
Journal of Computer Science 10 (4): 680-688, 2014
ISSN: 1549-3636
© 2014 Science Publications
doi:10.3844/jcssp.2014.680.688 Published Online 10 (4) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Ranjana Ponraj, Faculty of Computer Science and Engineering, Hindustan Univertsity, Chennai, India

680 Science Publications

JCS

OPTIMIZING MULTIPLE TRAVELLING SALESMAN
PROBLEM CONSIDERING THE ROAD CAPACITY

Ranjana Ponraj and George Amalanathan

Faculty of Computer Science and Engineering, Hindustan Univertsity, Chennai, India

Received 2013-10-07; Revised 2013-11-04; Accepted 2013-12-23

ABSTRACT

The Multiple Travelling Salesman Problems (MTSP) can be used in a wide range of discrete
optimization problems. As the solution to this problem has wide applicability in many practical fields,
this NP Hard problem highly raises the need for an efficient solution. The problem is determining a set
of routes for the salesmen that jointly visit a set of given cities which are facing difficulty because of
road congestion. Selection of proper route is based on the road capacity, which is the deciding factor in
the opt vehicle usage. The objective of the study is to optimize the vehicle utilization and minimize the
time of travel by salesman based on the road capacity. The solution to this problem is achieved in 3
steps; the first step is by assigning addresses to cities by Ad-assignment algorithm. The second step is
by assigning cities and vehicles to salesman by Sl-assignment algorithm. The third step is by using
Parallel Shortest Path Multiple Salesman (PSPMS) algorithms to obtain the shortest path. The PSPMS
algorithm runs in parallel for each salesman. The solutions to the problem are known to possess an
exponential time complexity. From the result we observe that PSPMS is one of the best approximate
algorithms used to solve MTSP.

Keywords: Multiple Travelling Salesmen, Road Capacity, Shortest Path

1. INTRODUCTION

 Multiple Travelling salesman problem is the
extension of the well known travelling salesman
problem. This can be applied for various optimization
problems in research; in genetic engineering to
minimize the length of universal string in DNA
sequence, in semiconductor manufacturing, to optimize
chain in integrated circuits, in space craft to minimize
the usage of fuel, in design of global satellite system
network and Matai et al. (2010) stated in many real
world applications like print press scheduling, crew
scheduling and school bus routing. MTSP can also be
used to solve the problem in road network. In today’s
road traffic, congestion becomes a major problem.
Selection of proper route would make the company to
save much fuel. If a vehicle is stuck in a traffic jam, the
vehicle travel time increases accordingly, this results in

longer waiting time, from the customer point of view
stated by Leontiadis et al. (2011).

There were several methods used to schedule
automated traffic in network of roads with the help of
the scheduler to provide time trajectories for all
vehicles, which follow the respective vehicle routes and
further ensure that no collision or deadlock will result.
But the roads in the transportation network need not
have the same capacity. Capacity means the width or
the broadness of the road. Some roads are broader and
some roads are narrow. If the salesman uses the same
type of vehicle in all these roads it will result in
congestion. The transport analysis issued by
authorized office in Indonesia says that lots of factor
affects the smooth flow of traffic. One of the main
factors is the level of congestion of the road. Based on
the road capacity the type of vehicles that can be used
in that road without congestion can be decided. The

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

681 Science Publications

JCS

aim of this study is to solve the MTSP problem by
considering the road capacity.

2. MULTIPLE TRAVELLING SALESMAN
PROBLEMS

The MTSP have ‘m’ salesmen to visit a set of ‘n’
cities and each salesman has to start and end at the
same depot. In this, each city must be visited exactly
once by one salesman named as si, i varies from 1 to m.
MTSP can also be defined as a problem of finding the
‘k’ closed circuit paths, given ‘n’ cities and ‘m’ sales
men, which minimize the sum of the squares of the path
lengths. There are several variations in MTSP like
single depot and multiple depot problems. In single
depot, all the salesmen start and end the tour at the
same point. In multiple depot, the salesman need not
end at the startingdepot, but can end at any depot, with
the restriction that at end of the tour, the number of
salesmen in all the depot should be same as that in the
beginning as reported by Levin and Yovel (2012) and
Yadlapalli et al. (2010). MTSP is also classified as
symmetric and asymmetric. In Symmetric MTSP the cost
of travel from node ni to nj is same as the cost of travel
from nj to ni. The path is bidirectional. This can be
represented by an undirected graph. In asymmetric TSP,
the cost of travel from ni to nj is different from the cost of
travel from nj to ni. This can be represented by a digraph.

3. RESEARCH GAP AND PROPOSED
WORK

 The MTSP problem can be solved by converting
MTSP to TSP using ACO algorithm, where the shortest
path is determined based on ant behavior Hlaing and
Khine (2011). Genetic algorithm is a computational
intelligence method, a search technique used in
computer science to find approximate solutions to
combinatorial optimization problems. Genetic
algorithm is proven efficient in solving travelling
salesman problem as stated by Albayrak and Allahverdi
(2011). Generally for solving MTSP, the problem is
converted to TSP and then solved. For converting
MTSP to TSP, various clustering methods are used.
Each cluster is treated as a sub problem of MTSP and
solved. The heuristic solution methords are easy to
solve as stated by Bashiri and Karimi (2010). In the real
world, Vehicle Routing Problem (VRP) often meets
road traffic congestion. The congestion itself may be
caused by the number of vehicles hence; the traffic

volume is increasing and not balanced within the
capacity of existing roads. Erfianto et al. (2012) stated
that Multi Objective Ant Colony System (MOACS)
algorithm solves the VRP problem by considering the
level of road traffic congestion as an obstacle. In MTSP
the road capacity or edge cost and the road traffic
congestion are taken into consideration to solve the
problem. In the proposed method, the distance between
the cities and the road capacities are taken into
consideration to solve MTSP problem.

3.1. MTSP with Road Capacity

This deals with some real world problems where
there is a need to account for more than one salesman,
given a group of n cities and the distance between any
two cities. Suppose there is ‘m’ salesman starting
from a city to visit the group of ‘n’ cities. Finding the
nearly equal shortest tour for each salesman such that
each city be visited only once by one salesman and
each sales man returns to the starting city at last. MTSP
was an appropriate model for the problem of bank
messenger scheduling, where a crew of messengers
pick up deposits at branch banks and returns them to
the central office for processing. To facilitate industrial
municipalities to meet the needs of multiple user groups
and applications with a single infrastructure by means
of multiservice mesh platform, a mesh topology can
be used. A computer network topology is the physical
communication scheme used by connected devices. A
mesh topology involves the concept of routes. In Full
mesh topology, each node is connected directly to
each of the other node. In partial mesh topology some
nodes are connected to all the others, but some of
them are only connected to nodes with which they
exchange the data because it is less expensive and
yields less redundancy. Problems of this type can be
addressed by MTSP with road capacity.

The distance between two cities is denoted as edge
cost or road length. In addition to this, each edge or road
has capacities assigned to them. The capacities differ for
different roads. The road capacity is decided based on
the size of the vehicle that can be used in that road. The
capacities are mentioned using level of the road. In this
problem different road levels denotes different road
capacities. The different levels of the road are shown in
the Fig. 1. with different thickness. There will be several
cities in all the levels. The capacities can be determined
with the road level based on the following assumptions:

c1= m; c2 = c1-2; c3 = c2-2; c4 = c3-2

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

682 Science Publications

JCS

4. PROBLEM DEFINITION

The MTSP is a special case of vehicle routing
problem. The MTSP can be extended to many variations
as far as the number of depots and the target paths are
concerned, it includes a single depot and multiple depots,
as well as closed and open paths. A closed path starts and
ends at the same depot, whereas an open path does not
require returning to the original depot. The study presents
a novel method for solving a MTSP which allows
salesmen to start from different depots and end their tours
at the original depots. Given a set of ‘n’ nodes and ‘m’
salesmen located at each depot, the MTSP aims to find M
routes for each salesman starting from a set of depots and
ending at the original depots, so that each intermediate
node is visited exactly once by one salesman and the total
cost is minimized. Let G = (V, E, W,C) be a connected
undirectedgraph, where V = {v1,v2,...,vn} is a set of cities
and E = {<vi,vj>|vi,vj€V, i ≠ j} is an edge set with a non-
negative cost matrix W = {wij| the weight of <vi, vj>} and
capacity matrix C = {cij ׀ the capacity of <vi,vj>}.The
graph is said to be symmetric if any <vi, vj>∈E satisfies
wij = wji. In the study, we only consider symmetric graphs
that satisfy the triangle inequality:

• Definition 1: w(vi, vj) is the distance between vi and

vj, denoted by wij
• Definition2: c(vi,vj) is the capacitybetween vi and vj

denoted by cij
• Definition 3: A tour denotes a route that starts at one

node and ends at the same node

The transportation problem shown in Fig. 1 can be
solved by means of PSPMP algorithm. Here, both the
edge weight and edge capacity (road capacity) are
taken into consideration. Based on the road capacity
the salesman is assigned with vehicles. Many exact
and approximate algorithms were developed to solve
TSP one among that is proposed by Xu et al. (2013).
The exact algorithms tend to be very time consuming,
because their time complexity is super polynomial. An
alternative, perhaps more practical approach is to
design approximate algorithms which give solutions
of reasonable quality in a short time. So the
approximate algorithm is taken to solve the problem.

4.1. Problem Formulation

 The structure of MTSP is represented as a graph,
where the cities are denoted as nodes in a graph. The
connection between pair of cities denotes edges in a
graph. Goyal (2010) proposed that each edge has a cost

associated with it known as the distance between two
cities. In addition to the edge cost, the edge capacity is
also taken into consideration to solve the problem. Let
G = (V, E, W, C) be a connected un direct graph,
where V = {v1,v2,……..vn} where n is set of nodesand
E is the edges. The weight wi,j is associated with each
edge and the capacity ci,j is also associated with the
edges. Table 1 shows the MTSP problem of Fig. 1
with number of salesmen and cities.

The travelling salesman problem introduced here is
considered in a different approach, suppose a company is
planning to send salesman a trip to several cities to meet
the customers and come back to the city where he
started. In this problem, we assume that, level 1 cities the
salesman can visit through one mode of transport, say air
service, but for level 2 cities, the same mode may not be
possible. For level 2 cities, another mode of transport
like bus service is possible and in particular level cities
only two-wheeler service may be possible. This can be
solved by assigning different types of vehicles. One set
of salesman uses air service, the other set of salesman
uses bus service and the other set of salesman uses two
wheeler service based on the road capacity. Let us
consider there are 4 levels of roads. Table 1 shows the
number of nodes needed in each level and the number of
salesmen needed. The total number of nodes in all the
levels are 256. There are nodes 84 common nodes. From
this we summarize that the level of the roads determiners
the number of salesman. For level 1, roads one salesman
is needed, for level 2 roads 4 salesmen are needed, this
can be written in a generalized form as:

No. of Salesman = Level × 4

Table 2 shows the type of vehicle used and the number
of vehicles used in each type. The number of vehicles
needed depends on the number of salesman. The vehicles
are of type vh1, vh2, vh3 and vh4. The vehicles are
differentiated based on the size and capacity of the vehicle.

The number of salesmen is directly proposition to the
number of vehicles. This is applicable only for the above
example where all the cities are connected to 3 other cities
of same level. The problem can be solved in 3 stages:

• Assigning addresses to the cities with Ad-

assignment algorithm
• Assigning salesman to cities based on the capacity

using SL-assignment algorithm and
• Applying Parallel Shortest Path Multiple Salesman

Algorithm (PSPMS) to find the shortest path for
each salesman in parallel

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

683 Science Publications

JCS

Fig 1. Network showing cities connected by roads of varying capacities

Table 1. Nunumber of nodes and salesmen needed
No. of No. of Common Total No.
salesman Level nodes nodes of nodes
1 1 4 0 4
4 2 04×4 = 16 4 12
16 3 16×4 = 64 16 48
64 4 64×4 = 256 64 192
 84 256

Table 2. Vehicle allotment to salesmen
No. of Levels Vehicle No. of
salesman needed types vehicles
1 1 vh1 1
4 2 vh2 4
16 3 vh3 16
64 4 vh4 64

5. ASSIGNING ADDRESS TO CITIES

Computing optimal routes in a road network is one of
the focuses of real world applications of algorithms. Our
bench mark throughout the study is Indian road which
has 192 nodes and 256 edges. This can be denoted as a
non linear multiple travelling salesman problem as
proposed by Nallusamy et al. (2010). The input to the
algorithm is the adjacency matrix with the weight
assigned to each edge i.e., connecting the nodes ni, nj.

The graph also has the capacity matrix in addition
to the weight matrix. The capacity matrix gives the

capacity of edges connecting the pair of nodes. The
capacities are assigned based on the level of the road.
Level of the road is decided based on properties on the
road. The property taken here is the width of the road.

Roads like 6lane, 4lane. In the proposed work we
assume road with broadness based on lane. So based on the
level of the road the capacities are fixed in the following
manner. For example roads are at level l1, l2,…ln then the
capacity of the node can be any value, which can be
calculated with the capacity of first level node. After
assigning weight and capacity to edges the next step is to
read the capacity and assign address to cities. For example
the cities at level 1 are assigned 4 digit integer value having
value only in the thousands position. The values in
thousands position will be incremented for level 1 nodes.
For level 2 nodes the value in hundreds position is
increment by 1 each time:

Level 1 node address as 1000,2000,3000,…..
Level 2 nodes address 1100,1200..2100,2200…..
Level 3 nodes address 1110,1120,2110,2210….
Level 4 nodes address 1111, 1121,…,2111,2211

Based on the above sequence the addresses are assigned
for all the cities.

The algorithm 1 explains the address assignment to
cities.

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

684 Science Publications

JCS

Algorithm 1: Ad_assignment (Graph, Source)
Input: Graph G = (V, E) with edge-capacity.

1. Initialize A to be empty;
2. Place each vertex in its own set;
3. Sort edges of G in increasing-order;
4. for each (vi,vj) in G// take each pair of nodes in the

sorted set
5. I = 1;a = 1000; // initialize the first address
6. addr [vi] = i×a; //Assign address to vi;
7. increment i; // Increment for assigning next address
8. addr[vj] = i×a; //Assign address to vj;
9. increment i; //Increment for assigning next address
10. Else
11. A = a div 10;
12. Add addr[vi], addr [vi] to A; //add vi and vj to address

assigned values

The algorithm reads the adjaceny matrix and assigns
address for assignment operation it is only 1×1×1….n = 1.

 For matrix operation, which is a two dimensional
array the complexity is O (n2).

Thus the addresses are assigned to all the 256
nodes for common nodes if address is already
assigned it will be ignored during assignment of
address for the next time. All the 256 nodes are
assigned address based on their level. All the 256
cities are assigned with a 4 digit address.

6. ASSIGNING CITIES TO SALESMAN

After assigning the address to cities based on the
Ad_assignement algorithm. Each salesman is allotted
with number of cities to travel. This is done by taking the
city addresses. Let it be addr[v1], addr [v2]. This will be
in an array A. The address of the cities is read from the
array. The address values are 4 digit numbers. A constant
‘Ar’ is fixed with the value of 1000 and the address is
divided by ‘Ar’ the remainder value is assigned to
salesman j, where j is initially 1. The process is
continued until there is a value for the address if not the
‘Ar’ is divided by 10 and the process is continued till all
the salesmen are assigned with cities. For assigning cities
to next salesman the j value is incremented by 1.

 The process of assigning cites to salesman is shown
in the algorithm 2:

Algorithm 2: SL_Assignement 2 (A, source)
Input: Graph = (V,E) with vertex-address.
1. Initialize S to be empty;

2. Place each vertex address in its own set
3. Sort the vertex of a graph in increasing order
4. for each vertexin the set A(vi,vj)//start the loop

takingpair of nodes in the sorted list
5. Initialize I = 0; j = 0; // initialize i and j values
6. Ar = 1000; // initialize the ‘Ar’ value as 1000;
7. If vertex_address mod Ar;//divide the node address

by m and if remainder is zero.
8. assign to s[i] [j]; //assign the remainder values as

salesman number
9. Assign vh[k] to s[i][j] // assign the vehicle number

as salesman number
10. j++//increment j
11. Else // if vertex address has remainder
12. Ar=Ar/10; //divide the value of ‘Ar’ by 10
13. I++;//increment i;
14. End if //end
15. End for //end loop if all salesmen are assigned with

cities and vehicles
16. Return S

For example if the city address is 1000, 2000 …, the
address is divided by 1000 and there is a remainder values
like 1,2,3 so it is assigned to salesman1. 1100, 1200… is
the next level so it is divided by 100 and the remainder is
11,12 so assigned to saleman2, but 2100, 2200 n2 since
the first digit is not same. The cities address 2100, 2200 …
is assigned to salesman3. Thus the algorithm assign
salesman with the cities based on the city address.

6.1. Assigning Salesman with Vehicle

If salesmen are assigned with cities, it easy to assign
salesman with vehicle. The salesman visiting the cities at
level1 is assigned with a vehicle type v1. The salesman
travelling at level 2 is assigned with a vehicle of type v3.
From Table 2 we find that the number of vehicle in each
type depends on the number of salesman at each level.
So vehicles are assigned to salesman, while assigning
cities to the salesman. The algorithm 2 shows the
allotment of cities and vehicles to salesman. The above
SL-assignement have the complexity of O (n2).

For reading the adjacency matrix with city address it
is O (n2).

For assigning salesman with address the complexity
is 1×1×1×…n≈1.

For assigning salesman with vehicle it is again it
takes 1×1×1×…n≈1.

So the run time complexity of the SL-Assignement2
algorithm is O (n2).

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

685 Science Publications

JCS

7. PARALLEL SHORTEST PATH
MULTIPLE SALESMAN ALGORITHM

(PSPMS)

The classical way to compute the shortest path
between the given nodes in a graph is with the given
edge lengths. On this network, Dijkstra’s algorithm
takes more than a second on a state-of-the-art
workstation to compute the shortest path between two
random nodes. This is too slow for many applications.
To overcome this PSPMS algorithm is used. The aim of
the algorithm is to obtain the shortest route in less time.
The algorithm will start at level 1 vertex. The salesman
assigned to thelevel1 cities starts the tour at the level1
nodes with the broader vehicles named as ‘vh1’. Now
Salesman s1 will be using the vehicle vh1. The
salesman finds the shortest path among the allotted
level 1cities using the Shortest path algorithm. The
algorithm inputs a graph G (V, E) and salesman set S
with s1, s2…sn salesmen. All salesmen are allotted
with cities using SL-Assignment algorithm. The
salesman 1 starts the tour from the source vertex v1,
which can be assumed as depot for level1 cities. This
depot will be common for salesmen at different levels.
If the salesman visits the next city, all other salesman in
that city also takes his tour to find the shortest path.
Thus this algorithm runs in parallel.

The Fig. 2 shows the cities with the node level to
decide road capacity. There will be several node or
cities known as common node. The common node will
have a road to level i and level j of cities. In that
common node the salesman will hand over the charge
to the other salesman. Because the salesman allotted
to level1 cities cannot travel to level2 cities. Next the
level2 salesman takes in charge to find the shortest
path. Thus the salesman takes his tour in parallel with
the assigned vehicle based on the road capacity.
Salesman at level1 will have one type of vehicle v1.
Salesman at level2 will have another type of vehicle
denoted as v2, so if there are ‘n’ levels of road then
the salesman will have ‘vn’ vehicle types. The PSPMS
algorithm continues till the salesman travel through all
the cities. Thus there will be parallel execution of the
algorithm by different salesman in different levels. By
this the salesman can reach the city using shortest
route and with optimal assigned vehicle.

Algorithm 3: Parallel shortest path multiple travelling
salesman Algorithm PSPMS
Input: Graph G = (V, E, w) with edge weights

1. Let S [i] be the salesman set with I = 1, 2…n. //S
be the array of salesman

2. Let p[i] be the processor set with I = 1,2,…n //P
be the array of processor

3. The adjacency matrix is portioned by S-vecto
 //Partition the salesman array
4. For each salesman i of n do in parallel
 //start the loop for each portioned salesman array
5. Read addr[vi] of s[i]
 //read the city address of salesman
6. Assign the values to the processor P[i]
 //assign to processor i
7. Get theadjacency Matrix offor p[i] denoted by D
 //get the values in then array for P
8. For every vertex v in D
 //read the vertices in D
9. Dist [source] = 0
 //Initial the source vertex distance
10. Q: =set of all node in D //

put the D vertex set to Q
11. While Q not empty
 //start the loop while Q is not empty
12. U = vertex in Q with smallest distant dist [];//find

minimum element from Q named as ‘u’
13. Remove u from Q //remove ‘u’ from the queue
14. for each neighbor v of u.
 //find the adjacent node of ‘u’
15. Sp = dist[u] + dist-between (u, v) ;
 //find the shortest path
16. If sp < dist[v]:
17. Dist[v]: = sp;
18. Previous[v]: = u;
19. Decrease-key v in Q;
20. End if
21. End for//end of for loop
22. Node is broadcasted to D-vector //send the

result to the D
23. End for in parallel//do in parallel for all i values of p
24. End while //end while
25. Return dist; //end

The algorithm makes use of parallel algorithm
technique proposed by Vaira and Kurasova (2011), to
find the shortest path. The PSPMS involves portioning
the adjacency vertex in D blocks with the allotted salesman
to the vertex. Salesman 1 is put in one vertex, salesman2
in other vertex and so on. Each portioned vertex set, based
on salesman is put into different processor. Each processor
has the node ni, nj of same capacity. The node is broad
casted into all processor and the D-vector is updated.

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

686 Science Publications

JCS

Fig. 2. Cities with levels and road capacity

The source is portioned and the processor finds the
single source shortest path from very vi to all other
vertices by PSPMS algorithm. It is found the parallel
running time is O (n2). Cost optimal can use ‘n’
processor where ‘n’ depends on the problem size. It can
use n2 processor for smaller problem size. If the
problem size increases it can use up to n3 processor in
the worst case. If there are p processors, with p>n then it
can be executed in n/p processor. So the computation
time is Tp≈O (n3/p). To broadcast the node to all
processor and to update the D-vector the time taken is O
(nlog p). So the Tp≈O (n3/p) + O(n log p). Which is less
complexity than O (n3). The above PSPMS algorithm is
executed and compared with the sequential algorithms
and it shown considerable decrease in the running time.

8. RESULTS

The computational complexity of sequential algorithm
is shown Table 3. For cities of four levels. The
computational complexity of the existing algorithm for
more numeber of cities is high in the order of O(n3). Table
4 shows the computationl complexity for the proposed
PSPMS algorithm. The algorithm runs in parallel for 85
processor. In each processor n = 4, so the time complexity
is minimized. Here we use processor of size 85.Thee
complexity of using this PSPMS algorithm is O(n3/p).

Table 3. Existing Algorithm

P N Sequential
1 4 64
1 12 1728
1 48 110592
1 192 7529536

Table 4. PSPMS algorithm

P N PSPMS
1 4 64
4 12 432
16 48 6912
64 192 117649

9. DISCUSSION

The computation time for the propose PSPMS
algorithm is Tp≈O (n3/p), which is less complexity than
O (n3), the existing algorithm. The existing algorithm
makes use of one procesor and runs sequentially. Figure
3 shows the computational complexity of the existing
algorithm for each level of cities. The computational
complexity is represented in exponential order. Figure 4
Shows the computaional complexity of the PSPMS
algorithm with exponential order.

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

687 Science Publications

JCS

Fig. 3. Performance of the existing algorithm

Fig. 4. Performance of PSPMS algorithm

This makes uses of one processor for 4 cities, so for each
level of cities the processer increases in the order of 1,
41, 42, 43 totally of 85 processor. Comparing the graph in
Fig. 3 and 4 shows the computational complexity of the
proposed PSPMS algorithm is less time consuming.

10. CONCLUSION

The multiple salesman problem is solved by
considering the road capacity. The solution to the
problem is obtained in 3 states by Assigning address to
cities, assigning cities to salesman and finally finding the
shortest route for each salesman by executing the
algorithm in PSPMS algorithm. The advantage of this
algorithm is time complexity reduction. For more
number of cities it takes O(n3/p), which is less than the
existing sequential algorithms and very easy to
implement .In the proposed work, since the road capacity

is also taken into consideration, the salesman need not
use the same type of vehicle for all the roads. The
salesmen uses different vehicle in different roads. This
increases the optimal use of vehicles. The limitation of
the approach presented in this study is, workload of the
salesman is balaced only if the cities are evely
distributed in all levels. This work can be further
extended by balancing the workload of the salesmen with
varying number of cities at different levels.

11. REFERENCES

Albayrak, M. and N. Allahverdi, 2011. Development a
new mutation operator to solve the traveling
salesman problem by aid of genetic algorithms,
Expert Syst. Applic., 38: 1313-1320. DOI:
10.1016/j.eswa.2010.07.006

Ranjana Ponraj and George Amalanathan / Journal of Computer Science 10 (4): 680-688, 2014

688 Science Publications

JCS

Bashiri, M. and H. Karimi, 2010. An analytical
comparison to heuristic and meta-heuristic solution
methods for quadratic assignment problem.
Proceedings of the 40th International Conference on
Computers and Industrial Engineering, Jul. 25-28,
IEEE Xplore Press, Awaji, pp: 1-6. DOI:
10.1109/ICCIE.2010.5668262

Erfianto, B., J. Ridha and I. Adiwijaya, 2012.
Implementation of vehicle routing problem using
multi-objective ant colony system with obstacle.
Proceedings of the 1st Taibah University
International Conference on Computing and
Information Technology, (CIT, 12).

Goyal, S., 2010. A survey on travelling salesman
problem. University of North Dakota.

Hlaing, Z.C.S.S. and M.A. Khine, 2011. Solving
traveling salesman problem by using improved ant
colony optimization algorithm. IJIET, 1: 404-409.
DOI: 10.7763/IJIET.2011.V1.67

Leontiadis, I., G. Marfia, D. Mack, G. Pau and C.
Mascolo et al., 2011. On the effectiveness of an
opportunistic traffic management system for
vehicular. IEEE Trans. Intell. Trans. Syst., 12: 1537-
1548. DOI: 10.1109/TITS.2011.2161469

Levin, A. and U. Yovel, 2012. Local search algorithms
for multiple-depot vehicle routing and for multiple
traveling salesman problems with proved
performance guarantees. J. Combinat. Optim. DOI
10.1007/s10878-012-9580-x

Matai, R., S.P. Singh and M.L. Mittal, 2010. Traveling
salesman problem: An overview of applications.
formulations and solution approaches. Indian
Institute of Technology Delhi.

Nallusamy, R., K. Duraiswamy, R. Dhanalaksmi and P.
Parthiban, 2010. Optimization of non-linear multiple
traveling salesman problem using k-means
clustering, shrink wrap algorithm and meta-
heuristics. Int. J. Nonlinear Sci., 9: 171-177.

Vaira, G. and O. Kurasova, 2011. Parallel bidirectional
dijkstra's shortest path algorithm. Proceedings of the
Conference on Databases and Information Systems,
(DIS’ 11), IOS Press Amsterdam, pp: 422-435. DOI:
10.3233/978-1-60750-688-1-422.

Xu, L., Z. Xu and D. Xu, 2013. Exact and approximation
algorithms for the min-max k-traveling salesmen
problem on a tree. Eur. J. Operat. Res. DOI:
10.1016/j.ejor.2012.12.023

Yadlapalli, S., S. Rathinam and S. Darbha, 2010. 3-
Approximation algorithm for a two depot,
heterogeneous traveling salesman problem. Optim.
Lett., 6: 141-152. DOI: 10.1007/s11590-010-0256-0

