
Journal of Mathematics and Statistics 1 (4 ): 282-290, 2005 
ISSN 1549-3644 
© 2005 Science Publications 

Corresponding Author: Sujit K. Sahu, School of Mathematics, University of Southampton, Highfield, SO17 1BJ, UK. 
282 

 
A Comparison of Spatio-Temporal Bayesian Models for Reconstruction of Rainfall Fields 

in a Cloud Seeding Experiment 
 

1Sujit K. Sahu, 2Giovanna Jona Lasinio, 3Arianna Orasi  and 4Kanti V. Mardia 
1School of Mathematics, University of Southampton, Highfield, SO17 1BJ, UK. 

2 DSPSA, University of Rome “La Sapienza”, P.le Aldo Moro 5, 00185 Rome Italy 
3Italian Environmental Protection Agency (APAT),Via Curtatone 3, 00185 Rome, Italy 

4University of Leeds, Leeds , West Yorkshire , LS2 9JT, UK 
 

Abstract: In response to the drought experienced in Southern Italy a rain seeding project has been 
setup and developed during the years 1989-1994. The initiative was taken with the purpose of applying 
existing methods of rain enhancement technology to regions of south Italy including Puglia. The aim 
of this study is to provide statistical support for the evaluation of the experimental part of the project. 
In particular our aim is to reconstruct rainfall fields by combining two data sources: rainfall intensity as 
measured by ground raingauges and radar reflectivity. A difficulty in modeling the rainfall data here 
comes from rounding of many recorded rainguages. The rounding of the rainfall measurements make 
the data essentially discrete and models based on continuous distributions are not suitable for modeling 
these discrete data. In this study we extend two recently developed spatio-temporal models for 
continuous data to accommodate rounded rainfall measurements taking discrete values with positive 
probabilities. We use MCMC methods to implement the models and obtain forecasts in space and time 
together with their standard errors. We compare the two models using predictive Bayesian methods. 
The benefits of our modeling extensions are seen in accurate predictions of dry periods with no 
positive prediction standard errors. 
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INTRODUCTION 

 
 In this article our aim is to model a dataset on rain 
enhancing experiment through seeding operations 
conducted during the years 1989-1994 in the dry 
regions of south Italy starting with Puglia. The primary 
purpose is to reconstruct rainfall fields using spatio-
temporal data obtained from a network of ground 
raingauges and data from a C-band digital weather 
radar. Radar raingauges are increasingly used to 
reconstruct rainfall fields since they are able to provide 
spatially continuous images of precipitation for short 
and regular time intervals; ground raingauges, on the 
other hand, provide more accurate and direct estimates 
of rainfall intensity. 
 Statistical spatio-temporal models are appropriate 
for our purposes due to the presence of spatio-temporal 
correlations in rainfall and radar data. Spatio-temporal 
modeling of rainfall data has received considerable 
attention in recent literature[1-4]. Many authors have also 
considered modeling the relationships between the 
radar reflectance and rainfall intensity. For example, 
Brown et al.[5] use multivariate time series models with 
state space representation incorporating continuous 
radar readings as covariates. Cassiraga et al.[6] model 
cross-correlation between radar and rainfall data using 
experimental surface variogram. Cornford[7] uses 

probabilistic models which treat the radar readings as 
noisy realizations of the underlying true precipitation 
process and builds a forecasting model for short-term 
predictions. Jordan et al.[8] develop a stochastic space-
time model for rainfall using the variations in the 
reflectivity-rainfall intensity (Z-R) relationships. 
 The Puglia region of South Italy is known to be 
very dry and the total amount of annual rainfall is 
usually small. As a result typically there is a huge 
number of zero rainfalls in any rainfall data set for this 
region. Moreover, after a rain seeding operation many 
rainfall amounts recorded by the available rainguages 
were rounded to the nearest 10th of a millimeter giving 
rise to essentially discrete data. 
 The occurrences of many discrete amount of 
rainfall in the data exclude the use of many currently 
available methods and models cited above since those 
are essentially developed to model continuous rainfall 
measurements. However, some authors[1-3] have 
developed methods for handling zero rainfalls using 
censoring mechanisms. Here the problem is to extend 
the model to accommodate more than one discrete 
rainfall value occurring with non-zero probability. 
 Another objective of this study is to develop 
methods for relating radar reflectance and rainfall 
intensity to reconstruct rainfall fields in the presence of 
the discrete rainfall amounts. In this study we do this by 
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explicitly regressing rainfall data on the radar 
measurements in a spatio-temporal model. We believe 
that this method is novel for data obtained from a rain 
seeding experiment conducted in a very dry region such 
as southern Italy. 
 We consider two recently developed hierarchical 
Bayesian modeling approaches. The first approach is a 
separable and stationary Gaussian spatio-temporal 
model developed by Sahu et al.[9] for monitoring some 
air pollution levels. The second approach is a 
hierarchical space-time Bayesian Kriged-Kalman 
filtering (BKKF) model. The spatial prediction surface 
of the BKKF model is built using the well known 
method of kriging for optimum spatial prediction and 
the temporal effects are analyzed using the models 
underlying the Kalman filtering method. 
 We extend both the models to accommodate 
rounded rainfall measurements taking discrete values 
with positive probabilities. The full Bayesian models 
are implemented using MCMC techniques which 
enable us to obtain the optimal Bayesian forecasts in 
time and space. We compare the two modeling 
approaches using the mean-square error of predictions 
and some formal Bayesian model selection criteria. 
 
The dataset: Our data come from the rain enhancement 
project carried on in the South of Italy (Fig. 1) during 
the period 1989-1994. This is a very dry region and the 
total amount of annual rainfall is usually very small 
(approximately 80 millimeter on the average per year 
during the study period). We consider a rainfall seeding 
operation conducted at 5:00AM on April 11, 1992 
when 44 out of total 80 ground raingauges recorded 
amount of rainfall in 10 minutes interval; in addition 
data from a C-band digital weather radar, scanning the 
whole area every five minutes, are available. 
 

 
Fig. 1:  Operational raingauges in south Italy 
 
 In this study we consider the data recorded every 
ten minutes from 5:10AM in the morning until 
9:30AM. A subsequent seeding operation was 
performed at 9:30AM and we do not include the data 
recorded after 9:30AM on that day since our aim is to 
devise methodology for evaluating a single seeding 

operation. Data were available for many other seeding 
operations performed on other days. However, our 
previous investigation[10,11] in modeling those data have 
found a number of insurmountable problems in 
modeling the full data set, for example, (a) there was a 
large number of missing values due to many 
malfunctioning automatic rainguages (in some cases 
there were only 10 rainguages working properly); (b) 
there were extreme variability in meteorological 
conditions affecting the amounts of rainfall during 
different seeding operations. 
 On April 11, 1992 there were N=44 working 
rainguages in the study region. Let si,i=1,…,N denote 
the UTM x and y-coordinate of the locations. Out of 
these 44 sites we choose to set aside data from six sites 
for validation purposes. The validation sites were 
chosen judiciously so that those covered the entire 
study region. Thus we model data from the remaining 
38 sites which will be denoted by s1, …, sn  where 
n=38. The 44 locations together with a predictive grid 
of 2710 locations are shown in Fig. 2. We aim to 
perform spatial predictions in the grid. 
 

 
Fig. 2: A predictive grid of 2710 locations together 

with the 38 modeling sites (rainguages) in red 
color and the 6 validation sites (rainguages) in 
orange color 

 
 Each site had temporal rainguage data observed at 
every 10 minutes and there are T=27 observations at 
each site covering the time period from 10 minutes past 
5 AM to 30 minutes past 9 AM. There are no missing 
data and the 27 observations at each site are equally 

spaced in time. Let ( )iz ,ts  denote the observed log 

amount of rainfall (in millimeter) at site si and at time t, 
where i=1,...,n and t=1,...,T. Thus we have 1026 
(=38x27) log rainfall measurements for modeling 

purposes. We denote the validation data by ( )iz ,ts , 

i=n+1,...,N, t=1,...,T where N=44 and T=27. Thus we 
have 162 (6x27) validation data points. 
 Together with the rainfall we have data from a C-
band digital weather radar, scanning the whole area 
every five minutes. We shall model log rainfall data 
using log of the radar measurements as a covariate 
because there exist a well known linear relationship 
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between them. Let r(si,t) denote the log of the radar 
measurements at site si and at time t. Radar reflectivity 
is expressed in units of dBZ. This is a measure of the 
power scattered back to the radar by precipitation 
particles in the atmosphere. The power is a function of 
the distribution of raindrops size given by 

( ) ( )6
1010log= ∑Z dBZ D  where the summation of 

the drop diameters (D) takes place over the volume of 
space sampled by the radar. 
 
Exploratory analysis: Although the amount of rainfall 
variable is a continuous random variable, the readings 
from the rainguages were rounded to the nearest 10th of 
one millimeter. Moreover, the zero rainfalls were 
already replaced by 0.02 for obvious benefits in 
working with the log-scale. Table 1 provides the 
frequencies of the amount of rainfall. Due to this 
discreteness in the observations we shall use a 
censoring mechanism when modeling these data as 
continuous observations. 
 
Table 1:  Frequency table of rainfall measurements in millimeter 
Amount of rainfall Frequency 
0.02       90 
0.1     136 
0.2    117 
0.3    174 
0.4    136 
0.5     54 
0.6     78 
0.7     54 
0.8     42 
0.9     37 
1     42 
>1     66 
Total 1026 

  
 There exist a well known linear relationship 
between logarithm of radar data and the logarithm of 
the actual amount of rainfall known as the Marshal and 
Palmer law[12]. We visualize the relationship in Fig. 3 
where we have plotted the mean log rainfall for each 
distinct value of log-radar values. An approximate, 
though rather weak, linear relationship is seen in the 
graph. 
 In Fig. 4 we provide the mean amount of rainfall 
(over 27 measurements) in each of the 44 sites. There is 
no evidence of spatial trend for the site means. In fact 
we shall illustrate with the exponential covariance 
function for simplicity.  
 The site means show evidence of spatial variation. 
We investigate this using an empirical variogram of the 
data. We first obtain the residuals after fitting a 
regression line with r(si,t) as one covariate. We also 
remove any temporal variation and trend present in the 
residuals by explicit modeling or by creating successive 
differences. Let ( )siW ,t  denote the residuals. We 

suppose   that   ( )  1=siW ,t , t ,...,T are independent     

 
Fig. 3: Average log rain versus log radar at the 38 

modeling sites 
 

 
Fig. 4: Sites means at the 38 modeling sites (red) and 

6 validation sites (orange) 
 

 
Fig. 5: Variogram cloud and a smoothed variogram of 

the residuals for the 38 modeling locations 
using the 27 time points as replications 

 
replications at location si,i=1, …, n since we have de-
trended the data. We now consider the average 
variogram defined by   
 
 γ(dij)=(2T)-1Σt E{[W(si,t)- W(sj,t)]

2} 
 
where dij is the distance between the spatial locations si 
and sj. The quantity γ(dij) is estimated by  
 
 γ̂ (dij)=(2T)-1Σt [w(si,t)- w(sj,t)]

2. 
 
 The empirical variogram cloud is obtained by 
plotting γ̂ (dij) against dij for the n(n-1)/2 possible pairs 
of locations. 
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 In Fig. 5 we provide the variogram cloud and we 
super-impose a smooth loess curve (as obtained using 
the S-Plus function loess). This plot justifies our choice 
of the exponential spatial covariance function. 
 All the 44 sites have been classified into two areas 
called the target and control. The classification comes 
from the experimental design applied in the rain 
seeding project. The seeding operation is carried out in 
the target area, however, rainfall is measured both in 
the target area and the control area. For the April 11 
experiment the target area was Bari and the control area 
was Canosa, marked as C in Fig. 1. 
 In order to investigate the temporal variation in the 
data set we show the time series plots of data for each 
of the 38 sites in Fig. 6. The Figure does not show a 
large amount of temporal variation. Moreover, there is 
not much difference between the time series plots of the 
sites in target and control areas; we have performed 
significance testing using linear models to confirm this 
conclusion. Thus our modeling approaches earlier will 
not differentiate between the sites from target and 
control areas.  
 

 
Fig. 6:  Time series for the 38 modeling locations (log-
rain) 
Spatio-temporal models 
Latent variables to model discrete data: As seen in 
Table 1 the amount of rainfall had been rounded to the 
nearest 10th of a millimeter. These discrete values 
occur with non-zero probabilities, but the actual rainfall 
is a continuous measurement falling between two 
discrete endpoints. This is a very common problem in 
modeling rainfall data with zero rainfall[1,2]. A common 
approach is to model the zeros by the values of a latent 
continuous variable below a threshold value 
(censoring). 
 The problem of discreteness is more severe for the 
current data as there are many rounded discrete values 
occurring with non-zero probabilities. Thus we extend 
the censoring mechanism for latent variable to include 
multiple discrete values. Let X(s,t) denote a continuous 
latent variable and let there be k particular values of log 
rainfall λ1, λ2, …, λk which may occur with positive 

probabilities. Let c1, …, ck be constants such that 

i icλ < , i=1,...,k. We suppose that the observed data 

point at a site s at time t is given by  

1 1

2 1 2

k k 1 k

if  X( , t) c ,

if  c X( , t) c ,

Z( , t)

if  c X( , t) c ,

X( , t) otherwise.

λ
λ

λ −

<
 ≤ <= 
 ≤ <


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s

s

s

s

⋮ ⋮  

 In our data set we have k=11 and the values of 

1 k,...,λ λ  are the logarithm of the values in the first 

column of Table 1, i.e. λ1=log(0.02), λ2=log(0.1), ..., 
λ11=log(1). We choose the constants c1, …, ck to be the 
logarithms of the numbers 0.05, 0.15, ..., 1.05 which are 
the mid-points of the successive intervals formed of the 
values 0, 0.1, 0.2 and so on. We suppose that the latent 
random variable X(s,t) for any observed rainfall bigger 
than 1 millimeter on the original scale is the actual log 
amount of rainfall. Henceforth, we model the latent 
variables X(s,t) rather than the observations Z(s,t) some 
of which have been rounded. 
 
A Gaussian spatio-temporal random effect model: 
We first assume the following hierarchical model:  

1 1µ ε= + + = =s s s si i i iX ( ,t ) ( ,t ) v( ,t ) ( ,t ),i ,...,n,t ,...,T , (1) 

where µ i( ,t )s  is given below, ν i( ,t )s  is an 

independent zero mean spatio-temporal process and the 
error term ε(s,t) is a white noise process assumed to 

follow N(0, 2
εσ )  independently. The function 

µ i( ,t )s  is given by  

0 1i i( ,t ) r( ,t ).µ β β= +s s  (2) 

 As mentioned before, for ν i( ,t )s , we adopt a 

separable covariance structure[13]. That is,  
2

i j v s i j s t tvCov{v( ,t),v( ,t')} ( ; ) (t t'; ).σ ρ φ ρ φ= − −s s s s (3) 

 In addition, the ρ’s are taken to be exponential 
correlation functions, i.e., expρ φ φ= − ⋅( d , ) ( d ), 
as we have decided to assume previously. We define Σs 
and Σt to be square matrices of order n and T, 
respectively with elements i j s( s s , )ρ φ−s   and 

t t( t t ', )ρ φ− . 

 The prior distributions for 2
εσ  and 2

νσ  are 

assumed to be the inverse gamma distribution with 
parameters a and b, IG(a,b) with mean b/(a-1). We take 
a=2 and b=1 to have a proper but diffuse prior 
distribution with mean 1 and infinite variance. The 
regression parameters β0 and β1 are all given normal 
prior distributions with mean 0 and variance 104. 
 
A Bayesian Kriged-Kalman model: We follow Sahu 
and Mardia[9] to construct a BKKF model for the 
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rainfall data. In so doing we extend their approach to 
account for discreteness in the data and also add the 
radar data as a regressor. Let X t=(X(s1,t),…, X(sn,t))′ 
denote the n-dimensional latent random vector at time t; 
t=1,...,T. The first modeling assumption is the 
hierarchical model:  

ttt ε+= YX  (4) 

where Y t=(Y(s1,t),…, Y(sn,t))′  is an unobserved but 
scientifically meaningful process (signal) and εt is a 
white noise process. Thus we assume that the 
components of εt are i.i.d. normal random variables 

with mean zero and unknown variance 2εσ . 

The space-time process Y t is given by  

1t t t tHα β γ= + +Y r  (5) 

where the matrix H of order nxp is defined below, αt is 
the state vector of dimension p, 

1 n( r( ,t ),...,r( ,t ))'=r s s  and the error term tγ  is 

assumed to be zero mean Gaussian with covariance 

matrix γΣ  which has elements  

( )σ γ γ=i j i j( , ) Cov ( ,t ), ( ,t )s s s s  (6) 

for i,j=1,...,n. We assume exponential covariance 

structure, i.e. 2expγσ σ φ= − ⋅s si j( , ) ( d )  where d is the 

distance between sites si and sj. 

 The prior distributions for 2
εσ  and 2

γσ  are 

assumed to be the inverse gamma distribution with 
parameters a and b, IG(a,b). As previously we choose 
a=2 and b=1 to have a proper but diffuse prior 
distribution with mean 1 and infinite variance. The 
regression parameter β1 is given the flat normal prior 
distributions with mean 0 and variance 104. 
 The matrix H is obtained by using what are known 
as principal kriging functions[9,13]. In this 
implementation we take the fist column of H to be the 
unit vector, 1. The other columns are obtained as 
follows: We first obtain  

1 1 1
1

1
' .

'
γ γ γ

γ

− − −
−= Σ − Σ Σ

Σ
B 11

1 1
 

We now perform the spectral decomposition of B,  

i i i ,B = UEU',Bu = e u  

where U=(u1,…,un) and ( )1diag n=E e ,...,e  and we 

assume without loss of generality that the eigenvalues 
are in non-decreasing order,  1 2 10 += < ≤ ≤… ne e e . 
Finally, the matrix H is taken as  

2 21 γ γ= Σ Σp pH ( ,e u ,...,e u ). (7) 

We assume that  

1α α η−= +t t t , (8) 

and γη Σ0t ~ N( , ) . To complete the modeling 

hierarchies we suppose that 0 αα 0 I~ N( ,C ) and with a 

large value of Ca  where I  is the identity matrix. For 
Qη=Σ-1

η  we suppose that it has the Wishart prior 
distribution,  

pQ ~ W (2a ,2b )η η η  

 Where 2aη is the assumed prior degrees of freedom 
(≥p) and  bη is a known positive definite matrix. We say 
that X has the Wishart distribution Wp(m,R) if its 
density is proportional to  

)Rx(tr)pm(
/m e|x||R| 2

1
1

2

1
2

−−−
 

if x is a pxp positive definite matrix[14]. (Here tr(A) is 
the trace of a matrix A.) To obtain diffuse but proper 
prior distributions we choose aη=p/2 and following 
Sahu and Mardia[9] we take bη to be the 0.01 times the 
identity matrix. 
 
Strategies for model choice: Many graphical 
diagnostic methods are used to perform diagnostic 
checking and model validation[13]. Several validation 
statistics are also available[15]. In this article we shall 
use the following methods for model choice and 
validation. 
 
Model choice: To compare between two different 
models we shall use the following criterion based on 
Gelfand and Ghosh[16] and Laud and Ibrahim[17].  

 

( ){ }
( ) ( )( ){ }

rep

2
1 1

obs rep
= =

 +
 

=  
 −  

∑∑
s

s s

in T

i t i i

Var Z ,t

PMCC ,

Z ,t E Z ,t

 (9) 

where ( )repiZ ,ts  is a future observation 

corresponding to ( )obsiZ ,ts  under the assumed 

model. The first term in PMCC is a penalty term for 
prediction and the second is a goodness-of-fit term 
(GOF). 
 
Validation: Recall that we have set aside the 
observations ( )siz ,t , i=n+1,...,N, t=1,...,T for 

validation purposes. Let ( )orig siz ,t  and ( )orig siẑ ,t   

denote respectively the predicted and observed amount 
of rainfall on the original scale corresponding to 

( )iz ,ts  for each i=n+1,...,N and t=1,...,T, i.e. 

( ) ( ){ }orig exp=s si iz ,t z ,t . A simple measure of 

validation is the MSE given by  

( ) ( ){ }2
orig orig

1 1

1

= + =

= −
− ∑ ∑ s s

N T

i i
i n t

ˆMSE z ,t z ,t .
( N n )T

 (10) 

 The above validation measure does not take into 
account the spatial and temporal dependence between 
the observations. Hence we adopt the validation 
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criterion developed by Sahu and Mardia[9]. Let Zorig 
denote the vector of 162 observations on the original 

scale for which we seek validation and origẐ  denote 

the predictions on the original scale and Σ̂  denote the 

162 dimensional estimated covariance matrix of origẐ  . 

The validation criterion developed by Sahu and 
Mardia[9] is given by:  

2 1
orig orig orig orig

ˆ ˆD ( )' ( ).−= − Σ −Z Z Z Z  (11) 

 The quantity D2 will increase if there are large 
discrepancies between the predictions based on the 

model, origẐ  and the observed data, Zorig. The observed 

value of D2  can be referred to the theoretical values of 
the c2 distribution with 162 degrees of freedom. In our 
illustration we shall compare using both MSE and D2 . 
Using the MSE we can compare previous results 
obtained by Orasi and Jona Lasinio[10]. 
 
Prediction details: Our aim is to predict the amount of 
rainfall for all locations in a grid of m=2710 sites at any 
given time point t=1,...,T. The radar values (covariate) 
for these locations are available. Moreover, we need the 
prediction details to carry out the cross-validation for 
the six sites for which we have set aside data. Here, we 
provide the prediction details for a location s' at a time 
point t' for the two modeling approaches presented 
earlier. 
 The MCMC methods are first implemented for 
sampling from the posterior distributions. 
Subsequently, the predictive distributions are sampled 
by composition. The draws from the posterior enable 
draws from the predictive distribution of X(s',t'). This 
predictive distribution is model dependent and the 
details for obtaining draws from it are given below. 
 The sampled values from the predictive 
distribution of X(s',t') are then used to construct the 
predictive distribution of Z(s',t'). To implement this step 
we simply invert the censoring relationship given 
earlier, i.e. we choose the appropriate value of Z(s',t') by 
seeing the position of X(s',t') in the set of ordered values 

1 2< < <⋯ kc c c . Finally, to obtain the predictions on 

the original scale, we simply work with the exponential 
of the predictive realizations Z(s',t'). 
 
Predictive distribution for the Gaussian random 
effects model: Using (1) and (2), for a new location s' 
at time t', X(s',t') is conditionally independent of z given 
v(s',t'), with its distribution given by  

( )2
εµ σ+s s sX( ',t ') ~ N ( ',t ') v( ',t '), . (12) 

 The posterior predictive distribution of X(s',t') is 
obtained by integrating over the unknown parameters in 
(12) with respect to the joint posterior distribution. 
MCMC samples from the posterior distribution enable 
us to perform the integration. 
 Note that in (12) we require a new v(s',t') 

conditional on the posterior samples at the observed 
locations s1, …,sn and at the time points t1, …,tT. Let V 
denote the vector of v(s, t) in n locations and T time 
points and ⊗denote the Kronecker product. For this we 
have:  

2
v

' '
s t

s t s t

0
,

0v( ', t ')
~ N

1 ( ') ( t ')

( ') ( t ')

σ
  

•  
    

    Σ − ⊗ Σ −      Σ − ⊗ Σ − Σ ⊗ Σ  

s

V s s t

s s t

 

 

 
 
Fig. 7: The 90% prediction intervals of rainfall for 

times 5(5:50AM), 10(6:40AM) and 
20(8:20AM) at each of six validation sites. 
Observed data are plotted as points in the plot 

 
where ( )Σ −s ss '  is an nx1 column vector with the ith 

entry given by ( ) ( )σ ρ φ− = −s s s si s i s' ;   and 

( )Σ −tt t '  is a Tx1 column vector with the kth entry 

given by  ( ) ( )σ ρ φ− = −k t k tt t ' t t '; . Hence,  

2

1 1

σ
= =

 
 ∼  
 
 

∑∑s V s s s
n T

jk j k v
j k

v( ',t')| N B ( ',t')v( ,t ), C( ',t')  (13) 

where  

1 1

1 1

n T

jk i l s ij t lk

i l

B ( ',t ') ( ') ( t t ')( ) ( )σ σ − −

= =

= − − Σ Σ∑∑s s s  (14) 

and  

( ) ( )
n n T T

1 1
s t

ij lk
i 1 j 1 l 1 k 1

C( ', t ') 1 ( ') ( ') ( ') ( ').σ σ σ σ− −

= = = =

= − − − Σ Σ − −∑∑∑∑s s s t t s s t t

(15) 
 
 The conditional mean and variance are very 
computationally expensive to calculate due to the 
dimensionality of V and the very large number of sites 
s' for which we require predictions. However, by fixing 

the decay parameters φ, the quantities ( )jkB ',t's  and 

C(s',t') given in (14) and (15) need only be calculated 
once; no updating is required in the MCMC. 
 
Predictive distribution for the BKKF model: We use 
the models (4) and (5) to predict at location s' and at 
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time t. We first obtain the spatial covariance matrix γΣ*  

of order n+1 using the assumed covariogram (6). That 
is,  










Σ
ΣΣ

=Σ 2
12

12

γ

γ
γ σ)'('

)(
*

s

s
 

where ( )12Σ s'  is the n-dimensional vector with 

elements ( )σ s si , ' , i=1,...,n. Based on the n+1 spatial 

locations s1,s2, …, sn and s' we derive the (n+1)xp 

matrix H* using (7) where we replace γΣ  by γΣ* .  

 

 
Fig. 8: Trace plot of parameters for the adopted model 
 
Let us partition the matrix H* as follows:  
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* is nxp and H2

*  is 1xp. We now have that  
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using the model assumption (5). From this multivariate 
normal distribution we obtain that  
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using standard methods. Now using the model 
assumption (4) we have that  

),),t,'(Y(N~|)t,'(X 2
εσθ ss  (17) 

where Y(s',t) follows (16) conditionally on θ. The draws 
from the posterior distribution of θ enable draws from 
Y(s', t)| θ as given in (16). Given these and the 
corresponding draw from the posterior distribution of 

2
εσ  we obtain samples from the predictive distribution 

of X(s',t) as given in (17).  
 
Analysis 
Model choice and validation: The spatio-temporal 
models described earlier require suitable choices of the 
smoothing parameters φ. We adopt the validation MSE 
criterion (10) to choose these parameters. We calculate 
the MSE for all models corresponding to a grid of 
smoothing parameters and then choose the parameter 
value for which we have the minimum MSE. For the 
random effect model described earlier we require two 
smoothing parameter values: one for the spatial and the 
other for temporal correlation. Using a two-dimensional 
grid-search we obtain the optimal φ values 0.05 and 1 
for the spatial and temporal processes. For the Kriged-
Kalman model described earlier we also obtain the 
optimal φ to be 0.05. We have also compared several 
other model fitting statistics and validation criteria, e.g. 
the D2 criterion (11) for different values of the 
smoothing parameters near these optimal values. Those 
also pointed to the same optimal values and were not 
very sensitive to changes around those optimal values. 
 We use the predictive model choice criterion (9) to 
choose between the random effect model and the 
Kriged-Kalman model. Table 2 lists the values of 
model choice criterion for different models. According 
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to the PMCC the random effect models are seen to be 
better than the BKKF models. Moreover, the censoring 
mechanism detailed previously is seen to be worthwhile 
since the random effect model (1) with this is better 
than the model without the censoring mechanism 
implemented. The random effect model is also better 
than the simple fixed effect model without the spatio-
temporal process. Thus our best model is the Gaussian 
spatio-temporal random effect model with the latent 
variables to handle discrete data. We have checked the 
residual plots (not shown) for this model for all the 38 
modeling sites. The plots do not show any recognizable 
pattern and the model seem to be adequate for the data.  
 We now return to the validation data for six sites 
which we have set-side. We consider validation at three 
time points 5:50AM, 6:40AM and 8:20AM. The 90% 
prediction intervals are plotted in Fig. 7. Only one out 
of 18 observation falls outside its prediction interval. 
As a result we conclude that the model has performed 
well in re-constructing the rainfall fields. For the 
remainder of this study we shall use this model for 
analysis.  
 
Table 2: PMCC values for different models; Penalty is the first 

term in (9) and GOF is the second term  
Model Penalty GOF PMCC 
Random effect (censored) 751.5 420.1 1171.6 
Random effect (not censored) 903.5 435.8 1339.3 
Fixed effect 1095.7 1225.6 2321.3 
BKKF (p=5) (censored) 986.0 1036.2 2022.2 
BKKF (p=5) (not censored) 1141.5 1032.1 2173.6 
BKKF (p=15) (censored) 951.1 960.1 1911.2 
BKKF (p=15) (not censored) 1096.1 954.9 2051.0 

 
Parameter estimates: The MCMC trace plots of 
parameters of the adopted Gaussian random effects 
model is given in Fig. 8. The MCMC algorithm 
converges rapidly and mixes well. 
 Table 3 provides the parameter estimates for the 
adopted random effect model. The regression co-
efficient β1 for the radar measurements is seen to be 
significant and positive as expected. Furthermore, the 
estimated values of β0 and β1 are consistent with the 
approximate linear relationship we have seen in the 
scatter plot given in Fig. 3. The random effect variance, 

2
νσ  is slightly larger than the error variance σε

2  which 

shows that the random effects explain more variation 
than the pure error.  
 
Table 3: Parameter estimates for the chosen random effect model 
Parameter Mean sd 95% interval 
β0 -1.080 0.088 (-1.249, -0.912) 
β1 0.044 0.020 (0.004, 0.085) 

σε
2
 0.485 0.059 (0.373, 0.602) 

2
νσ  0.537 0.093 (0.365, 0.731) 

 
Predictions: Reconstructing the rainfall fields: We 
use the prediction details discussed to reconstruct the 

rainfall fields at different time points. We obtain the 
rainfall maps at time 5, 10 and 20 for illustration in Fig. 
 9-11. These time points correspond to 5:50AM, 
6:40AM and 8:20AM respectively. From these figures 
we see precipitation moving from the south-west to the 
north-east. The south-east part of the region has 
remained consistently dry. The standard deviations of 
the predictions increases with the predicted amount of 
rainfall, although they are smaller near the observation 
sites. For the dry regions at any time point the standard 
deviations are approximately zero which implies that 
accurate predictions are possible. Effective modeling of 
discrete data using the censoring mechanism developed 
here has made this possible.  

 
Fig. 9: Predictions and their standard errors at 

5:50AM 
 

 
 
Fig. 10: Predictions and their standard errors at 

6:40AM 
 

 
Fig. 11: Predictions and their standard errors at 

8:20AM 
 

DISCUSSION 
 
 In this study we have compared two competitive 
spatio-temporal modeling approaches for rainfall data 
obtained from a cloud seeding experiment in the 
regions of south Italy including Puglia. The Gaussian 
random effect model is seen to perform better than the 
BKKF model. Each model has, a priori, a good reason 
to be chosen. The BKKF is a model that naturally 
extend in a Bayesian space-time setting the 
geostatistical approach which is usually considered 
quite sensible when treating rainfall-radar data[6,11,18-20]. 
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It is able to easily account for non separable behavior of 
the space-time process and allow to include seasonal 
effects and covariates in an easily interpretable manner. 
The Gaussian random effect model with separable 
space-time covariance structure and the fixed effect 
model can be seen as alternatives to this approach when 
there is a reasonable suspect that the space-time process 
is indeed separable. Furthermore, our data are 
essentially discrete and this fact is not accounted for in 
any of the above models. We have developed a 
censoring method using a latent variable to handle 
multiple discrete (rounded) rainfall amounts and 
introduced it in both the models. The benefits of 
modeling of discrete data using the censoring 
mechanism are seen in more accurate predictions of dry 
periods with no positive prediction standard errors. 
Notice that the BKKF performs better then the fixed 
effect model but worse than the random effect one with 
or without censoring. A possible reason for this is that 
the spatio-temporal process is indeed separable and the 
BKKF is not a suitable model for such processes.  
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