(x
f(x

£, (X)
f.(X)

X, =0)

X, 1)

f(x

X, =p-1)

f, (%)

Then we can write the ANF of f(x) as follows:

() =(p 1)1, (%) [, =D +(p ) (%)
[ =+t (0= D, (O[] (5,-
=30~ 0[] &)

J#(-1)

Walsh Transform: Letw = (w,,w,,...,w,_;)and w =
(W1, Wa, .., WN=, Wp):
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fl ()?) = f(x P( N :O) G(W) - z f xre)-o-e<xwe
xOR)
fz(X) = f(X F( n :1) f(x)—c-<x-e>.w>
= u :
KOO = fxk,=p-1) = T
=u™ T F(w),

The Walsh transform of the concatenated function
is given by: ) ) ) )
Thus, e is a linear structure of f(x) if and oiilly

f(x) = g(x). which impliesthat<w.e >-c=0.
We use Theorem 1 to characterize the linear
structures of semi-bent functions defined over GF(p

FW)= > u'® —(w.x)

xORy

-y ‘ufl(x)_<w'x> +y yf2e-{wx)

X|xn=0 x‘xnzl

Corollary 1: For a semi-bent function f(x), e is a linear

+ob Y uf e structure with a corresponding constant c if anly @n
Xxn=p-1 F(w) = 0 for all w such that < w . e ¥6¢ and |F (w)| =
p™2for all w such that <w . e >=c.

By noting thatg w.x >=< WX >+w,_x_, then:
Proof: The absolute value of the Walsh transform of

—<wx> —<wx> the semi-bent function have only two values 0 and

F(w) =X ut® UMD p(n+1) = 2. Since the number of w that satisfy the
" N equation <w. e>6 = c is pn-1(p-1), which it is ethac

+ot U= (o 1)W1§, v the same number of zeros in the Walsh transforn) F(w

= 0. Hence, there is a one-to-one mapping between t
Walsh transform and the relation < w . e, i.e,,
P — H H —
=N UEE (). F(w) = 0 if and only if <w . e * c and also |F (w)| =
;u P (W) p™V2if and only if< w.e>=c.

=F (W) U (W) .+ GO E (w)

Relation between the autocorrelation function and
the walsh transform: The autocorrelation is another

ossessing linear structure should be avoided .useful criterion in analyzing Boolean functions. It
P ng uctu u Vol heasures the probability distribution of the output

cryptographic applications. It has been shown initterence of the function for a fixed input diféerce.
(Evertse, 1988; Hellmaret al, 1976; Chaum and The autocorrelation coefficient A®) measures the
Evertse, 1986; Josedt al, 2002) that block ciphers statistical bias of the output distribution ofxf¢k)
with linear structure are vulnerable to attacks Imuc relative to the uniform distribution. In the nextie
faster than the exhaustive search. Several studies  show how the autocorrelation coefficients of fuoos
conducted on the existence of the linear structimes over GF(p) are related to their Walsh spectrum.
several classes of Boolean functions, as in (Dubuc,

1998) for vectorial functions and for symmetric Lemma 2: Let f(x) be a function defined over GF(p).
functions (Dawson and Wu, 1997). In the followimgg T hen:

study this criterion for functions defined over @)(In

particular, we characterize linear structures oftfions AC(a) :iﬂ D ‘F(W)‘z ye

over GF(p) in terms of their Walsh transform values WOFy

Characterization of linear structures of functions
over GF(p): Direct use of Boolean functions

Theorem 1: (Generalization of Theorem 1 in (Dubuc, Proof: Using the inverse of the Walsh transform in
1998)) f(x) has a linear structureeDF'with a  equation 1, we get:

corresponding constant c if and only if F(w) = 0 &l
w such that < w.e >8 c. ueo =L 3wy

n

n
WO

Proof: Since e is a linear structure of f(x), then f(x¢,=
c O Fp. Let g(x) = f(x + e)-c, then G(w) = F(w): Thus:
811
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uf(xm) :in z F(W)U<W'(X+a)> By I’IOtIng that

wORy

0 a#-f
<(-a-B).w> _
:in Z F(W)u<w,x> u<w,a> Z u —{ " :—B

" p
WO, wORy

From the definition of the autocorrelation functio Then we have:
in equation 2, we get:

> Fw) =p" > AC* (@)

AC(G) - in Z u _f(x) Z F(W)u<w.x> o> R aR
xOFy wOFR]
:inz F(w)u™e S u="0 > We now derive the relation between the Walsh
WORy XOF spectrum of the semi-bent functions and their
:in S Ew)u e 3 o autocorrelation coefficients.
p wiR) palsy
1 e Theorem 4: Let f(x) be a semi-bent function defined
= ;ﬂF(W)U Er(w), overGF(p). Then Eq. 5:
where Fa(w) is the complex conjugate of F(w). Then P"Fra (W)= AC*@) (5)

we have: oo

Proof: Since f(x) is a semi-bent function, the Walsh

transform contains the values,k (w) = pP™*” and

occurs ™ times while 0 occurs (p p") times. We
The following corollary follows directly from the refer throughout the rest of this paper to the ealu
- : ("2 a5 FradW). Thus:

definition of the inverse Walsh transform and Lenfina P m : :

AC(@) == 3 [Fw)u™e>

wORy

Corollary 2: Let f(x) be a function defined over GF(p). > |Fw)* = p L, (W)= P
Then Eq. 3: WOR
[F(wy’|= 3" AC(o)u™™* (3) Substituting in Lemma 3, we get:
R
) ) pnz ACZ(G) - p3n+l
Lemma 3: Let f(x) be a function defined over GF(p). orF?
Then Eqg. 4: ZACZ(G) - p2n+1
alF)
4 _ 0 2 ’
3wl sr T Ace 2 ——

Proof: Squaring both sides of the equation in Corollary ~ Walsh spectrum of GF(p) functions with linear
2 we get: structure We derive the upper bound of the dimensio

of the linear space of the functions defined ovE([J.
Fw)' =Y AC(a)u™* Y AC@)u™"
| | a;‘ mzp:" Theorem 5: (Generalization of theorem 3 in (Canteaut
et al, 2000)) Let f(x) be a function defined over GF(p)
By taking the summation for both sides for all w 2with n variables. Then, the dimension k of the dine

Fn pwe get: space Y is such that k 1.
3 Fw)[* Proof:
=Y 2 > AC(@)AC(Ru P > AC*(a) = Y AC*(a) + Y AC*(a)
wOR] aOF) BOFY alRy adv alv
=3 Y AC(@)AC(B) D ue®w
oCF; O wOR If f(x) has a linear space of dimension k, then:
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ZACZ(G) =pkp2n+z ACZ(G)Z p2ni-k

R} abv

Substituting in Theorem 4 we get:

pn F2 (W) > p2n+ k

max

Thus:

+k

Fra(W)2p 2

max

For a semi-bent functioR,, (w) = p%l, then:

which implies that k& 1.

Construction of bent functions from semi-bent
functions with linear structure: Bent functions

Lemma 7: If g(x) = f(x)- < x . e > then G(w) = F(w + e).
Proof:

G(w) = z U (0 -sxe—<xws
xOF)
= z uf(x)-{<x,e>+<x.w>]
xORy
— z Uf (x)—<x.(w+e)>
xOF)

= F(w+e)

Lemma 8: If f(X) has linear structures a and b with
corresponding constants ¢l and c2, respectivelgneh
= (e, &...., &) = ab is a linear structure for f(x) with a
corresponding constants-c,, where e= ai-bi mod p,
1<i<n.

Proof: Let f(x+e)-f(x) = ¢; and f(x+g)-f(x) = ¢,. Then
f(x+e)-f(x+e)) = ¢-c; and f(x + (gt &))-f(x) = cr-c,,
which implies (¢ &) is a linear structure with a

achieve the best possible nonlinearity. Accordingly Corresponding constant-c,.

they provide good confusion properties, and they a

perfect in resisting differential cryptanalysis Bm
and Shamir, 1991) and by definition
cryptanalysis (Matsui, 1994). Their major flaw Fat
they are not balanced. Another useful class oftfans
which achieve high nonlinearity is semi-bent fuons.

These functions also possess good cryptograph
characteristics, and some of them are balancedt Ben

and semi-bent functions over GF(p), p > 2, cantéris

even and odd dimensions. It is possible to construc
bent functions with (n+1) variables from semi-bent

function with n variables, and similarly, constrgemi-
bent functions with n variables from bent functiavith

From the above lemma, it follows that if e is aehn
structure for f(x), then a e, a 2 Fp is also adme

linear Structure for f(x), where a e denotes the vectooseh

coordinates are obtained by multiplying the indiad
coordinates of e by a mod p.

iTheorem 9: Let f(x) be a semi-bent function defined
Gver GF(p) with non trivial linear structuresgeg,..., &.

1. Then:

[f(x) [f(x)-<x.e, > | f(x)-<x.e,>|...

...Hf(x)—<x 6 >]

(n + 1) variables. Here, we focus on constructiegtb Is n + 1 bent function if <ei . ei>6= 0, for alki
functions with n+1 variables from semi-bent funogo 1 5.1
with n variables.

The following lemmas are needed to simplify theProof: Since f(x) has linear structures, &,...., 61

proof of Theorem 9.

Lemma 6: Let g(x) = f(x)-<x.e>. If e is a linear
structure for f(x) with a corresponding constanthen

g(x) has e as a linear structure with the corredjpan

constantc-<e. e >.

Proof:
then:

If f(x +e)-f(x) =cand gx) =f(x)-<x.e>

g(x+e)-g(x)

=f(x +te)-<(x+e).e>-f(x}< x.e
=f(x +e)-<x.e>-<e.e- f(xy< x.e
=f(x +e)-f(x)-<e.e>

=c-<e.e>

813

then from Lemmas 6 and 7, the function f(x)- <;»%g
1 < | <54 will have a linear structure ei with a
corresponding constant ci-<&> and Walsh transform
F(w + g).

From Corollary 1, we have:

Fw)=0e<w.g>> g< w.g>* ¢,

S WL, % Gy
Fw) =g «<w.g>= ¢ <

S W8, > Gy

W.e>= ¢

By noting that <(w+g.e> = <w.g>+<g.¢> where
1< I<p-1,then:
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\F(w+elj: g2 o< we>+< g .e> Xplore Press, Cambridge, pp: 440-440. DOI:
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