Journal of Computer Science 10 (11): 2194-2210, 2014

ISSN: 1549-3636

© 2014 L.A. Steffenett al., This open access article is distributed undéremtive Commons Attribution
(CC-BY) 3.0 license

doi:10.3844/jcssp.2014.2194.2210 Published Onlih€ll) 2014 (http://www.thescipub.com/jcs.toc

MAPREDUCE CHALLENGES ON PERVASIVE GRIDS

Y A. Steffend, 'O. Flauzac, °A.S. Charao,
P P. Barcelos, °B. Stein, °G. Cassales, °S. Nesmachnow,
%). Rey, M. Cogorno, *M. Kirsch-Pinheiro and “C. Souveyet

1CReSTIC-SysCom, Universit de Reims Champagne-ArdennssRErance
?Laboratério de Sistemas de Computacéo, Universifladeral de Santa Maria, Santa Maria, Brazil
3Centro de Calculo, Universidad de la Republica, Mdd&sy, Uruguay
4Centre de Recherche en Informatique, Universite RaPiantheon-Sorbonne, Paris, France

Received 2014-04-22; Revised 2014-06-29; Accepted-B7i25
ABSTRACT

This study presents the advances on designing apdernenting scalable techniques to support the
development and execution of MapReduce applicatiqrervasive distributed computing infrastructuries,
the context of the PER-MARE project. A pervasiveniework for MapReduce applications is very useful i
practice, especially in those scientific, entegsisand educational centers which have many unused o
underused computing resources, which can be fulyoded to solve relevant problems that demandéar
computing power, such as scientific computing ailbns, big data processing, etc. In this study,pno-
pose the study of multiple techniques to suppoaldtility and heterogeneity on MapReduce, by appyiwo
complementary approaches: Improving the Apache bfadiddleware by including context-awareness and
fault-tolerance features; and providing an altémegbervasive grid implementation, fully adapteditmamic
environments. The main design and implementati@rsiiams for both alternatives are described anidiatad
through experiments, demonstrating that our appesaprovide high reliability when executing on asive
environments. The analysis of the experiments #saols to several insights on the requirements and
constraints from dynamic and volatile systems,foeaing the importance of context-aware informatand
advanced fault-tolerance features to provide efficand reliable MapReduce services on pervasiss.gr

Keywords: MapReduce, Fault-Tolerance, Pervasive Distributech@uting

1. INTRODUCTION well documented, requires a stable set of computer
nodes that shall be known at startup time. The
One of the first challenges a user faces wheninstallation procedure also lacks of automatic esnt
deploying MapReduce is that its most known and adaption, forcing the administrator to manuallyidef
popular implementation, AH (2014a), requires a the characteristics of each resource, such asuhwber
highly structured environment such as a dedicatedof cores, their relative speed or the available wsm
cluster or a cloud infrastructure to be deployed. Together, these elements prevent a user to quickly
Indeed, Hadoop has been designed to be deployetaunch MapReduce over a set of unused resourags (e.
over a dedicated cluster or cloud computing the enterprise workers’ desktops), at least nofauit a
infrastructures such as AEMR (2014). Hadoop reliesprevious effort to prepare and configure the nodes.
on a collection of tools (Hadoop Core, HDFS, etc.) Indeed, even if Hadoop is now a popular data aiglys
developed by different Apache subprojects, which tool, several companies/organizations do not have a
interact through a complicate set of master andesla dedicated infrastructure, as sometimes the demand f
daemons. As a result, Hadoop installation, althoughcomputing intensive tasks is punctual or executely o
Corresponding Author: L.A. Steffenel, CReSTIC-SysCom, Universit de Reims Qbegne-Ardenne, Reims, France

,///// Science Publications 2194 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

periodically. In these cases, cloud computing The following scenario can illustrate these
infrastructures represent a popular alternativeuaing requirements: Let us consider that, during the @@t of
MapReduce without a dedicate infrastructure. a job, a mobile device becomes available, integgatie
Unfortunately, several enterprises fear (or are pervasive grid. After its integration, the sameidewmay
forbidden) to distribute sensible data over theudlo change its network connection, passing from a fixed
These externalized infrastructures still suffer niro connection to a wireless one. The same can be\auser
security issues that prevent their application dms with the available memory: After starting a jobyide’s
cases. We believe that, considering the extremeowner may start new applications that modify device
development of mobile devices and networks inside memory status. All these changes have an impath®n
organizations nowadays, the opportunistic use ofjob performance and consequently on the availghilft
existing resources as an internal pervasive gridthis device for the pervasive grid.
represents an interesting alternative for those who Pervasive grids environments have to deal with such
hesitate to keep a dedicated infrastructure oretat r additional constraints related to the heterogeraity the
cloud computing resources. Nevertheless, in omméet volatility of the resources. In such environmeritsis
fully operational, pervasive grids environments dnao essential to adapt the application to the network
first tackle problems related to their dynamic matu variable behavior and to coordinate the resourtask (
where nodes join and leave the network dynamically. scheduling, data placement, etc.). According to
Our project is precisely addressing this point: Coronato and De Pietro (2008), pervasive grid
Proposing scalable techniques to support existingenvironments should be able to self-adapt and self-
Hadoop applications in the context of loosely cedpl configure in order to incoming mobile devices. We
networks such as pervasive grids. We consider petva strongly believe that context-awareness is needed i
grids as a large-scale infrastructure with specific order to support such self-adaption. Context-anwassn
characteristics in terms of volatility, reliability can be defined as the ability of a system to adiapt
connectivity, security, etc. According to Paraslaad operations to the current context, aiming at insieg
Pierson (2010), pervasive grids represent the mre usability and effectiveness by taking environmental
generalization of the grid concept, in which theowwces context into account (Baldawt al., 2007). In order to
are pervasive. For these authors, pervasive gridsupport environments changes, context-awareness
seamlessly integrate pervasive sensing/actuatingpecomes a critical aspect to boost the efficienicthe
instruments and devices together with classicah hig applications over pervasive grids.
performance systems. In the general case, pervasive Such dynamic nature of pervasive grids represemts a
grids rely on volatile resources that may appeat an important challenge for executing MapReduce
disappear from the grid, according their availéjili applications over these environments. Context-avese
Indeed, mobile devices should be able to cometimo and nodes volatility become key aspects for sufakyss
environment in a natural way, as their owner movesexecuting such applications over pervasive grids.
(Coronato and De Pietro, 2008) and devices from This work presents the first results of the PER-
different natures, from the desktop and laptop B MARE (2014), whose goal is proposing scalable

the I?St Igeneratlon talblets, should be m;[]eg.rﬂ;d ! techniques to support MapReduce in pervasive grids.
Eea:hm essly way. It. resu tst z.;m environment chanaeler pep \ARE proposes to fully explore the potential of
y three main requirements. unused (or underused) resources at enterprises as

* The volatility of its components, whose participati pervasive , grids for MapReduce application§. Our
on the grid is notably a matter of opportunity and challenge is to adapt MapReduce to these dynars.gr
availability For this, we focus on the volatility and heteroggnef

« The heterogeneity of these components, whosethe available resources through two complementary

capabilities may vary on different aspects (platfor ~ approaches: On the one hand, we propose to improve
OS, memory and storage capacity, network Hadoop with context-awareness and more fault-tokera

connection, etc.) concerns; on the other hand, we propose an alteenat
« The dynamic management of available resourcespervasive grid implementation based on a P2P
since the internal status of these devices may varycomputing middleware, fully adapted to these dymami
during their participation into the grid environments. This study demonstrates this visipiitd
environment first results, organized in three complementarytisas:

////// Science Publications 2195 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

(i) A context-aware scheduler for Hadoop; (i) allfa provides the ability to execute map and reducestask
tolerant job tracker for Hadoop; and (iii) a petivasgrid across the cluster and reports results, while the
implementation of MapReduce. distributed file system provides a storage scheme it
The remain of this study is structured as follow: able to replicate data across nodes for processing.
Section 2 introduces basic notions of MapReduce and On the Hadoop 1.x architecture, these entities are
its Hadoop implementations. Section 3 presentsorganized in a master-worker pattefig; 1), with two
related works focusing on context-aware and vatgtil ~ different masters (JobTracker and NameNode) and
issues on MapReduce. Section 4 gives an overview ofvorkers (TaskTrackers and DataNodes, respectively).
the PER-MARE vision, before presenting our When a client launches an application on a Hadoop
contributions in next sections. Section 5 presemts 1.x cluster, the request is initially managed by th
context-aware scheduler for Hadoop, while on sectio JobTracker. The JobTracker collaborates with the
6 proposes introducing more fault-tolerance for NameNode in order to distribute the work tasks as
Hadoop. Section 7 presents a pervasive gridclosely as possible to the data on which it willrkvo
implementation. Section 8 discusses obtained result Indeed, the NameNode act as the HDFS master,

and remaining opening issues, before concluding. providing metadata services for data distributiord a
replication. The JobTracker, on its side, coordinahe
2. MAPREDUCE/HADOOPBASICS scheduling of map and reduce tasks into availalols s

managed by the TaskTrackers. Each TaskTracker
MapReduce (Dean and Ghemawat, 2008) is aexecutes map and reduce tasks on data from its
parallel programming paradigm successfully used byDataNode, which represents the HDFS slave. When the
large Internet service providers to perform tasks are complete, the TaskTracker notifies the
computations on massive amounts of data. This modepobTracker, which identifies when all tasks are piete
is currently becoming popular as a solution forigap and eventually notifies the client of job completio
implementation of distributed data-intensive Due to its centralized architecture, Hadoop 1.x is
applications. The key strength of the MapReduce Particularly vulnerable to failures on its mastedes.
model is its inherently high degree of potential While failures on the TaskNode and on the NameNode

parallelism that should enable processing of peteby Will be supported by Hadoop 1.x, failures on the
of data in a couple of hours on large clustersJobTracker and on the NameNode will compromise

consisting of several thousand nodes. job execution. Besides, as illustrated Byg. 1,
A MapReduce computation takes a set of inputHadQOP_ 1x is d_eS|gned _conS|der|ng a single client
key/value pairs and produces a set of output kéyéva application at time, which leads to an under-

pairs. The user of the MapReduce paradigm expresse§Xploitation of the resources. o
the computation through two functions: The new Hadoop 2.x version overcomes this ‘simgle

client’ issue, by replacing the initial MapReduaggime
. Map that processes an input key/value pair to by a new one, called YARN. YARN opens Hadoop to

generate a set of intermediate key/value pairs the pos_sibility of managing multiple applicationada
« Reduce that merges all intermediate valuesCOMPUting models and notably to the deploymentoof-n
associated with the same intermediate key MapReduce applications. For this, YARN replaces

JobTracker and TaskTracker by a new set of entitias

A few typical examples of simple MapReduce &€ independent of the application.
applications include counting URL access frequelngy On the top of YARN daemongig. 2), we found the
processing Web page requests, creating reverselleb- ResourceManager, which is in charge of managing the
graph or an inverted index from large set of docuisie entire f:luster and of assigning applications to the

MapReduce most known implementation is AH underlying compute resources. These resources are
(2014a). This framework takes care of splitting itgut ~ controlled by the NodeManagers. When a new job is
data, scheduling the jobs’ component tasks monigori Submitted, the ResourceManager delegates the job
them and re-executing the failed ones. Currentkg t Supervision to an ApplicationMaster, which executes
Hadoop versions are available, both organized as tw tasks in abstract Containers controlled by the
superposed entities: A ‘MapReduce’ engine and aNodeManagers. Thus, multiple client applicationsyma
distributed file system, named HDFS. The engine execute concurrently, sharing cluster resources.

////// Science Publications 2196 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

Client

I

JobTracker
NameNode
A

v v v
TaskTracker TaskTracker TaskTracker
DataNode DataNode DataNode

Fig. 1. Hadoop 1.x daemons architecture

Client Client

t 4
v

ResourceManager

NameNode

*
v v

NodeManager NodeManager
ApplicationMaster ApplicationMaster
DataNode DataNode

1
v 1‘¢ vy v

NodeManager NodeManager NodeManager NodeManager
Container Container Container |C ontainer Container
DataNode DataNode DataNode DataNode

Fig. 2. YARN (Hadoop 2.x) daemon architecture

Unfortunately, Hadoop 2.x still adopts a 3. RELATED WORKS
master/worker architecture, making it as vulneradde
Hadoop 1.x to master (ResourceManager and This section reviews the main related works on
NameNode) failures. This limitation may consideyabl context-awareness on Hadoop and MapReduce
affect its performance on pervasive grids, sinces¢h implementations on pervasive grids.
nodes may leave the grid during the job execution.
Actually, neither Hadoop 1.x nor Hadoop 2.x areeabl
manage nodes volatility required by pervasive grids Because Hadoop performance is tightly dependent on
Nodes heterogeneity is not observed either. Bottiodp ~ the computing environment but also on the appbcati
1.x and Hadoop 2.x consider nodes with similar characteristics, several researchers focused owibg
characteristics when managing job execution. context-awareness to Hadoop and can be roughly

3.1. Context-Awar eness

///// Science Publications 2197 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

classified in three categories: Job schedulersk tas 3.2. Fault-Tolerance and Volatility
schedule optimizers and resource placement faoilga . .
In pervasive grids, nodes have to face both the

In the first category, we find works like Kumetral. d ity of th ilability but albe b
(2012), Tianet al. (2009) or Rasooli and Down (2012). SYhamicily ol the resources availability but alse bwn
nodes volatility, where any node can fail/discorinec

These works assume that most jobs are periodic an%uring the application execution
demand _s!m|lar CPU, network and disk usage To respond to the volatility of nodes and improve
characteristics. As a consequence, these worksopeop fau

e) .) lt-tolerance of the execution environment, twaim
classification mechanisms that first analyze baihsj approaches has been considered: (i) To harnessofado

and nodes with respect to its CPU or I/O potential, 55 that it will be able to support a wider rangeafure
allowing an optimized matching of applications and scenarios; or (ii) to implement the MapReduce parad
resources when a job is submitted. Similarly, Issird. on the top of another middleware support. Hadoop
(2009) propose a generic solution that uses theincludes basic fault-tolerance techniques, dathcajpn
distribution of resources as context informationpsan and speculative execution of tasks, to minimize the
a capacity-demand graph, calculating the optimumimpact of workers failures, but these techniques raot
scheduling from a global cost function and with the enough to ensure the operation when running omie tr
objective of improving general cluster performance. dynamic environment like pervasive grids.

While the previous works focus on the improvement When dealing with Hadoop, one of the elementary
of the overall cluster performance through an oéfli problems comes from its master/worker architecture.
knowledge about the applications and the resourcesHadoop was conceived to tolerate worker's failures
sometimes this is not enough to ensure a smootHhrough node supervision (heartbeats) and specelati
operation. For instance, works like Zahasiaal. (2008) task execution, bu? a failure at the master Ieaaiefs_ the
and Chenet al. (2010) focus on improving tasks reboot of the entire network..Wh|Ie it is poss[ttte
deployment inside a job as a way to reduce theoresp ~ IMprove fault—tol_erance at the file system Ieve_IlIwng _
time in large clusters, executing many jobs of shor NameNO(_:ie repllcatpn at the HDFS level or integugti
duration. Using the environment context informata another file system like AC (2014), we observe,tiaat

the job’s estimated time to end, these works raly o th_e job/task level, there is a remaining singlenpaif
- . . failure, the JobTracker node. To our knowledgey diné
heuristics to make the connection between elagssal t

commercial solution MapR (2014) provides fault-

and a score that represents .hO\.N much. of t.he job ha§0Ierance at the JobTracker level, but the detisut
already been processed. This information is used t hese solutions are not freely available

generate a threshold, which will determine wheask is Most of the initiatives to improve MapReduce fault-
slow enough to start a new speculative copy onh@mot tqerance prefer to rely on other middleware
possibly faster machine. Ches al. (2010) also uses environments. Indeed, the wide acceptance of Hadoop
historical execution traces to improve its predics. somehow hides the fact that MapReduce can be
Finally, works like Xieet al. (2010), aims to provide jmplemented on the top of other computing middlewar
better performance on jobs through better datasystems. Due to the simplicity of its processingdeio
placement, using mainly the data locality as denisi (map and reduce phases), data processing can iy eas
making information. The performance gain is achieve adapted to a given distributed middleware, which ca
by the data re-balancing in nodes, leaving fastetes coordinate tasks through different techniques ribisted
with more data. This lowers the cost of speculatasks task schedulers, work-stealing/bag of tasks, etc.).
and also of data transfers through the network. Lin et al. (2010) propose a system called MapReduce
From the analysis of these works, we observe thaton Opportunistic eNvironment (MOON), which extends
most of them rely on the categorization of jobs and Hadoop in order to deal with the high unavailabpilitf
nodes, which is hard in a dynamic environment Bke resources. MOON relies on a hybrid architecturegneh
pervasive grid. Even when runtime parameters sisch aa small set of dedicated nodes are used to provide
elapsed time or data placement are considered, theyesources with high reliability, in contrast to atile
assume a controlled and well-known environment. nodes, which may become inaccessible during
Because these assumptions are too restrictivee thescomputations. One inconvenient of this system & th
works fail on responding to the requirements of a spite of its improved fault-tolerance, nodes mskbown
pervasive grid environment. in advance, i.e., no new node can join the network.

////// Science Publications 2198 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

Also, Tanget al. (2010) propose a system designed to
support MapReduce applications, by exploiting the
BitDew middleware (Fedalet al., 2008), which is a
programmable environment for automatic and

transparent data management on desktop grids (a Our

particular case of pervasive grids aiming at thedage
of unused processing cycles and storage spacebleail
within the enterprise). Unfortunately, this studisca
requires the presence of a stable master noderuhat
BitDew services and coordinates data/task distiobut

In P2P-MapReduce (Marozabal., 2010; 2012), the
authors present a distributed architecture impleeteim
JXTA and following the super-peer approach, whéee t

implementation, Hadoop. To meet this global goad w
started the PER-MARE project, which objective istiady
the adaptive deployment of MapReduce-based applisat
over pervasive and desktop grid infrastructures.
approach is to improve the behavior
MapReduce applications on pervasive grids usingoa t
fold investigation method. Hence, to better underdt
the elements that may impact the deployment of
MapReduce over pervasive grids, our teams investiga
the problem through two different approaches: Om th
one hand, we try to modify Hadoop in order to
implement on it a context-aware scheduling and to
improve fault-tolerance, both with the objective to

of

super-peers serve as cache data server, handle jolenhance Hadoop against heterogeneity, dynamicitly an

submissions and coordinate execution of parallel
computation. P2P-MapReduce supports node
disconnection and the integration of new nodes,ibut
partially dependent on Hadoop as it relies on thddép
execution engine to execute the applications. Bsxau
this system does not integrate a file system caupi¢h

volatility of the nodes. On the other hand, theoseic
approach relies on the porting of the MapReduce
paradigm (and the Hadoop API) over a P2P distribute
computing middleware. Because this platform isaase
adapted to dynamic and volatile networks, it may
represent a good alternative for applications

the task manager, the transmission of data is madeémplemented with Hodoop’s API as shownFig. 3.

together with the tasks to compute. While this gtbds
similar objectives to our own, its architecture@mplex

We believe that this double approach is esserdial t
understand and cover all the facets of the pereagiid

and presents several dependencies, which may greverthallenges. By comparing these two approaches tside
an easy deployment over pervasive grids. We alsoside” we can propose effective solutions and previd

believe that performance can be drastically impdobg
implementing a lightweight execution stack indepantd
of Hadoop and by improving task scheduling throtigh
use of both context and data placement information.
Even if works cited above have improved fault-
tolerance for MapReduce applications, they stidlgent
some limitations when considering pervasive gridd a
notably the need for small set of stable nodes and
complex architecture (which make difficult their
application to heterogeneous resources). The demot

important insights on the adaptability to the
heterogeneity of resources and the dynamic nafutteeo
networks. Thus, our vision, illustrated on Erre@durce
du renvoi introuvable., considers the Hadoop API as
common access point for MapReduce applications that
will be able to fully exploit resources on pervasiyrids
through two different implementations, based on a
context-aware improved Hadoop implementation, oaon
pervasive grid solution.

Next sections describe the first results of our kwor

of MapReduce over pervasive grids remains then anfirstly, we improved current Hadoop implementation

open question, since there is no single solution ttie
moment, that solves all previously mentioned issues
together. We believe that, when considering peveasi
grids, where heterogeneity is a major characteridtta
processing/scheduling must be driven by contextual
information (resources characteristics, node rétigh
network performance, data location) in order toiegd

the expected processing performance.

4. THE PER-MARE VISION

with a context-aware scheduler, allowing Hadoop to
observe real characteristics of the available nodes
instead of static configuration of such nodes. This
represents a first step towards a better support of
heterogeneous environments. Secondly, we propose a
fault-tolerant implementation of Hadoop that iseald
replicate its master node in order to prevent @astue

to nodes failures, a necessary step to fully hagdli
nodes volatility on Hadoop. While both solutiongesd
Hadoop, the third contribution presented in thigdgt

Given the problems presented above, we propose t¢onsiders a completely different implementationseuh
address the lack of context adaptation of MapReduceon a P2P middleware. This latter focuses on thatiity

applications over pervasive grids all while keepihg
compatibility =~ with MapReduce most popular

////// Science Publications 2199

of nodes, allowing new nodes to join or to leave a
pervasive grid without stopping job execution.

JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

(slow) access over the network. In a pervasive,grid
Application the placement policy must account also on the
volatility and speed of the resources, preventiatad
losses. While the contextual information required f
Hadoop API the adaptation of MapReduce can be obtained from
the system properties (CPU and network speed,
number of cores, memory size, etc.), the diffusaod
awar Hadoop CloudELT analysis of such information must be tightly inteigd
ey into the MapReduce framework to boost the platform
efficiency. For this reason, context-awareness
(Preuveneerset al., 2009) and context distribution
g %@ (Kirsch-Pinheiroet al. 2008) are important elements

to be considered.
Available resources & Currently, the Apache Hadoop framework scheduler
is mostly designed for homogeneous environments in
%@ @ E e which nodes characteristics are provided at stariup
e static way. This section focuses on improving Hadoo
scheduler mechanism in order to make it more céntex

aware towards resources on the cluster.
5.1. Hadoop Schedulers

Hadoop scheduling has evolved along its versions.

As dedicated and cloud computing infrastructures On Hadoop 1.x, the default scheduler was desigoed f
have leveraged the use of MapReduce, it is nathedal supporting a batch job submission, organizing joba
the most known MapReduce distribution has beenqueue. Similarly, Fair Scheduler (AH, 2013), also
tailored to such environments. For instance, maaSlI proposed on Hadoop 1.x, considers with the sameat inp
clouds use sets of virtual machines that sharelaimi data size, using a two level scheduling in order to
characteristics, such as computational power anddistribute the resources equally: A superior letredt
memory. In such cases, MapReduce does not requir@llocates queues for each user, using a weighted fa
specific adaptation to the computational contest,ad algorithm; and a second level that allocates tBeurces
virtual machines are similar. As a consequence,t mosinside each user queue.
users simply rely on MapReduce default configuretio Hadoop 2.x adopts, as a default scheduler, a more
such as the number of reduce tasks by machine, thgophisticated scheduler, the Capacity Scheduler, (AH
maximum memory, etc. Although this behavior can be 2014b). This scheduler considers a shared Hadoop
modified through property files, there is no medsan environment across multiple partners. It focuses on
to automatically detect and modify these parametersguarantees that a minimum share will always be
When dealing with a heterogeneous environment asch ayailable for each partner. The benefit comes fthen
a pervasive grid, MapReduce must be able tOfact that different organizations have processieaks at
automatically tune to the nodes characteristics. different times, therefore the organization (partnsing

While the computational context is tightly related more capacity, will use the idle capacity of théest
to the processing power of the resources, it alSOprganizations. This scheduler tracks the resources
impacts other aspects such as fault-tolerance atal d registered within the ResourceManager and monitors
storage. Indeed, Hadoop allows a certain number ofyhich resources are free and which are being used.
duplicated processes/data in order to circumveult fa While these schedulers include some basic awareness
situations. If the context on pervasive grid is not about the nodes capacity, we observe that this
considered, tasks may be inefficiently allocated orinformation is often ignored due to a poor startup
even disappear if the node volatility is high. configuration. Indeed, Hadoop is heavily dependamt

Similarly, HDFS tries to place data for the map and XML files provided at startup and ideally every eod
reduce phases as closes as possible to thehould provide its own XML files with tailored
processes/tasks that will need it, in order to oedtihe parameters to express the node capacity. In a large

Context-
aware

Fig. 3. Overview of PER-MARE vision

5. CONTEXT-AWARENESS ON HADOOP

////// Science Publications 2200 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

heterogeneous cluster, modifying each node(available memory and number of cores) and this
configuration can be very time consuming since eachinformation is then sent to the ResourceManageraAs
node will have a different configuration. Also, the consequence, the information from the context ctdle
parameters from a XML file are static and any etiotu module allowed us to improve the Hadoop scheduler
of nodes capacity will not be considered till n@dboot. operation without having to modify its implementati

It is then clear that we must improve the way Hadloo This is especially interesting as further works|voié
detects and handles context information from theable to compare other schedulers from the liteeatur
execution environment, by providing updated Without having to modify their implementation.
information about the node capacity. . 5.3. Experiments Description

In order to detect the node capacity, we chose to
integrate a context collector into Hadoop, allowiny In order to evaluate our proposal, we compare the
automatic detection of each node capacity. Thiscontainer allocation pattern in the original Capaci
information is given to Hadoop scheduler, which can Scheduler with our context-aware Capacity Scheduler
scale the allocation limits in function of the real We perform the analysis of the container allocation
cluster resource availability. In a first momenhjst ~ pattern when executing the TeraSort algorithm veith
scaling affects the containers allocation as ationc 5GB dataset to sort. By requesting enough container
of the available memory and computing cores, (from nodes expressed capacities) and providingigimo
impacting therefore on the choice of tasks placamen data to stress the cluster, we aimed at compaomgthe
and how speculative task are started. Also, bycontext information influences the containers (&sk
adapting the capacity to the cluster real resounce, allocation and the overall execution time.
resource would be wasted or left inactive while the The experiments were performed in a cluster subset
scheduler is making tasks wait due to wrong Of the Grid ‘5000 http://www.grid5000.fr computing

information being received. environment. The subset had five nodes, one maatér
. . four slaves, each node having the following
5.2. Collecting Context Information configuration: 2 CPUs AMD@1.7GHz, 12 cores/CPU

To include context information on Hadoop, we and 47GB RAM. All nodes were running an Ubuntu-

integrated a collector module based on standara JavX64-1204 standard image, with Sun JDK 1.7. The
monitoring API (Oracle, 2014), which allows to dpsi Hadoop distribution was the 2.2.0 YARN version.
access the real characteristics of a node, with no For unmodified Capacity Scheduler, we adopt the
additional libraries required. default Hadoop configuration, which defines, onnyar
The collector module, illustrated hiyig. 4, allows default. XML, the memory and CPU properties with
collecting different context information, such aset default values of 8192 and 8 respectively. In thgecof
number of processors (cores) and the system memorythe context-aware scheduler, the same properties ar
using a set of interface and abstract/concretesetathat obtained from the context collector, overwritingeth
generalize the collecting process. Due to its dgsigis default parameters from the XML configuration files

easy to integrate new collectors and improve theresulting in the parameters frofable 1.
resources available for the scheduling processjiging)
data about the CPU load or disk usage, for example. ~ 2-4. Resultsand Interpretation

Context information is described by using a prewufi The following charts are consolidated by resources
name and a description. Such name correspondgit@@ represented by NodeManagers. As stated before, the
concept identified in the context ontology. Thisdeb containers are allocated to a given NodeManager and
inspired from Kirsch-Pinheircet al. (2004), considers tasks are executed inside these containers. Plezise
context information as an element (a context eléméor that each segment represents the tasks that aentur
which multiple values can be observed. Contextlogto being executed on the node, so the end of a segment
allows them to semantically describe such elemehile indicates the completion of some of the tasks (iian
the description gives a human readable definitoritf still be present in the next segment).

This collector module was integrated to the Figure 5a portraits the execution of the TeraSort with
NodeManager daemon, since this entity is in chafge original Capacity Scheduler. It is easy to notitatt
processing tasks and managing node definitionhisy t some containers had to wait for the completiontbérs
first prototype, we only collect node capacity inorder to start processing their tasks.

////// Science Publications 2201 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

Indeed, Hadoop splits the work in 38 Map tasks After an analysis and comparison of both charts, we
(numbered 2-39), which are distributed to the nodesalso notice that the default scheduler launches
according to the known resource capabilities. WHen speculative containers 41-43 on node stremi-5 and
first tasks are completed, new tasks are providethé container 44 on node stremi-42, while the contevdre
nodes, if any available (as illustratedfrg. 5a, where chart has only the standard containers, which are
tasks 32-39 represent the second execution wave). pumbered 2-39. This happens because these extra

If no more tasks are available, the nodes mayfoait containers are, in reality, speculative tasks laedc

the job completion of be given additional tasks for pecayse other tasks were taking too long to finish.

speculative execution (for example, tasks numbdfed To better understand the impact of context
44). Because speculative tasks depend on the éstima ; t5rmation on heterogeneous systems, we also
advancement of current tasks, they usually contn nerformed a simulation of a heterogeneous cluster.
first tasks deployed and do not contribute to asredé Comparing to the previous experiments, the only

tht? execm;]tlon hm a ho:‘nqgeneonlis fclu_ster. Igdeed, W&ifference here is that the nodes are purposelgngiv
observe that the speculative tasks frbig. 5a do not gyi5e capacities when registered to the Resourcalytan

help improving the execution time as these tasks\gjng these false values, a heterogeneous clugtesen
correspond to tasks from the first wave scheduled o g\ lated with the following capacities:

nodes stremi-42 and stremi-44.
Figure 5b portraits the execution of the TeraSort ,

algorithm with context-aware Capacity Scheduleithis

case the overall completion time was reduced, dubd N

fact that all containers could be started rightrathe Strem!-33. 48 GB of memory and 24 cores

arrival of the request, thanks to the higher reseur Stremi-35: 24 GB of memory and 12 cores

availability. Without the context information, the ¢ Total Cluster Resources: 132 GB of memory and

scheduler uses the default minimum parametershier t 68 cores

nodes capacities, causing a bad execution perfagnan ¢ Minimum Allocation: 2 GB of memory and 1 core

Stremi-17: 28 GB of memory and 14 cores
Stremi-22: 32 GB of memory and 18 cores

<<interface>> -—

Collector

AvailableDiskSpaceCollector

<<Property>> +collectorName: String
<<Property>> +collectorDescription:String

k]-- -1 +collect() : List
+getCollectorName() : String

+collect() : List<T>

+getCollectorDescription() : String

Abs'lracrOSCoﬂector

<<Property>> -name : String
<<Property>> -description : String

<<Property>> -bean : OperatingSystemMXBean

+getCollectorName() : String
+getCollectorDescription() : String

CPULoadCollector

CPUAveragelLoadCollector

+collect() : List <Double>

+DEFAULT_NB_OBSERVATIONS :int=5
+DEFAULT_INTERVAL = int 500
<<Property>= -interval : int

-nbObs : int

+CPULoadCollector()

PhysicalMemoryCollector

+collect() : List <Float>

+CPUAverageLoadCollector()
+getNbObservation() : int
+setNbObservation(nbObs : int) : void
+collect() : List

#average(obs : double [J- : Double

+PhysicalMemoryCollector()

FreeMemoryCollector

+collect() : List <Double>
+FreeMemoryCollector()

% Science Publications

TotalProcessorsCollector

+collect() : List <Double>
+TotalProcessorsCollector()

Fig. 4. Elements of the context collector module

2202

JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

stremi-44 10,11, 12, 13, 14 15 §§ 32,133 34, 35 36
1113 23
stremi-42 16, 17, 18, 19, 20, 21, 22, 23 === 37, 38, 39 37, 38,39, 44 ar
)
stremi-7 2,3,4,56, 7,89 F]
g las 30| 41
stremi-5 24, 25, 26, 27, 38, 29, 30, 31 2 Las| 42
x| |4
17111t 1r 1t 11T 1T T T T T
1(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43
(@)
23| 21, 22,23,
stremi-44| 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 2z 26| 24, 25, 26, | 26
SE]
5 !
stremi-42 31, 32, 33,34, 35, 36,37, 33, 39 39
2
stremi-7 12, 13, 14, 15, 16, 17, 18, 19, 20 =
20
02
stremi-5 2,3,4,56,7.809, 10,11 05
07
rrrrrrrr oo o T
t(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 35 36 37 38 39 40 41 42 43
(b)

Fig. 5. Container assignment (a) with default configuratmd (b) with context-awareness configuration

stremi-35 24, 25, 26, 27, 28, 29, 30 30
234
stremi-33 2,3,4,5,6,7,8,010,11,12,13 e
13
stremi-22 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 g 20
31.32.33, [mz3l|_
stremi-17 31, 32, 33, 34, 35, 36, 37, 38 34,3536, 337 3 | o9 39 39,41
37, 39 s | 39
Frrrrrrrrr T T T T T T T T T T 1T 1T T 11
t(s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 20 40 41 42 43

Fig. 6. Container assignment with context-awareness corgtgn simulating heterogeneous environment

Table 1. Configuration parameters used in the experiments

Original Context-aware
Total cluster resources 32GB 32 cores 192 GB Cc0o9és
Min allocation 1GB 1 core 4GB 2 cores
Max allocation 8 GB 8 cores 24 GB 12 cores

Figure 6 portraits the execution of the TeraSort first to be added in the node list. As in the other
algorithm within the simulated heterogeneous experiments, the scheduler launches containersnoal@
environment, also using context-aware Capacity until its resources are all reserved, then movagonext
Scheduler. Compared to the default case, thenode on the list.
heterogeneous environment execution shows an This experiment shows that it is possible to use
improvement, but due to the lower cluster capaditg, a this context-aware in a heterogeneous environment,
slightly worse than the context-aware Capacity the allocations were adapted to a slightly smaller
Scheduler executing on a homogeneous environment. cluster if compared to the real environment. As a

It is possible to note that the containers stattel future work, it is possible to set the allocatiémits in
assignment with the node stremi-33, which is thdeno function not only of total cluster resources bugoabf
with the most capacity in the cluster and also wes each individual node resource capacity.

////// Science Publications 2203 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

6. AFAULT-TOLERANT HADOOP
IMPLEMENTATION

the JobTracker (or the ResourceManager, in Hadoop

2.x) is the key, but several strategies can beiegb

replicating, monitoring and resuming the JobTracker
This section introduces our proposal of designing aln order to ensure high-availability to the JobTkeic
fault-tolerant implementation of MapReduce. A revie on a pervasive system, our solution needs to comply
of current approaches for fault-tolerance in Hadd®p with the following properties:
presented and our proposal for fault-tolerance addtp
based in replicating the JobTracker is described. < Fastrecovery in the case of a failure
e Small impact on the performance
« Be able to adapt to the capacity and context of the
nodes

6.1. Fault-Tolerance on Hadoop

As previously stated, the basic design of Hadoop is
still widely directed to cluster and grid computing
platforms. In these environments, faults are a séco The first two properties limit the number of
concern as most nodes will operate flawlessly for atechniques that can be employed. Indeed, a solttiain
long time period. Of course, the failure of a ndde uses an external persistent device would add a non-
still a concern, but some techniques like data negligible overhead to the operation and slow-ddken

replication and speculative execution of tasks mayrecovery. The third property relates to the hetenegty
limit the danger on most scenarios. of the nodes and connections on a pervasive system:

Because Hadoop was developed to work on aWithout context-awareness, we risk to resume the
cluster/cloud environment, it has several fauletaht ~ JobTracker on a node without the performance or
mechanisms to circumvent the crash of workers nodesStability levels required for the role.

On Hadoop 1.x this is all orchestrated by the JabRer, For all these reasons, we decided to implement
which monitors the status of working nodes while th JobTracker replication using AZ (2014). ZooKeeper i
NameNode coordinates the data replication. HDFSOne of the tools developed initially inside Hadabat
allows the replication of the NameNode (throughspas ~ Pecome a full project as its application was exéehtb
replication), but a failure at the level of the TJadcker ~ Other applications. It provides efficient, reliabknd
forces a job to be restarted. fault-tolerant tools for the coordination of dibuied

On Hadoop 2.x, part of the job management systems. In our case, we use ZooKeeper services to
responsibility is transferred to the ApplicationNers ~ Storage snapshots of the JobTracker. .
which becomes a task manager. The loss of the Snapshots are made on a p_er—attrlbute basis, where
ResourceManager does not blocks the executiorjaif,a JobTracker attributes are stored in ZooKeeper znoae

only prevents new jobs to be submitted. Howevee, th illustrated inFig. 7. Depending on the importance of the

loss of an ApplicationMaster forces the restarthefjob, sna_lpshot, some attributes are replicated synchayou
just like on Hadoop 1.x. while other attributed are replicated asynchronp\{lr

In this section we concentrate on the enhancenfent Oexample, the blacklist is synced asynchronouslylewhi

the tasks statuses are synced synchronously). By
Lault-rtlplerarcg on Hadlo opbl.x (atlltr:je JoﬁT(;ackegll)e modifying specific parts of the Hadoop code, we aver
ut this solution can also be applied to Hadoop We 5,16 “to " insert snapshot triggers in critical events
believe that this approach will lead us to imprdile inimizing the performance impact of the replicatio
reliability of Hadoop, especially in the case ofyasive

' '~ ! In addition, the distributed memory of ZooKeeper is
grids, whose volatility represents a main obstagléhe | seq to coordinate the nodes in the case of a ack@r
deployment of Hadoop.

failure: ZooKeeper keeps a synchronized orderecbfis
6.2. Fault-Tolerance Through Replication of the nodes in the system. This list is regularly updatedhat
JobTracker volatile nodes are removed from the list and nedeso
are inserted at the end of the list, while the nati¢he
As stated in the previous section, we want to top of the list is current JobTracker node. Thiscedure
develop fault-tolerance solutions that enable Hgdoo naturally organizes the nodes by order of stabibiyt in
to operate in pervasive environments, which meansthe future we plan to modify the nod'‘s order to @da
that we need to ensure the network would not cebap the context or capacity of the nodes (for exampde,
in the event of a JobTracker failure. The replicatof avoid giving this role to an old and slow machine).
JCS

////// Science Publications 2204

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

ID 1 ID 2 ID 3 IDn =
JobTracker =
=3
w
Snapshot [
heartbeats
N
Server Server Server Server g
. ‘ g
R T t
_/\ S~
' /A\:/ 3 N S S
] LI
= = @
| B
L
X_ (/ L
i ~ " -
[Atribute A] | Attribute B ||| HB status | D 1 ¥ -
D2 g,
ID3 =
et
w
- AN o A1
Snapshot atiributes Monitoring attributes

Fig. 7. Replication with zookeeper

The JobTracker is monitored by regular heartbeats.virtualization), which allow the researchers tottohboth
When detecting a connection failure with the JoloKea, as both system images and network interconnections.
all TaskTracker automatically check for ZooKeeper t In our experiments, we used Docker-Hadoop
confirm the status of the JobTracker and/or getnibe https://github.com/vierja/docker-hadoop as a tebtte
JobTracker address. Each TaskTracker checks thie fir simulate different failure scenarios. Indeed, tlsané
node in the ZooKeeper list of nodes; if the TaskKea Docker-Hadoop dashboard, one can easily switclooff
is at the top of the list, it replaces the ancigstiTracker restart nodes in the environment and reproduceahee
spawning a replica using the last snapshot, buhéf scenario at will. Using Docker-Hadoop dashboard
TaskTracker is not the first node in the list, ries to allowed us to test different failure scenarios:like
connect with this first node that should be the new
JobTracker. If the connection fails, the TaskTracke 6.3.1 Crash of the JobTracker Node

checks the list of nodes again and repeats theepsoc In this scenario, we kill the JobTracker in order t
until it connects or becomes the new JobTrackel. Al force a new node to resume the JobTracker role.nvVdhe
these steps are carried using ZooKeeper services. TaskTracker loses connection with the JobTracker, i
I . checks the list of Zookeeper nodes and it triesotmnect
6.3. \H/alédatlng the Prototype with Docker- or becomes the new JobTracker, as described in the
adoop previous subsection.

. To validate our solutions, however, we need to test6.3_2. Restart of an Old JobTracker
different scenarios of node and network faults. eBese
these experiments require the execution (and In this scenario, we investigated the impacts ef th
reproduction) of well-defined scenarios, we relyvintual return of an old JobTracker node. Two possibilities
machines (most specifically on container-based are analyzed:

///// Science Publications 2205 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

» The returning node was simply disconnected from thecoordination of the computing tasks and form a glob
network and still thinks it is the JobTracker. view of the calculus.
Zookeeper always keeps a reference to the actual A node owns the different parameters of the current
JobTracker, so the JobTracker periodically checkscomputations (a list of tasks and associated sgsuitis
that reference to verify whether it is still the able to locally decide which tasks still need to be
JobTracker or not. If it is not, the returning computed and can carry the work autonomously if no
JobTracker kills himself so the JobTracker refeeeinc Other node can be contacted. If later a node igiates a
by Zookeeper is the only JobTracker in the network ~ COmmunity, it is able to share the results fromteraks it

« The returning node has restarted and has lostsall | COMpleted and re-synchronize its task’s list. Foe t
status, but is still on the top of Zookeeper's listthis ~ moment, a simple scheduling mechanism randomly
case, the new node is restarted as a TaskTrackir, s a/fanges the list of tasks at each node, whitgshbe

will follows the fault-tolerance mechanism desadilie computation of tasks in parallel without requiring

. . additional communication between nodes.
the previous subsection to become the JobTracker) . .
From the strict point of view of FIIT, a

. MapReduce job can be expressed as a two rounds
6.3.3. Heartbeat Tuning execution: One handling Map tasks and another

A too lazy heartbeat slows-down the reaction to handling Reduce tasks. By implementing MapReduce
failures and may lead to some of the situationsritesd =~ Over a P2P platform such as CloudFIT, we can
in the previous item. An intensive heartbeat magdot ~ introduce interesting properties on MapReduce that
negatively on the overall performance. are not always available on Hadoop.

While Docker provides an environment to create and Implementing MapReduce over CloudFIT is quite
destroy nodes, the joining of new nodes requiresstralghtforward and can easily mimic the behavibr o
additional procedures. Indeed, Hadoop was designed Hadoop. Hence, during the Map phase, several tasks
work over a cluster where all the resources aresno ar€ launched according the number of input files,
from the beginning. Inserting new nodes require theproducmg a set ofk(, Vi) pa|rs..The_ token passing
restart of the job manager, which may represent anmechanlsm ensures that all pairs (i.e., the. resafits
important drawback in a dynamic environment in the each task) are broadcasted to all computing nodes.

. Therefore, at the end of the Map phase, each node
next section, we present a P2P approach to solge th

problem and discuss the challenges it represents. contains a copy of the entire set &,) pairs.

At the end of the first step, a new CloudFIT job is
launched, using as input parameter the results fiem
7.APZPIMPLEMENTATION OF map phase. T?ﬁe nurr?berpof tasks during this Reduce
MAPREDUCE phase is calculated based on the number of availabl
)) nodes. Once a round starts, each node starts a task
Due to its simple task model, MapReduce can befrom the shared task list and broadcasts its resatt
easily implemented in a distributed computing the end of the task’s computation.
environment. In our project, we rely on the P2P Using CloudFIT, MapReduce algorithms are
distributed ~ computing middleware CloudFIT supposed to support nodes failures as well as nodes
(Steffenel, 2013), implemented over the Pastry yolatility, allowing nodes to dynamically leave ajain
(Rowstron and Druschel, 2001) overlay network. In the grid. Indeed, as long as a task is not comp|etéer
CloudFIT, the programmer needs to decide how tonodes on the grid may pick it up. In this way, when
divide the problem into a finite number of node fails or leaves the grid, other nodes maywerco
independent tasks and how to compute each indiViduatgsks originally taken by the crashed node. Invgrse
task. This is the same principle of MapReduce mapwhen a node joins the CloudFIT community, it reesia
and reduce steps, which can be considered as gopy of the working data and may pick up available
sequences of Finite number of Independent and(incomplete) tasks on the shared task list. Thus,
Irregular Tasks (Krajecki, 1999) problems. CloudFIT should offer a more fault-tolerant behavio
The CloudFIT framework is structured around than Hadoop, supporting not only nodes disconnestio
collaborative nodes connected over a logical oe@nt but also nodes (re-)connection.
ring overlay network. Task status (and partial ltsj@re Because Hadoop relies on specific classes to handle
broadcasted among the nodes, which contributebdo t data, we tried to use the same ones in CloudFIT

////// Science Publications 2206 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

implementation as a way to keep compatibility wititle machine is composed by 2 AMD Opteron 275 2.2 GHz
Hadoop API. However, some of these classes were to®CPUs, totalizing 4 cores per node and a Gigabié it
dependent on inner elements of Hadoop, forcingous t interconnects the nodes.
develop our own equivalents, at least for the mdmen For the experiments, we evaluate the performance of
(further works shall reinforce the compatibility tti ~ both CloudFIT and Hadoop solutions when varying the
Hadoop API). For instance, we had to substitute thetotal amount of data and the number/size of inpes.f
OutputCollector class with our own MultiMap class, For each data size, we measure 3 different inplits:sp
while the rest of the application remains compatibith One single file, 1MB splits and 512kB splits. Tleason
both Hadoop and CloudFIT. for such approach is to analyze the impact of tpauti

An initial example of MapReduce over CloudFIT files on the map step from both solutions. For itipgut
was proposed, using the traditional WordCount data, we chose the Gutenberg Project Science Fictio
application. As indicated previously, this firstopotype Bookshelf CD
organizes MapReduce in a two rounds executionpbet http://www.gutenberg.org/wiki/Gutenberg:The_CD_and
single difference between this implementation aimel t _DVD_Project, which contains more than 200 books in
one using Hadoop resides on the need to indicae thtext format. The results presentedFig. 8 represent the
number of computing tasks, called blocks. Indebds t median of the performed measures for 16 nodes.
behavior is automatized on Hadoop, which triesuess When analyzing the measures, two major scenarios
the required number of Map and Reduce processes. larise: For small data volumes, our prototype largel
our prototype, this parameter was defined as toienim outperforms Hadoop, while the difference tends to
the behavior of Hadoop, i.e., by setting a numieviap stabilize for large data sets. This is mostly doe t
tasks to roughly correspond to the number of irfjpes CloudFIT lightweight middleware. Even though, the
and the number of Reduce tasks to correspond to thanalysis of application and middleware traces shows
number of computing cores available on the CloudFIT that the replication pattern used on CloudFIT shall
network at the time Reduce starts (this number mayimproved if we want to achieve good performances.
varies later, due to nodes volatility). Indeed, currently we use a full-replication schese,
. that up ton-1 nodes can fail without losing the job
7.1. Prototype Evaluation progress. The inconvenient is that this overloaus t

The experiments were conducted over 16 machineietwork with results transfers and also requires an

on the Helios cluster from the Grid’5000 networkacE important storage capacity on each node.
90000
7
80000 7
/
7
/
70000 E é
7
G SIS 2 1) M| ©Confits12k
= 4 N N
S 50000 2wl | | O Confit1M
= 7 T W o
E 4 N =
& 40000 7 g ; \ é A g 3 Confiit-*M
B 7] -]]] 1 TR .
\ B Rz [7 z - Ml ®Hadoop-512k
30000 é N7 1 / é \ é . é :
N g &] o)
20000 - / oA N edoor M
‘. ; ‘Bl 11l "
‘- 2 A UNE N ®Hadoop-*M
¢ S% 1] / z I a7
10000 ‘- 9 al all
§ 7 B NP
o Al el VAR LA A L VRO N
2M 4 M 8M 32M 64M

Volume of data analysed
Fig. 8. Hadoop vs CloudFIT performance comparison

///// Science Publications 2207 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

To circumvent this bottleneck, we are currently Therefore, in a first moment we have propose to
implementing an alternative storage mechanism basedntroduce context information on Hadoop schedulirs,
on DHTSs, like for example the PAST distributed file order to take in account the heterogeneity and the
system (Druschel and Rowstron, 2001). Using PAST,dynamicity of the nodes. By injecting real-time t®xt
we allow workers to share the results of the tasith information (such as available memory) on Hadoop
a configurable replication factor, all while mininmg schedulers, we circumvent the poor dynamicity
the data transfer between nodes and the storagenanagement of current Hadoop implementations. As
requirements. PAST integration is still under wanrk the experiments showed encouraging performance
we expect to integrate this solution and our contex speedups, the next steps will include additionaitext
acquisition module to make tasks scheduling awére o information (CPU load and data location, for exaepl
context elements such as data locality, network andand the study of alternative scheduling algorithmtse

processing capabilities of the nodes. tailored to resource variability.
Later, we focused on Hadoop fault-tolerance,
8. CONCLUSION studying how to remove one of the last single paoiht

failure in the architecture and therefore allowiag

Pervasive grids represent an important stepsmooth operation in dynamic environments where any
towards the establishment of mobiquitous systems innode can disconnect or fail. By coupling contexasv
which concerns high performance computing. While scheduling and an improved fault-tolerant architest
the pervasive computing model has no intention towe are able to support the disconnection of anyeriad
supersede classical high performance computingethe the architecture as well as distributing work tasks
is a large domain of applications that require more gccording to the nodes capabilities.
flexible environments, as provided by a pervasive Even though the previous contributions improve
computing model. Indeed, pervasive grids conceatrat Hadoop operation, Hadoop remains a complex (and
three main challenges on dynamic environmentheavy) middleware that not always can be deployed
composed by a multitude of devices: (i) The voigtii on pervasive systems. Therefore, we also presented
of its components; (ii) their intrinsic heterogetyei our efforts to implement MapReduce over a pervasive
and (iii) how to manage the dynamic evolution of grid middleware, as a way to embrace and take fprofi
these resources. from the volatility of pervasive grids and devices

In this study we study these issues when deployingdiversity. By proposing a Hadoop-compliant API over
MapReduce applications on top of pervasive gride. W @ pervasive grid middleware, we offer MapReduce

observed that Hadoop, the most known implementation@Pplications a transparent choice between an
of MapReduce on clusters and cloud infrastructures,MPlémentation optimized for data-intensive probsem
fails to respond to the three challenges listedvabve (Hadoop) and one optimized for computing intensive

strongly believe that pervasive grids are espsciall problems over a highly dynamic environments.

adapted to deploy MapReduce application on From these contributions we pointed out several
enterprises, fully exploring the potential of undger elements that can be improved in both Hadoop and

underused) resources and therefore reinforcing thegﬁglllas'(\:/gngrz'gefrigqviz\;\/r%rsks't;g gssstg;(;?i'o;uw(;fe kfr?erse
enterprises competitiveness.

To reach this goal, we present the basis of thecontr|but|0ns in order to provide a complete panwmaf

PER-MARE project, which explores a two-fold MapReduce solutions on pervasive grids.

approach for implementing effective MapReduce 9. ACKNOWLEDGEMENT

support on pervasive grids: First, by improving

Hadoop so that it supports a minimum of volatility ~ The authors would like to thank their partnershia t

and context awareness; second, by developing arPER-MARE project and acknowledge the financial
alternative middleware for MapReduce directly op to support given to this research by the

of a pervasive grid platform. By proceeding on both CAPES/MAEE/ANII STIC-AmSud collaboration

fronts, we aim at obtaining better insights on stifec program (project number 13STICQ07). Experiments
and technical obstacles towards the development ofresented in this study were carried out on Grid®0
flexible and adaptive MapReduce middleware. experimental testbed (https://www.grid5000.fr).

////// Science Publications 2208 JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

10. REFERENCES Isard, M., V. Prabhakaran, J. Currey, U. Wieder Knd

Talwar et al., 2009. Quincy: Fair scheduling for

distributed computing clusters. Proceedings of the
ACM SIGOPS 22nd Symposium on Operating
Systems Principles, Oct. 11-14, ACM, New York,

pp: 261-276. DOI: 10.1145/1629575.1629601

Kirsch-Pinheiro, M., J. Gensel and H. Martin, 2004.
Representing Context for an Adaptative Awareness
Mechanism. In: Groupware: Design,
Implementation and Use, Gabriela Marin Raventos,
Luis A. Guerrero andsert-Jan de Vreede (Eds.).,
Springer, ISBN-10: 3540230165, pp: 339-348.

Kirsch-Pinheiro, M., Y. Vanrompay, K. Victor, Y.
Berbers and M. Vallat al., 2008. Context Grouping
Mechanism for Context Distribution in Ubiquitous
Environments. In: On the Move to Meaningful
Internet Systems, R. Meersman and Z. Tari (Eds.),

: Springer, pp: 571-588.

_ environment. rajecki, M., 1999. An object oriented environmeat
Proceedings of the IEEE 10th International manage the parallelism of the FIIT applications.
Conference on Computer and Information Proceedings of the 5th International Conference on
Technology, Jun. 29-Jul. 1, IEEE Xplore Press, Parallel Computing TechnologiesSept. 6-10,
Bradford, pp: 2736-2743. DOI: Springer Berlin HeidelbergRussia, pp: 229-234.
10.1109/CIT.2010.458 DOI: 10.1007/3-540-48387-X_25

Coronato, A. and G.D. Pietro, 2008. Mipeg: A middle Kumar, K.A., V.K. Konishetty, K. Voruganti and G.V.
ware infrastructure for pervasive grids. Future Prabhakara Rao, 2012. CASH: Context aware
Generat. Comput. Syst.,, 24: 17-29. DOI: scheduler for Hadoop. Proceedings of the
10.1016/j.future.2007.04.007 International Conference on Advances in

Dean J. and S. Ghemawat, 2008. Mapreduce: Sinplifie ~ Computing, Communications and Informatiésg.
data processing on large clusters. Commun. ACM, 03-05, ACM New York, pp: 52-61.DOL:

51: 107-113. DOI: 10.1145/1327452.1327492 ~ 10.1145/2345396.2345406

Druschel, P. and A. Rowstron, 2001. PAST: A large- Lin, H., X. Ma, J. Archuleta, W. Feng and M. Gardee
scale, persistent peer-to-peer storage utility. & 2010. Moon: Mapreduce on opportunistic
Proceedings of the 8th Workshop on Hot Topics in ~ €nvironments. Proceedings of the 19th ACM
Operating Systems May 20-22, I[EEE Xplore Press, International Symposium on High Performance
75-80. DOI: 10.1109/HOTOS.2001.990064 Distributed Computing,Jun. 21-25, ACM New

Rowstron A. and P. Druschel, 2001. Pastry: Scalable York, pp: 95-106. DOI: 10.1145/1851476.1851489
decentralized object location and routing for large MapR, 2014.MapR closes $110m financing led by
scale peer-to-peer systems. Proceedings of the Google Capital. MapR Technologies, Inc.

IFIP/ACM International Conference on Distributed Marozzo, F., D. Talia and P. Trunfio, 2010. A Pa®r-

AEMR, 2014. Amazon Elastic MapReduce.

AH, 2013. Fair scheduler. Apache Hadoop.

AH, 2014a. Welcome to Apache Hadoop.

AH, 2014b. Hadoop MapReduce next gen-eration-
capacity scheduler. Apache Hadoop.

AC, 2014. Welcome to Apache Cassan-dra. Apache
Cassandra.

AZ, 2014. ZooKeeper: A distributed coordinationvées
for distributed applications. Apache Zookeeper.

Baldauf, M., S. Dustdar and F. Rosenberg, 2007. A
survey on context-aware systems. Int. J. Ad Hoc
Ubiquit. Comput., 2: 263-277. DOI:
10.1504/IJAHUC.2007.014070

Chen, Q., D. Zhang, M. Guo, Q. Deng and S. Guo0p201
SAMR: A Self-adaptive MapReduce scheduling
algorithm in heterogeneous

////// Science Publications

Systems Platforms Heidelbefgov. 12-16, Springer
Berlin Heidelberg, Germany, pp: 329-350. DOI:
10.1007/3-540-45518-3_18

Fedak, G., H. He and F. Cappello, 2008. BitDew: A

programmable environment for large-scale data
management and distribution. Proceedings of the
International
Computing, Networking, Storage and Analysis,
Nov. 15-21, IEEE Xplore Preséustin, TX., pp: 1-
12. DOI: 10.1109/SC.2008.5213939

2209

Peer Framework for Supporting MapReduce
Applications in Dynamic Cloud Environments. In:
Cloud Computing: Principles, Systems and
Applications, Antonopoulos, N. and L. Gillam
(Eds.)., Springer, ISBN 978-1-84996-240-7, pp:
113-125.

Conference for High Performance Marozzo, F., D. Talia and P. Trunfio, 2012. P2P-

MapReduce: Parallel data processing in dynamic
cloud environments. J. Comput. Syst. Sci., 7@#82-
1402. DOI: 10.1016/j.jcss.2011.12.021

JCS

L.A. Steffenelet al. / Journal of Computer Science 10 (11): 2194.22004

Oracle, 2014. Overview of Java SE Monitoring and Tang, B., M. Moca, S. Chevalier, H. He and G. Fedak

Management, 2010. Towards MapReduce for desktop grid
Parashar, M. and J.M. Pierson, 2010. PervasivesGrid computing. Proceedings of the International

Challenges and Opportunities. In: Handbook of Conference on P2P, Parallel, Grid, Cloud and

Research on Scalable Computing Technologies, Li, Internet Computing, Nov. 4-6, IEEE Xplore Press,

K., C. Hsu, L. Yang, J. Dongarra and H. Zima Fukuoka, pp: 193-200. DOI:

(Eds.), IGI Global Snippet, Hershey, ISBN-10: 10.1109/3PGCIC.2010.33

1605666629, pp: 14-30. Tian, C., H. Zhou, Y. He and L. Zha, 2009. A dynami

PER-MARE, 2014, PER-MARE-adaptive deployment of MapReduce scheduler for heterogeneous workloads.
MapReduce-based applications over pervasive and Proceedings of the 8th International Conference on

desktop grid infrastructures. Grid and Cooperative Computing, Aug. 27-29, IEEE
Preuveneers, D., K. Victor, Y. Vanrompay, P. Rigmhel Xplore Press, Lanzhou, Gansu, pp: 218-224. DOI:
M. Kirsch-Pinheiro, 2009. Context-Aware 10.1109/GCC.2009.19
Adaptation in an Ecology of Applications. In: Xie, J., S. Yin, X. Ruan, Z. Ding and Y. Tiat al.,
Context-Aware Mobile and Ubiquitous Computing 2010. Improving MapReduce performance through
for Enhanced Usability: Adaptive Tech-nologies and data placement in heterogeneous Hadoop clusters.
Applications, Stojanovic, D. (Ed.), IGI Global, Proceedings of IEEE International Symposium on
Hershey, ISBN-10: 1605666629, pp: 1-25. Parallel & Distributed Processing, Workshops and

Rasooli, A. and D. Down, 2014. COSHH: A Phd Forum, Apr. 19-23, IEEE Xplore Press, Atlanta,
classification and optimization based scheduler for GA., pp: 1-9. DOI: 10.1109/IPDPSW.2010.5470880
heterogeneous Hadoop systems. Future GeneraZaharia, M., A. Konwinski, A.D. Joseph, R. Katz and

Comput. Syst., 36: 1-15, DOI: Stoica. 2008. Improving MapReduce performance in
10.1016/j.future.2014.01.002 heterogeneous environments. Proceedings of the 8th
Steffenel, L.A., 2013. Deliverable 2.1: First Stepsthe USENIX Conference on Operating Systems Design
Development of a P2P Middleware for MapReduce. and Implementation, (SDI’ 08), USENIX
PER-MARE report. Association Berkeley, CA, USA., pp: 29-42.

////// Science Publications 2210 JCS

