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Abstract: In response to the drought experienced in Southatyn a rain seeding project has been
setup and developed during the years 1989-1994iriitretive was taken with the purpose of applying
existing methods of rain enhancement technologegions of south Italy including Puglia. The aim
of this study is to provide statistical support the evaluation of the experimental part of thejgmb

In particular our aim is to reconstruct rainfalllis by combining two data sources: rainfall intignas
measured by ground raingauges and radar reflgctiitdifficulty in modeling the rainfall data here
comes from rounding of many recorded rainguages. roanding of the rainfall measurements make
the data essentially discrete and models basedmimaous distributions are not suitable for maagli
these discrete data. In this study we extend twernidy developed spatio-temporal models for
continuous data to accommodate rounded rainfallsoreanents taking discrete values with positive
probabilities. We use MCMC methods to implementriaels and obtain forecasts in space and time
together with their standard errors. We comparetite models using predictive Bayesian methods.
The benefits of our modeling extensions are seeactturate predictions of dry periods with no
positive prediction standard errors.

Key words: Bayesian inference, Gibbs Sampler; Kalman Fikeiging; Markov chain Monte Carlo;
rainfall modeling, cloud seeding operation, Spali@nporal Modeling; State-Space Model.

INTRODUCTION probabilistic models which treat the radar readings
noisy realizations of the underlying true precipita
In this article our aim is to model a datasetaimr process and builds a forecasting model for shont-te
enhancing experiment through seeding operationpredictions. Jordaet al®® develop a stochastic space-
conducted during the years 1989-1994 in the drytime model for rainfall using the variations in the
regions of south Italy starting with Puglia. Thénparry  reflectivity-rainfall intensity (Z-R) relationships
purpose is to reconstruct rainfall fields using tepa The Puglia region of South Italy is known to be
temporal data obtained from a network of groundvery dry and the total amount of annual rainfall is
raingauges and data from a C-band digital weatheusually small. As a result typically there is a bug
radar. Radar raingauges are increasingly used toumber of zero rainfalls in any rainfall data sat this
reconstruct rainfall fields since they are ablgtovide  region. Moreover, after a rain seeding operatiomyna
spatially continuous images of precipitation foroth rainfall amounts recorded by the available raingsag
and regular time intervals; ground raingauges, e t were rounded to the nearest 10th of a millimeteingi
other hand, provide more accurate and direct etgna rise to essentially discrete data.
of rainfall intensity. The occurrences of many discrete amount of
Statistical spatio-temporal models are appropriateainfall in the data exclude the use of many cutyen
for our purposes due to the presence of spatiogesthp available methods and models cited above sincesthos
correlations in rainfall and radar data. Spatiofieral  are essentially developed to model continuous a#inf
modeling of rainfall data has received considerableneasurements. However, some autfidrs have
attention in recent literatuf&’. Many authors have also developed methods for handling zero rainfalls using
considered modeling the relationships between theensoring mechanisms. Here the problem is to extend
radar reflectance and rainfall intensity. For exlmp the model to accommodate more than one discrete
Brown et al® use multivariate time series models with rainfall value occurring with non-zero probability.
state space representation incorporating continuous Another objective of this study is to develop
radar readings as covariates. Cassiregall® model methods for relating radar reflectance and rainfall
cross-correlation between radar and rainfall dafiagy  intensity to reconstruct rainfall fields in the pe@ce of
experimental surface variogram. Cornfdrd uses the discrete rainfall amounts. In this study wethie by
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explicitly regressing rainfall data on the radaroperation. Data were available for many other sepdi
measurements in a spatio-temporal model. We believeperations performed on other days. However, our
that this method is novel for data obtained fromaia  previous investigatid*¥! in modeling those data have
seeding experiment conducted in a very dry regimihs found a number of insurmountable problems in
as southern Italy. modeling the full data set, for example, (a) thees a
We consider two recently developed hierarchicallarge number of missing values due to many
Bayesian modeling approaches. The first approaeh is malfunctioning automatic rainguages (in some cases
separable and stationary Gaussian spatio-temporéere were only 10 rainguages working properly); (b
model developed by Satet al® for monitoring some there were extreme variability in meteorological
air pollution levels. The second approach is aconditions affecting the amounts of rainfall during
hierarchical space-time Bayesian Kriged-Kalmandifferent seeding operations.
filtering (BKKF) model. The spatial prediction sade On April 11, 1992 there werdN=44 working
of the BKKF model is built using the well known rainguages in the study region. L®i=1,...,N denote
method of kriging for optimum spatial predictiondan the UTM x and y-coordinate of the locations. Out of
the temporal effects are analyzed using the modelthese 44 sites we choose to set aside data frositesx
underlying the Kalman filtering method. for validation purposes. The validation sites were
We extend both the models to accommodatehosen judiciously so that those covered the entire
rounded rainfall measurements taking discrete waluestudy region. Thus we model data from the remaining
with positive probabilities. The full Bayesian mdégle 38 sites which will be denoted by, ..., s, where
are implemented using MCMC techniques whichn=38. The 44 locations together with a predictivi gr
enable us to obtain the optimal Bayesian forecasts of 2710 locations are shown in Fig. 2. We aim to
time and space. We compare the two modelingperform spatial predictions in the grid.
approaches using the mean-square error of preglctio
and some formal Bayesian model selection criteria.

The dataset:Our data come from the rain enhancement

project carried on in the South of Italy (Fig. Drithg

the period 1989-1994. This is a very dry region #red >
total amount of annual rainfall is usually very dima
(approximately 80 millimeter on the average perryea

during the study period). We consider a rainfafidieg

operation conducted at 5:00AM on April 11, 1992

when 44 out of total 80 ground raingauges recorded
amount of rainfall in 10 minutes interval; in adaiit

data from a C-band digital weather radar, scantfieg Fig. 2: A predictive grid of 2710 locations togathe
whole area every five minutes, are available. with the 38 modelmg sites (ramguages) in red
color and the 6 validation sites (rainguages) in
orange color

150000 200000

50000 100000

50000 106000 150000 200000

Each site had temporal rainguage data observed at
every 10 minutes and there afe27 observations at
each site covering the time period from 10 minymtest
5 AM to 30 minutes past 9 AM. There are no missing
data and the 27 observations at each site arelgqual

spaced in time. Letz(s ,t) denote the observed log

amount of rainfall (in millimeter) at sitg and at time,
where i=1,..n and t=1,...T. Thus we have 1026
(=38x27) log rainfall measurements for modeling

Fig. 1: Operational raingauges in south Italy purposes. We denote the validation dataz(yﬁ ’t)*

i=n+1,..N, t=1,....T whereN=44 andT=27. Thus we
In this study we consider the data recorded everhiave 162 (6x27) validation data points.

ten minutes from 5:10AM in the morning until Together with the rainfall we have data from a C-

9:30AM. A subsequent seeding operation wasband digital weather radar, scanning the whole area

performed at 9:30AM and we do not include the dateevery five minutes. We shall model log rainfall alat

recorded after 9:30AM on that day since our ainois using log of the radar measurements as a covariate

devise methodology for evaluating a single seedingecause there exist a well known linear relatigmshi
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between them. Let(s,t) denote the log of the radar
measurements at sitgeand at timet. Radar reflectivity
is expressed in units of dBZ. This is a measuréhef 05 -
power scattered back to the radar by precipitation:

0.0 +

particles in the atmosphere. The power is a functib £ -1.0 |
the distribution of raindrops size given by 3 L5
Z(dBZ):lologio(z DG) where the summation of vo
the drop diameterd)) takes place over the volume of
space sampled by the radar. 4 5 54 0 |
Logradar
Exploratory analysis: AIthough the amount of rainfall F|g 3. Average |og rain versus |Og radar at the 38
variable is a continuous random variable, the regali modeling sites
from the rainguages were rounded to the nearebtdfOt
one millimeter. Moreover, the zero rainfalls were =
already replaced by 0.02 for obvious benefits in S e
working with the log-scale. Table 1 provides the ;'
frequencies of the amount of rainfall. Due to this £ 8 . M
discreteness in the observations we shall use a 3 2 i o
censoring mechanism when modeling these data as £ % '?:5‘ m e
continuous observations. z 8 al o "o
(=] as
Table 1: Frequency table of rainfall measurementsillimeter = 7 ,;1
Amount of rainfall Frequency =g . ; 1 -
0.02 90 50000 100000 150000 200000
0.1 136 East-West
8-5 %471 Fig. 4. Sites means at the 38 modeling sites (aed)
0.4 136 6 validation sites (orange)
0.5 54
0.6 78 Variogram of the site
0.7 54 >
0.8 42 2.51
0.9 37
1 42 2.0
>1 66 g
Total 1026 o 151
S 10
There exist a well known linear relationship 0.5
between logarithm of radar data and the logaritfm o
the actual amount of rainfall known as the Marsirad 0.01_ ‘ , ‘
Palmer laW?. We visualize the relationship in Fig. 3 0 0 et 150
where we have plotted the mean log rainfall forheac Fig 5. variogram cloud and a smoothed variogram of
distinct value of log-radar values. An approximate, the residuals for the 38 modeling locations
though rather weak, linear relationship is seerhm using the 27 time points as replications
graph.
In Fig. 4 we provide the mean amount of rainfall ygp|ications at locatios;i=1, ..., n since we have de-

no evidence of spatial trend for the site meandaét  yariogram defined by
we shall illustrate with the exponential covariance
function for simplicity. v(di,-)=(2T)'1Zt E{[W(s,1)- W(%,t)]z}
The site means show evidence of spatial variation.
We investigate this using an empirical variogranthef  whered; is the distance between the spatial locat®ns
data. We first obtain the residuals after fitting aands. The quantity(d;) is estimated by
regression line with gt) as one covariate. We also

remove any temporal variation and trend presermién Y (d)=TYZ, [w(s,b)- w(s, D]
residuals by explicit modeling or by creating sissiee
differences. LetW(s;,t) denote the residuals. We The empirical variogram cloud is obtained by

lotting /(d;;) againstd; for then(n-1)/2 possible pairs
suppose that W(s ,t), t=1,...T are independent gf Ioczgié/n(s.“) J ! (1) p P
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In Fig. 5 we provide the variogram cloud and we

super-impose a smooth loess curve (as obtained usin) «

the S-Plus function loess). This plot justifies ahpbice
of the exponential spatial covariance function.

All the 44 sites have been classified into twoaare
called the target and control. The classificatiomes

from the experimental design applied in the rainz(st)=

seeding project. The seeding operation is carrigdro

the target area, however, rainfall is measured loth
the target area and the control area. For the Aril
experiment the target area was Bari and the coatea

was Canosa, marked as C in Fig. 1.

In order to investigate the temporal variatiorthia
data set we show the time series plots of datadch
of the 38 sites in Fig. 6. The Figure does not slkkow
large amount of temporal variation. Moreover, thisre
not much difference between the time series plbtee

sites in target and control areas; we have perfdrme

significance testing using linear models to confthis
conclusion. Thus our modeling approaches earlidlr wi
not differentiate between the sites from target an
control areas.

Control {Canosa)

500 600 700 800
time

Target (Bari}

T

DT

S ——

700 900

time

Fig. 6: Time series for the 38 modeling locatidlog-
rain)

Spatio-temporal models

Latent variables to model discrete data:As seen in
Table 1 the amount of rainfall had been roundethéo
nearest 10th of a millimeter. These discrete value
occur with non-zero probabilities, but the actuahfall

is a continuous measurement falling between twdespectively with elementspg(s -5 @& )

discrete endpoints. This is a very common problem i
modeling rainfall data with zero rainfaff. A common
approach is to model the zeros by the values afemt
continuous variable below a threshold value
(censoring).

The problem of discreteness is more severe for th
current data as there are many rounded discreteval
occurring with non-zero probabilities. Thus we exte
the censoring mechanism for latent variable touidel
multiple discrete values. Le{(st) denote a continuous
latent variable and let there kearticular values of log
rainfall Ay, A,, ..., Ax which may occur with positive
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probabilities. Letcy, ..., ¢ be constants such that

i <G, i=1,..k. We suppose that the observed data
point at a sites at timet is given by
M if X(st) <cy,
Ao if cy<X(st) <cy,

Ak if cx—q=X(st) <cg,
X(st) otherwise.

In our data set we have1ll and the values of
As... A are the logarithm of the values in the first
column of Table 1, i.eA;=log(0.02),A,=log(0.1), ...,
A1=log(1). We choose the constasts ..., ¢ to be the
logarithms of the numbers 0.05, 0.15, ..., 1.05cWlsre
the mid-points of the successive intervals formethe
values 0, 0.1, 0.2 and so on. We suppose thaathatl
random variableX(s;t) for any observed rainfall bigger
than 1 millimeter on the original scale is the attiog

mount of rainfall. Henceforth, we model the latent
ariablesX(s,t) rather than the observatiodés,t) some
of which have been rounded.

A Gaussian spatio-temporal random effect model:
We first assume the following hierarchical model:

X(si,t)=p(g )+ v(g t)+e(s,t)i=1,.,nt=1,..T(1)
where uU(s,t) is given below, V(S,t) is an

independent zero mean spatio-temporal processhand t
error termeg(st) is a white noise process assumed to

follow N(O, O2)
H(S 1) is given by
H(S 1) =Fo+ Bir($:1). 2)

As mentioned before, fov(s,t), we adopt a
separable covariance structiife That is,

Cofvs VS MFQR ($- s@)a(t-t:g)G)

In addition, thep's are taken to be exponential

correlation functions, i.e.,0(d,@)=exp(-@ld),

independently. The function

as we have decided to assume previously. We dEfine

and X; to be square matrices of order and T,
and

p(t-t\q).
The prior distributions for 052 and 03 are

assumed to be the inverse gamma distribution with
parameters andb, IG(a,b) with meanb/(a-1). We take
8=2 and b=1 to have a proper but diffuse prior
distribution with mean 1 and infinite variance. The
regression parametef and3; are all given normal
prior distributions with mean 0 and variancé.10

A Bayesian Kriged-Kalman model: We follow Sahu
and Mardi& to construct a BKKF model for the
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rainfall data. In so doing we extend their appro&zh hierarchies we suppose thag ~ N(0,G, | ) and with a

account for discreteness in the data and also laeld tlarge value of € wherel is the identity matrix. For

radar data as a regressor. DGE(X(sy0),.... X(&0)' Q=5 we suppose that it has the Wishart prior

denote ther-dimensional latent random vector at titne  jistripution

t=1,...T. The first modeling assumption is the - ’ )

hierarchical model: Qp =V (23 29 ’ _

X, =Y, +¢ ) Where 3*1 is the assumgd prior (-jegrees. of freedom
. (=p) and b, is a known positive definite matrix. We say

where Y=(Y(s0),..., Y(Sl))" is an unobserved but that X has the Wishart distributiol,(m,R) if its

scientifically meaningful process (signal) aedis a density is proportional to

white noise process. Thus we assume that the 1

1
- . —(m-p-1 —-tr(Rx
components ofg;, are i.i.d. normal random variables |R|m/2|x|2( P e 2 (R

with mean zero and unknown variand’é. if x is apxp positive definite matrix”. (Here trp) is

The space-time proce¥sis given by the trace of a matriA.) To obtain diffuse but proper

Y, =Ha, + B, + % ) prior distributions we choos@,=p/2 and following
t t t TN

_ _ _ _ Sahu and Mardfd we takeb, to be the 0.01 times the
where the matrit of ordernxp is defined belowo is  gentity matrix.

the state vector of dimension p,

r =(r(syt),....r(s,,t)) and the error termy; is  Strategies for model choice: Many graphical
assumed to be zero mean Gaussian with covariandiagnostic methods are used to perform diagnostic
tix S which has el . checking and model validatiBfl. Several validation

matrix 2, which has elements statistics are also availaBfé In this article we shall

o(s S )= Cov(y(s ,t)y(§ ’tj ©6) \lj;ﬁd;tr;gn'following methods for model choice and

for ij=1,..n. We assume exponential covariance

structure, i.e.o(s,s ):g‘}%exq—¢m) whered is the  Model choice: To compare be_tween_ two different

di b . d models we shall use the following criterion based o
Istance between sitgsands. Gelfand and Gho$¥ and Laud and Ibrahiff.

, o 2 2
The prior distributions foroz and O, are Var{Z(S ,t)rep}+

assumed to be the inverse gamma distribution with PMCC=iZT:
parametera andb, IG(a,b). As previously we choose _
a=2 and b=1 to have a proper but diffuse prior =1 t=1 [Z(S ’t)obs_ E(Z($ 9 rep)]
distribution with mean 1 and infinite variance. The
regression parametd; is given the flat normal prior Where Z(% ’t)rep is a future observation
distributions with mean 0 and variance'.10 )

The matrixH is obtained by using what are known corresponding  to Z(S ’t)obs under the assumed

as principal  kriging  functiod$™®. In this  model. The first term iPMCC is a penalty term for

implementation we take the fist column ldfto be_ the prediction and the second is a goodness-of-fit term
unit vector, 1. The other columns are obtained a3GoOF).

follows: We first obtain

1

5| ©)

Validation: Recall that we have set aside the

_s-1_ . ppr—]
B=2, T Z—llzy 112, observations z(s;,t), i=n+1,..N, t=1,..T for
y . . ~
We now perform the spectral decompositiofBpf validation purposes. Letzig (s .t) and Zyig (s 1t)
B =UEU', |3ui —eu, denote respectively the predicted and observed amou

of rainfall on the original scale corresponding to

whereU=(uy,...,u,) andE=dlag(el,...,q) and we Z(S ,t) for each i=n+l..N and t=1..T, ie.

assume without loss of generality that the eigareal

are in non-decreasing order,g =0< e, <...< g. 2org (s ,t)=exp{ (s T)} . A simple measure of

Finally, the matrixH is taken as validation is theVSEgiven by

H=(1eZ,b,..8Z, § ) (7 1 N T ) )
MSE=——— . - . : 10

We assume that (N- n)-ri;d;{ Brig(s )~ "#rig($ )} (10)

=t ih 8) The above validation measure does not take into

and 7, ~N(0Z,). To complete the modeling account the spatial and temporal dependence between
the observations. Hence we adopt the validation
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criterion developed by Sahu and MafdiaLet Zyig  conditional on the posterior samples at the observe
denote the vector of 162 observations on the algin locationss,, ...,s, and at the time points, t....t;. LetV

o o - points andJdenote the Kronecker product. For this we
the predictions on the original scale aiddenote the have:

162 dimensional estimated covariance matriigfig . [OJ o2
The validation criterion developed by Sahu and [V(S',t')j -N U
Mardid” is given by: % [ 1 Ss(s— )0 Ty (t-t)
2 5 -1 > _g ¢
D® =(Zorig =Z orig)'Z " orig =Z orig)- (11) Zs(s= )0z (t-1) 252y
The quantityD? will increase if there are large
discrepancies between the predictions based on the 55
model, Zorig and the observed dat,g. The observed
2.0
value ofD? can be referred to the theoretical values of ;
the ¢? distribution with 162 degrees of freedom. In our g 15
illustration we shall compare using bd#SE andD? . & 1ol
Using the MSE we can compare previous results
obtained by Orasi and Jona Lasltffo 05
Prediction details: Our aim is to predict the amount of 00 S 5555 5101010101010 202020202020
rainfall for all locations in a grid ah=2710 sites at any Time

given time pointt=1,....T. The radar values (covariate) o _
for these locations are available. Moreover, walrtee ~ Fig. 7. The 90% prediction intervals of rainfallrfo

prediction details to carry out the cross-validatior times  5(5:50AM),  10(6:40AM)  and
the six sites for which we have set aside datae Hee 20(8:20AM) at each of six validation sites.
provide the prediction details for a locatisrat a time Observed data are plotted as points in the plot
point t' for the two modeling approaches presented

earlier. where Z¢(s-$) is annxl column vector with théth

The MCMC methods are first implemented for . _
sampling from the  posterior distributions. entry given by o(s-s)=ps5(s- s@&) and
Subsequently, the predictive distributions are dathp Z; (t—t') is a Tx1 column vector with théth entry
by composition. The draws from the posterior enable_. 0 .
draws from the predictive distribution of(s,t). This 9o by o(t ~t') = ot (t ~t'; 1) Hence,
predictive distribution is model dependent and the n T
details for obtaining draws from it are given below v(s,t)| VION zz Bjk (s t)V(sj .k )a\? C(st) (13)
The sampled values from the predictive j=1k=1
distribution of X(s,t') are then used to construct the ;oo
predictive distribution oE(s't"). To implement this step noT
we simply invert the censoring relationship given 5. (o= _ _tys1y. sl
earlier, i.e. we choose the appropriate valug(sft') by Bk (1) ;;J(s 9o~ (3 (14)
seeing the position of(s,t') in the set of ordered values nd e
¢ <Cy<---< (. Finally, to obtain the predictions on

n n T T
P H H : e . a1 -1 .
the original scale, we simply work with the expotign  C(s',t")=1- E E E E o(s- sy (t- t)(zs )ij (zt )||< o(s sy (t t).

of the predictive realizationst"). izl j=1 1=1 k=1

(15)
Predictive distribution for the Gaussian random
effects model:Using (1) and (2), for a new locatich The conditional mean and variance are very
at timet', X(s't) is conditionally independent afgiven  computationally expensive to calculate due to the
v(s,t'), with its distribution given by dimensionality ofV and the very large number of sites
X(s't) ~ N(,u(s',t‘)+ v(s,t')ﬂgz) . (12) s' for which we require predictions. However, bxirfg

The posterior predictive distribution of(s't) is the decay parametegs the quantmesBjk (S ’t) and

obtained by integrating over the unknown parameters C(s,t) given in (14) and (15) need only be calculated
(12) with respect to the joint posterior distrilmuti ~ Once; no updating is required in the MCMC.
MCMC samples from the posterior distribution enable
us to perform the integration. Predictive distribution for the BKKF model: We use
Note that in (12) we require a new(s,t) the models (4) and (5) to predict at locat®rand at
287
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timet. We first obtain the spatial covariance matﬂ%

where 3,(s) is the n-dimensional vector with

of ordern+1 using the assumed covariogram (6). Thaglementso(s;,s), i=1,...n. Based on the+1 spatial

is,

* zy Z12(5)
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Let us partition the matril” as follows:

H2

whereH;" isnxp andH,

Y ~N(H @, +B,(r (s 1) .5
Y(S ) ComRr Rl

using the model assumption (5). From this multisari
normal distribution we obtain that
Hoat + pir(s' 1)+ '12(5')21_/1

Y(Sl’t) I 6~N (Yt _lglr(slrtl),

is 1. We now have that

*
- Hay

u]
o . o o Y e R e e}

1
(=]
o]

locations s1,S,, ..., S, and s we derive the r+1)xp

matrixH™ using (7) where we replacg, by Zj,.
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of X(s,t) as given in (17).

Analysis

Model choice and validation: The spatio-temporal
models described earlier require suitable choidahe
smoothing parameterg We adopt the validation MSE
criterion (10) to choose these parameters. We lzdécu
the MSE for all models corresponding to a grid of
smoothing parameters and then choose the parameter
value for which we have the minimum MSE. For the
random effect model described earlier we require tw
smoothing parameter values: one for the spatialthed
other for temporal correlation. Using a two-dimemsil

- (16)  grid-search we obtain the optimalvalues 0.05 and 1
02 -312(s)2, 51 (s) i -
y %12 y £12 for the spatial and temporal processes. For thgdgri
Kalman model described earlier we also obtain the
. . ptimal @ to be 0.05. We have also compared several
gzlsnugm ?itgr?(zi)r?/vemhait/heoghsét Now using  the mOdegther model fitting statistics and validation cride e.g.
P 5 the D? criterion (11) for different values of the
X(s,t)|&~N(Y(s ,t),Ug ): (17)  smoothing parameters near these optimal valuesseTho

whereY(s't) follows (16) conditionally or®. The draws
from the posterior distribution & enable draws from
Y(s,
corresponding draw from the posterior distributiofn

t)]6 as given in (16). Given these and the

also pointed to the same optimal values and wete no
very sensitive to changes around those optimalegalu

We use the predictive model choice criterion (9) t
choose between the random effect model and the
Kriged-Kalman model. Table 2 lists the values of

07 we obtain samples from the predictive distributionmodel choice criterion for different models. Acciogl
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to the PMCC the random effect models are seen to bainfall fields at different time points. We obtathe
better than the BKKF models. Moreover, the cengprin rainfall maps at time 5, 10 and 20 for illustratiarFig.
mechanism detailed previously is seen to be worlewh 9-11. These time points correspond to 5:50AM,
since the random effect model (1) with this is @&ett 6:40AM and 8:20AM respectively. From these figures
than the model without the censoring mechanismye see precipitation moving from the south-westhe®
implemented. The random effect model is also betteporth-east. The south-east part of the region has

than the simple fixed effect model without the 8pat | omained consistently dry. The standard deviatiohs
temporal process. Thus our best model is the GaSSi i predictions increases with the predicted amafint

spatio-temporal random effect model with the Iatentrainfall althou .
. ) , gh they are smaller near the obestion
variables to handle discrete data. We have chettieed sites. For the dry regions at any time point thedard

residual plqts (not shown) for this model for Mét3.8 deviations are approximately zero which impliest tha
modeling sites. The plots do not show any recogiiza accurate predictions are possible. Effective modetif

pattern and the model seem to be adequate foratiae d di e dat ina th ) hanism dess|
We now return to the validation data for six sites®>C'€t€ dala using the censoring mechanism op
here has made this possible.

which we have set-side. We consider validatiorhege o . - s
time points 5:50AM, 6:40AM and 8:20AM. The 90% Prediction map at :50AM  sd of predictions map at 5:530AM

prediction intervals are plotted in Fig. 7. Onlyecout ¢ wen rF e T
of 18 observation falls outside its prediction imrad. 1

As a result we conclude that the model has perfdrme -

well in re-constructing the rainfall fields. For eth i

remainder of this study we shall use this model for
analysis.

Fig. 9: Predictions and their standard errors at

Table 22 PMCC values for different models; Penadtythe first 5:50AM
term in (9) and GOF is the second term
Model Penalty GOF PMCC Prediction map at &40AM sd of predictions map at 5:40AM
Random effect (censored) 751.5 420.1 11716
Random effect (not censored)  903.5 435.8 1339.3
Fixed effect 1095.7 1225.6 2321.3
BKKF (p=5) (censored) 986.0 1036.2 2022.2
BKKF (p=5) (not censored) 11415 1032.1 2173.6
BKKF (p=15) (censored) 951.1 960.1  1911.2

BKKF (p=15) (not censored) 1096.1 954.9  2051.0

Parameter estimates: The MCMC trace plots of Fig 10: Predictions and their standard errors at
parameters of the adopted Gaussian random effects 6:40AM

model is given in Fig. 8. The MCMC algorithm
converges rapidly and mixes well.

Table 3 provides the parameter estimates for th
adopted random effect model. The regression co
efficient 3, for the radar measurements is seen to b
significant and positive as expected. Furthermthe,
estimated values d8, and 3, are consistent with the
approximate linear relationship we have seen in the

scatter plot given in Fig. 3. The random effectiasace, Fig. 11: Predictions and their standard errors at

o? is slightly larger than the error varianeg which 8:20AM

shows that the random effects explain more vamatio
than the pure error.

Prediction map at £:20A0M sd of predictions map at 8:20AM

DISCUSSION

Table 3: Parameter estimates for the chosen ramdi@et model In this StUdy we have compared two competitive

Parameter  Mean <d 95% interval spatio-temporal modeling approaches for rainfalada
Bo 1,080 0.088 (-1.249, 0.912) obtained from a cloud seeding experiment in the
Bs 0.044 0.020 (0.004, 0.085) regions of south ltaly including Puglia. The Gaassi
o 0.485 0.059 (0.373, 0.602) random effect model is seen to perform better than

2 BKKF model. Each model has, a priori, a good reason
oy 0.537 0.093 (0.365, 0.731)

to be chosen. The BKKF is a model that naturally

extend in a Bayesian space-time setting the
Predictions: Reconstructing the rainfall fields: We  geostatistical approach which is usually considered
use the prediction details discussed to reconsthet quite sensible when treating rainfall-radar §ata®2%
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It is able to easily account for non separable biehaf 7.
the space-time process and allow to include seasona

effects and covariates in an easily interpretatd@mer.

The Gaussian random effect model with separablg.

space-time covariance structure and the fixed effec
model can be seen as alternatives to this appnwheh
there is a reasonable suspect that the space-tonegs
is indeed separable. Furthermore, our
essentially discrete and this fact is not accoufdedn

any of the above models. We have developed a
censoring method using a latent variable to handle

multiple discrete (rounded) rainfall amounts and
introduced it in both the models. The benefits of
modeling of discrete data using the censoring
mechanism are seen in more accurate predictiodsyof
periods with no positive prediction standard errors
Notice that the BKKF performs better then the fixed
effect model but worse than the random effect oitb w
or without censoring. A possible reason for thighiat
the spatio-temporal process is indeed separablehend
BKKF is not a suitable model for such processes.
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