
Journal of Computer Science 9 (12): 1661-1668, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1661.1668 Published Online 9 (12) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Masnida Hussin, Department of Communication Technology and Networks,
 Faculty of Computer Science and Information Technology, University Putra Malaysia Selangor, Malaysia

1661 Science Publications

JCS

ADAPTIVE RESOURCE CONTROL MECHANISM
THROUGH REPUTATION-BASED SCHEDULING IN

HETEROGENEOUS DISTRIBUTED SYSTEMS

Masnida Hussin and Rohaya Latip

Department of Communication Technology and Networks,
Faculty of Computer Science and Information Technology, University Putra Malaysia Selangor, Malaysia

Received 2013-07-03, Revised 2013-09-02; Accepted 2013-10-29

ABSTRACT

The service-oriented distributed systems such as Grids and Clouds are unified computing platform that
connect and share heterogeneous resources including computation resource, storage resource, information
resource and knowledge resource. While these systems provide a vast amount of computing power their
reliability are often hard to be guaranteed. It is due to the increased complexity of processing (e.g.,
overhead, latency) that can indirectly affect the system performance. In this study, we addressed the
problem of dynamic control for resource management in distributed computing environment. Our dynamic
resource control mechanism is designed based on reputation-based scheduling that aims for sustainable
resource sharing. Particularly, each computational resource in the environment has its own reputation value
that calculated online by considering the computing capacity and availability. The degree of resource
reputation significantly helps in scheduling decisions in terms of successful execution while adaptively
monitoring resource availability. Results demonstrate that our resource control mechanism significantly
increases successful execution, while leading to robust resource management.

Keywords: Distributed Systems, Dynamic Control, Resource Sharing, Task Scheduling, Reputation

1. INTRODUCTION

The service-oriented distributed systems generally
are high performance computational environment that
are composed of heterogeneous resources. Some popular
examples are computational Grids, Clouds, wireless
sensor networks are recently the Internet of Things. The
specific problem that underlies these systems is
coordinated resource sharing. Resources are sacrificed
on activities performed on each individual unit of
service. The sharing activities concerned with file
exchange, direct access to computers, software data and
other resources. However, with the characteristics of
dynamic and heterogeneity, there are issues to discover
suitable resources for users’ tasks. In addition, each
administrative domain in the distributed systems has its
own resource usage pattern (Hussin et al., 2011; Ping

and Xingshe, 2011; Zunjare and Sahoo, 2012) made the
evaluation of the resource behaviour varies. Another
issue is because their behaviors change more rapidly than
a controller can adapt that made the resource information
for the controller (scheduler) delayed and potentially
inaccurate. Such unpredictable and imprecise resource
behaviour inherently results in unreliable task execution.
Apparently, the resources cannot be assumed always
reliable particularly in term of performance. In addition,
the number of incoming tasks is unpredictable therefore
it is difficult to determine the prior in task scheduling.

One of the methods to solve the resource sharing in
dynamic environment is through efficient resource
management (Beaumont et al., 2013). In particular, the
resource management addresses the monitoring and
controlling abilities that able to take into accounts the
users’ different needs and performance requirements. In

Masnida Hussin and Rohaya Latip / Journal of Computer Science 9 (12): 1661-1668, 2013

1662 Science Publications

JCS

this study, we focus on designing a reputation-based
scheduling approach for which the decision is made
taking into account conditions of heterogeneity and
dynamism. With the reputation value of scheduler it
helps to dynamically monitor a trust interaction between
service providers and users that improves task successful
execution. This is realized based on three aspects. First,
we dynamically calculate reputation value of each
scheduler that take into consideration the current
resource performance. Second, we classify the reputation
value for controlling resource allocation. Third, we
address the issue of resource-task matched that can
satisfy processing requirements. These strategies are
adaptive in nature since they incorporate current task
demand and resource availability to facilitate scheduling
process. The results obtained from our comparative
evaluation study clearly show that our adaptive resource
management outperforms other schemes in terms of
performance by a noticeable margin.

This study is organized as follows. A review of
related work is presented in section 2. In section 3, we
described the models used in the study. Our scheduling
strategy is presented in section 4. Experimental settings
and the experimental results are presented in section 5.
Finally, conclusions are made in section 6.

2. RELATED WORK

In the service-oriented distributed systems, every
application is completely different and independent. For
example, some require more execution time to compute
complex task and some others may need more memory
to store data. Also, it appears in many distributed cases
that schedulers have limited information about each
other’s resource state where some resource providers, if
not all, might not always make public availability of
information on their resources; this is especially true for
Cloud (Nathani et al., 2012). Applying trust-based
method to distributed systems is an interesting subject
that yields more attention in distributed systems research
recently. The concept of trust in resource behaviour for
dealing with variability and instability of compute nodes
was proposed in (Hussin et al., 2011; Ping and Xingshe,
2011; Zunjare and Sahoo, 2012), where reputation is
defined based on various factors, such as prior
performance, network capacity and resource availability.
In the Cloud computing for example, the users needed
some reputation mechanism to guarantee the safety of
their investment in the specific service (Nathani et al.,
2012; Song et al., 2009).

Generally, resource controller or scheduler can
contribute much to the effective resource management. It
has the ability to work within the processing
requirements/constraints that put forth by the system
users. The processing constraints must be effectively
handled particularly in the present of dynamic
computing; otherwise it may lead to load imbalance,
over-provisioning of resources and system unreliability.
The schedulers in (Ping and Xingshe, 2011; Gupta and
Singh, 2012) adaptively deal with processing constraints
for reliable execution while minimizing waiting time.
The feedback control policy is proposed in (He et al.,
2007) to solve resource allocation problems in
asynchronous real-time distributed systems. The
controller or scheduler is used to determine the number
of replicas of each sub-task that are needed to adapt the
application to workload changes; hence satisfies the task
deadline. Yan et al. (2012) the Particle Swarm
Optimization (PSO) algorithm is realized and used as
controller. The PSO algorithm or controller adjusted the
frequency of task according to the constraints of CPU
utilization, lower bound of frequency and channel
capacity. In that way, they optimized the Quality-of-
Service (QoS). These approaches have demonstrated the
effectiveness in minimizing response time. However, the
efficacy of these approaches in dealing with system
dynamicity is limited to a certain level.

Due to heterogeneity and dynamicity of resources,
the dynamic resource control mechanism that is based on
trustworthy can be a very effective approach for robust
resource management. While most previous resource
sharing solutions dealing with either workload changes
or processing capacity, our approach in this work is
explicitly taking into account diversity in both
processing requirements and heterogeneous resources.

3. THE MODEL

In this section, we describe the application and
system models used in our study.

3.1. System Model

The target system used in this study (Fig. 1) consists
of several resource sites given as Sx where x = {1, 2…,
s} which are loosely connected by a communication
network. They are independently operated by different
administrative domains. We assumed that the
communication delay is negligible. The inter-site
communication cost is insignificant. To simplify, we
limit task scheduling to a global scheduler (Hussin et al.,
2011; Gupta and Singh, 2012) that can handle tasks from
users and map them onto resources.

Masnida Hussin and Rohaya Latip / Journal of Computer Science 9 (12): 1661-1668, 2013

1663 Science Publications

JCS

Fig. 1. System model

A resource site allows any type of tasks to arrive at
its local scheduler. The local scheduler is responsible for
scheduling tasks after allocation by the global scheduler.
We assumed that the local scheduler has all necessary
information about computational resources (processors)
which is currently located at the site.

Each site x has a set R of rj processors that are
interconnected via a high-speed link. These processors
are heterogeneous in terms of their processing speed.
That is, each processor r has an associated processing
capacity to complete a task of size si, as given in
Equation 1:

tq= +
∑

i
r

C
P

exe
 (1)

where, Ci is a number of completed tasks, exe is an
execution time of tasks i and qt is an average waiting
time of processor r, respectively. Hereafter, the terms
resource and processor are used interchangeably.

As the nature of computation in distributed systems
can be fluctuated, resources in this study are considered
to be ‘elastic’ where a processor can go from being
capable status (available to perform computation in a
timely manner) to incapable status (unavailable to
perform computation by deadline) at any time without
further communication. Without the loss of generality,
we also assume that a resource site has its own tasks
(local workload) that need to be computed to service
local users. As such, the background workload
associated with it will affect the overall performance as
well as the actual task completion time.

3.2. Application Model

Tasks considered in this study are computation-
intensive and independent from each other (i.e., no inter-
job communication or dependencies). Each task is a
single arrival unit and associated with the set of
parameters shown below Equation 2:

i iTi {s ,d }= (2)

Masnida Hussin and Rohaya Latip / Journal of Computer Science 9 (12): 1661-1668, 2013

1664 Science Publications

JCS

where, si is the computational size of task i that is
specified by Millions of Instructions (MI) and di is the
latest time (deadline) by which task Ti is supposed to be
completed. For a given task Ti, the deadline di is
computed by the computational size of task si divided by
processing capacity of a referred (the slowest) resource.
We assumed that the task’s profile is available and can
be provided by the user using job profiling, analytical
models or historical information.

Tasks are assumed to be sequential applications and
each of which requires not more than one processor for
its execution. However, tasks may be considered to be
assigned to processors with different processing
capacities due to primarily to the urgency of task, i.e.,
task priority. This study considers three levels of task
priority based on deadline: low, medium and high. The
priority of a task Ti is set to high if its deadline di is at
most 20% later than the expected execution time exei.
The priority is set to low if di is 80% or more than exei.
Otherwise, the priority is set to medium. Tasks arrival is
in a Poisson distribution.

4. AUTOMATIC RESOURCE
MANAGEMENT

This section begins by describing formation of
resource reputation and gives the details of our dynamic
resource control mechanism in the context of task
scheduling.

4.1. Formation of Resource Reputation

The resource reputation is used to differentiate the
resources with different qualities. Implicitly, it provides
an effective strategy for high-level resource sharing
amongst sites. Particularity, the resource expresses its
valuation of processing as a function of a computing
competence (resource reputation). To facilitate
scheduling decision making, the prior performance of a
resource must be accurately identified and determined.
This type of performance is used to indicate the weight
of a resource relative to other resources. More formally,
the prior performance of a node is defined as summation
of success rate and average execution time Equation 3:

i

r

1 if finish T dt

0 otherwise

PP sr av_exe;

where sr

∑

 ≤



= +

=
 (3)

Then, the resource reputation is computed by the

prior performance divided by its processing capacity

(i.e., rrepr = PPr/ Pr). The basic idea behind this is that the
higher reputation a resource is, the more reliable it can
execute the users’ tasks. For each site, the average
reputation value over all its resources indicates its
computing trustworthy.

4.2. Adaptive Scheduling

The adaptive scheduling approach is an effective
means for selecting more reliable resource to complete
the users’ tasks. For this type of scheduling, the process
to find the resources (resource-task matching) should
take in optimal (minimum) time to make decision. In
such a way, the tasks scheduled can be completed in the
shortest time possible; provided that they are assigned to
appropriate resources. The scheduler is responsible for
scheduling the tasks to suitable resources that is based on
the processing capability (availability and capacity)
aiming to achieve reliable execution.

Our scheduling approach precisely represents
resources in terms of reputation. The reputation value
that mentioned in early section abstracts the property of
resource sharing to support adaptive and (near) optimal
task scheduling. We incorporate a resource classification
scheme into the scheduling in order for a task to be
assigned into the most appropriate resource. The
resource classification is carried out in a systematic way
by considering the resource reputation (Fig. 2). This
work classified the resources according to the reputation
value (more specifically, from the highest to the lowest)
for task scheduling. In order to gain an up-to-date list of
reliable resources, a (re)listing mechanism is carried out
in the way that listed resources are further inspected with
respect to their recent reputation value rrepr for possible
relisting. This repeats until no further improvements in the
resource list is possible. In some cases, for instance, if more
than one resource has the same reputation value, the
resources are then sorted according to their prior
performance PPr; the resource with higher PPr, is listed first.

In particular, task is scheduled to the resource that
gives the highest reputation value. However, this greedy
approach leaves the true optimal decision and the
resource superiority to never be discovered. In response
to this, we calculated a deadline factor for each task.
Given that each arriving task has its deadline; hence the
deadline factor is determined based on the measurement
in (Hussin et al., 2010) as given by:

i

1.00 if ataskmissed its 100% deadline

0.50 if ataskmissed its 50% deadline

df 0.25 if ataskmissed its 25% deadline

0.05 if ataskbeneath its 25% deadline

0 if ataskjust arrived



= 




Masnida Hussin and Rohaya Latip / Journal of Computer Science 9 (12): 1661-1668, 2013

1665 Science Publications

JCS

 (a) (b) (c)

Fig. 2. Reputation-based list scheduling; (a) Initial schedule (b)

The first revision and (c) the second revision

The scheduler constantly checks the task dfi to

indicate which task needs to be mapped first. As the
scheduling of tasks has to take place during runtime,
both resource reputation and deadline factor are
regularly updated.

Our resource-task matching algorithm aims to
maximize successful execution while minimizing the
response time. There are two different ways to assign the
task onto the right resource. A task with highest deadline
factor is always assigned to the resource that gives the
highest reputation value. The resource with the second
highest reputation value is allocated to a task with lower
deadline factor. Each of the resource also can promote
the other resources for task assignment when there is
significant increase in waiting time in its task queue.
Once the tasks are assigned, the scheduler updates
resource reputation value and further inspected the
reputation value for possible relisting. This repeats until
no further processing requirements to be executed.

5. PERFORMANCE EVALUATION AND
DISCUSSION

In this section, we describe the experiment
configuration and present results. Performance metrics
used for the experiment are success rate and utilization
rate. Success rate is used to measure the degree of
reliable execution for dealing with various priority tasks.
We define the utilization rate of a resource as RU =
busyj/(busyj+idlej) where busyj is the total time when the
resource rj is busy for servicing tasks and idlej is total
idle time of rj, respectively.

5.1. Experimental Settings

To evaluate the performance of our automatic
resource management approach, we have conducted
extensive simulations with a diverse set of tasks and
computing resources (processors). Due to the large scale
constitution of distributed environments, the parameters
of simulation model used are assumed to be unbounded;
that can be created. Specifically, there are five to ten
resource sites and each contains a varying number of
computing resources (processors) ranging from 5 to 8
processors. The relative processing power (speed) of
processor j is selected within the range of 1 and 7.5. The
number of tasks in a particular simulation is set between
1000 and 5000. Task inter-arrival times follow a Poisson
distribution with a mean of 5 time units. The
computational size si is randomly generated from a
uniform distribution ranging from 20 to 500.

5.2. Results and Discussions

We first study how the performance of our resource
control mechanism for effective resource management is
influenced by a reputation factor. The experiments have
been conducted with two different schemes: reputation-
based scheduling (repRM) and without reputation
(norepRM). With norepRM, the resources are chosen for
task assignment by their processing capacity. Then, we
compared our scheduling approach with extended
versions of three other heuristic scheduling algorithms
i.e., Min-Min, Max-Min and Max-Max. This is because
their performance tends to produce competitive
solutions with lower time complexity (Beaumont et al.,
2013). Since our scheduling concerns deadline factor
dfi, we have revised Min-Min, Max-Min and Max-Max
to fit into our model. In the comparison, their mapping
decisions are according to fitness value that calculated
as the product of reputation value rrepj and deadline
factor dfJC.

Masnida Hussin and Rohaya Latip / Journal of Computer Science 9 (12): 1661-1668, 2013

1666 Science Publications

JCS

Fig. 3. Success rate with- and without- reputation factors

Fig. 4. Utilization rate with- and without- reputation factors

Experiment 1:

The impact of reputation towards adaptive resource
scheduling.

Figure 3 illustrates the performance of resource
management in the presence of reputation concerns. The
success rate of reputation-based scheduling is higher
than scheduling without reputation.

The reason is that the reputation-based scheduling
directs the allocation of tasks with the resource
reputation being the indication; hence contributes to
minimize waiting time.

Next, we study the utilization rate between reputation-
based scheduling and without reputation. As shown in the
Fig. 4, both scheduling schemes (with and without
reputation) have comparable performance with the
difference about 20% on average. It indicates that the

system is able to sustain better resource utilization when the
characteristics of both resources and tasks are considered.

Experiment 2:

The impact of resource preference in scheduling
towards robust resource management.

Figure 5 and 6 show that the benefit of reputation for
a good resource management controller. As shown in
Fig. 5, our scheduling scheme outperforms other
schemes in terms of successful execution rate by a
noticeable margin. There are more than 80% of tasks (on
average) have completed their execution before their
deadline. It also shows (Fig. 6) that the utilization rate
using reputation-based scheduling is another compelling
strength. This is mainly because a resource with a good
offer (i.e., high availability) is more popular to be chosen
to accommodate the input load that affects the results.

Masnida Hussin and Rohaya Latip / Journal of Computer Science 9 (12): 1661-1668, 2013

1667 Science Publications

JCS

Fig. 5. Success rate of different list scheduling policies

Fig. 6. Utilization rate of different scheduling policies

Although all scheduling schemes consider resource
reputation and processing requirements during the
mapping process, the prominence on resource behavior
much benefit in order to lead for optimal decisions.

6. CONCLUSION

In this study, we address the dynamic resource
control in the context of resource sharing. We have
successfully developed a dynamic scheduler that
explicitly considers resource and task heterogeneity.
Dynamic discovery of resource behavior based on its
reputation (availability and capacity) significantly helps

improve scheduling decision with minimal possible
performance degradation. Based on our extensive
simulation results, we also found that the reputation-
based scheduling algorithm contributes for
minimizing task waiting time; hence our approach is
capable of providing reliable processing in terms of
successful execution time. We highlight that thorough
analyzing of processing requirement and resource
behavior in resource management are required and
significantly important for dynamic-heterogeneous
distributed systems. In future work, we will develop
an adaptive scheduling framework for further
solutions to robust computational.

Masnida Hussin and Rohaya Latip / Journal of Computer Science 9 (12): 1661-1668, 2013

1668 Science Publications

JCS

7. REFERENCES

Beaumont, O., L. Eyraud-Dubois, C.T. Caro and H.
Rejeb, 2013. Heterogeneous resource allocation
under degree constraints. IEEE Trans. Parallel
Distributed Syst., 24: 926-937. DOI:
10.1109/TPDS.2012.175

Gupta, K. and M. Singh, 2012. Heuristic based task
scheduling in grid. Int. J. Eng. Technol., 4: 254-260.

He, T., J.A. Stankovic, M. Marley, C. Lu and Y. Lu et
al., 2007. Feedback control-based dynamic resource
management in distributed real-time systems. J.
Syst. Software, 80: 997-1004. DOI:
10.1016/j.jss.2006.09.029

Hussin, M., Y.C. Lee and A.Y. Zomaya, 2010. ADREA:
A framework for adaptive resource allocation in
distributed computing systems. Proceedings of the
International Conference on Parallel and Distributed
Computing, Applications and Technologies, Dec. 8-
11, IEEE Xplore Press, Wuhan, pp: 50-57. DOI:

10.1109/PDCAT.2010.19
Hussin, M., Y.C. Lee and A.Y. Zomaya, 2011.

Reputation-based resource allocation in market-
oriented distributed systems. Proceedings of the 11th
International Conference Algorithms Architectures
Parallel Processing, Oct. 24-26, Springer Berlin
Heidelberg, Melbourne, Australia, pp: 443-452.
DOI: 10.1007/978-3-642-24650-0_38

Nathani, A., S. Chaudhary and G. Somani, 2012. Policy
based resource allocation in IaaS cloud. Future
Generat. Comput. Syst., 28: 94-103. DOI:
10.1016/j.future.2011.05.016

Ping, X. and Z. Xingshe, 2011. Security-driven fault
tolerant scheduling algorithm for high dependable
distributed real-time system. proceedings of the 4th
International Symposium on Parallel Architectures,
Algorithms and Programming, Dec. 9-11, IEEE
Xplore Press, Tianjin, pp: 29-33. DOI:
10.1109/PAAP.2011.14

Song, S., K.D. Ryu and M. Silva, 2009. Blue eyes:
Scalable and reliable system management for cloud
computing. Proceedings of the IEEE International
Parallel and Distributed Processing Symposium,
May 23-29, IEEE Xplore Press, Rome, pp: 1-8.
DOI: 10.1109/IPDPS.2009.5161232

Yan, H.H., J.F. Wan and H. Suo, 2012. Adaptive
resource management for cyber-physical systems.
Applied Mechan. Mater., 157-158: 747-751. DOI:

10.4028/www.scientific.net/AMM.157-158.747
Zunjare, P. and B. Sahoo, 2012. Evaluating robustness of

resource allocation in uniprocessor real time system.
Int. J. Comput. Applic., 40: 13-18. DOI:
10.5120/5023-7168

