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Abstract: To evaluate the environmental impact of pollution, mathematical models play a major role 
in predicting the pollution level in the regions under consideration. This paper examines the various 
mathematical models involving  water pollutant. We also give the implicit central  difference scheme 
in space, and a forward difference method in time for the evaluation of the generalized transport 
equation. 
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INTRODUCTION 

 
 "Pure water is the best of gifts that man to man can 
bring"   -Spectator, July 30, 1920  
 Water, comprising over 70\% of the earth's surface,  
is undoubtedly the most precious natural resource that 
exists on our planet.  Without the seemingly invaluable 
compound comprised of hydrogen and oxygen, life on 
earth would be non-existent. It is essential for 
everything on our planet to grow and prosper David [9]. 
 It is easy to dispose of waste by dumping it into a 
river or lake. In large or small amounts, dumped 
intentionally or accidentally, it may be carried away by 
the current, but will never disappear. It will reappear 
downstream, sometimes in changed form, or just 
diluted. Freshwater bodies have a great ability to break 
down some waste materials, but not in the quantities 
discarded by today's society. This overload that results, 
called pollution, eventually puts the ecosystem out of 
balance [24]. 
 Sometimes nature itself can produce these 
imbalances. In some cases, the natural composition of 
the water makes it unfit for certain uses: e.g., water 
flowing in the highly saline terrain of the prairies or 
gushing from highly mineralized springs in some parts 
of the country cannot sustain fish populations. 
 But most often our waterways are being polluted 
by municipal, agricultural and industrial wastes, 
including many toxic synthetic chemicals which cannot 
be broken down at all by natural processes. Even in tiny 
amounts, some of these substances can cause serious 
harm. 
 Many causes of pollution including sewage and 
fertilizers contain nutrients such as nitrates and 

phosphates.  In excess levels, nutrients over stimulate 
the growth of aquatic plants and algae.  Excessive 
growth of these types of organisms consequently clogs 
our waterways, use up dissolved oxygen as they 
decompose, and block light to deeper waters. This, in 
turn, proves very harmful to aquatic organisms as it 
affects the respiration ability of fish and other 
invertebrates that reside in water.   
 Pollution is also caused when silt and other 
suspended solids, such as soil, washoff plowed fields, 
construction and logging sites, urban areas, eroded river 
banks when it rains.  Under natural conditions, lakes, 
rivers, and other water bodies undergo Eutrophication, 
an aging process that slowly fills in the water body with 
sediment and organic matter.  When these sediments 
enter various bodies of water, fish respiration becomes 
impaired, plant productivity and water depth become 
reduced, and aquatic organisms and their environments 
become suffocated.  Pollution in the form of organic 
material enters waterways in many different forms as 
sewage, leaves and grass clippings, or as runoff from 
livestock feedlots and pastures.  When natural bacteria 
and protozoan in the water break down this organic 
material, they begin to use up the oxygen dissolved in 
the water.  Many types of fish and bottom-dwelling 
animals cannot survive when levels of dissolved 
oxygen drop below two to five parts per million.  When 
this occurs, it kills aquatic organisms in large numbers 
which leads to disruptions in the food chain. 
 Pathogens are another type of pollution that prove 
very harmful.  They can cause many illnesses that range 
from typhoid and dysentery to minor respiratory and 
skin diseases.  Pathogens include such organisms as 
bacteria, viruses, and protozoan.  These pollutants enter 
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waterways through untreated sewage, storm drains, 
septic tanks, runoff from farms, and particularly boats 
that dump sewage.  Though microscopic, these 
pollutants have a tremendous effect evidenced by their 
ability to cause sicknesses. 
 Oxygen  is required to support aquatic life and 
maintain water quality, it is the most important 
dissolved gas in water. Water in equilibrium with air at 
25oC contains 8.3 mg/L of dissolved O2. Although 
water molecules contain an oxygen atom, this oxygen is 
not what is needed by aquatic organisms living in 
natural waters. A small amount of oxygen, up to ten 
molecules of oxygen per million of water, is actually 
dissolved in water. Fish and zooplankton breath 
dissolved oxygen, and without sufficient oxygen 
mortality will occur. 
 Dissolved Oxygen (DO) concentrations are 
affected by a number of factors. Higher DO is produced 
by turbulent actions such as waves, which mix air and 
water. Lower water temperatures also allows for 
retention of higher DO concentrations. Low DO levels 
tend to occur more often in warmer, slow moving 
waters. In general, low DO levels occur during the 
warmest summer months and particularly during low 
flow periods. Water depth is also a factor. In deep slow 
moving waters DO concentrations may be high near the 
surface due to wind action and plant photosynthesis, but 
may be entirely depleted (anoxic) at the bottom.  
 Oxygen consuming wastes include decomposing 
organic matter or chemicals that reduce DO in the 
water. Raw domestic wastewater contains high 
concentrations of oxygen consuming wastes that need 
to be removed before it can be discharged into a 
waterway. Maintaining a sufficient level of DO in water 
is critical to most forms of aquatic life. 
 Microorganisms such as bacteria are responsible 
for decomposing organic waste. When organic matter 
such as dead plants, leaves, grass clippings, manure, 
sewage, or even food waste is present in a water supply, 
the bacteria will begin the process of breaking down 
this waste. When this happens, much of the available 
dissolved oxygen is consumed by aerobic bacteria, 
robbing other aquatic organisms of the oxygen they 
need to live. 
 Biological oxygen demand (BOD) is an indicator 
for the concentration of biodegradable organic matter 
present in a sample of water. It can be used to infer the 
general quality of the water and its degree of pollution. 
BOD measures the rate of uptake of oxygen by micro-
organisms in the sample of water at a fixed temperature 
and over a given period of time.  
 Dissolved organic matter (DOM) is widely present 
in aquatic subsurface environments. It contains many 
biochemically identifiable classes of compounds such 

as sugars or amino acids, as well as fractions that are 
more coarsely classified, such as humics.  
 To evaluate the environmental impact of pollution, 
mathematical models play a major role in predicting the 
pollution level in the regions under consideration. [22, 4, 5, 

13, 17, 18, 23, 1, 10] 
 In the subsurface, colloidal/bacterial particles are 
generated and/or mobilized by various mechanisms. 
The presence of colloids can affect the transport 
behavior of organic contaminants in soils and 
groundwater due to sorption on the surface of 
colloids/bacteria.[16,19,8] In riverbank filtration, the 
mobile colloidal particles can increase the mobility of 
contaminants and change the degree of sorption and 
microbial degradation.  
 Several researchers have reported that organic 
compounds have strong affinity to DOM. Hassett and 
Andersion[11] have reported that hydrophobic organic 
compounds such as PCBs were bound to DOM in 
water. Carter and Suffet[6] have examined the sorption 
of DDT to DOM. Chiou et al.[7] have shown that the 
sorption of hydrophobic organic compounds onto DOM 
increased their aqueous solubility. Magee et al.[15] have 
reported that hydrophobic compounds moved faster in 
the presence of DOM. In riverbank filtration, DOM can 
facilitate the contaminant transport as the mobile 
carrier. In addition, it can be utilized as a food source 
for bacteria.  
 In riverbank filtration, contaminant transport can 
be affected by the presence of bacteria. Lindqvist and 
Enfield[14] have reported that the transport of DDT and 
hexachlorobenzene could be facilitated in groundwater 
owing to their attachment on bacteria. Jenkins and Lion 
[12] have demonstrated that highly mobile bacteria could 
increase the mobility of organic 
contaminants such as PAHs. In addition, bacteria can 
reduce the contaminant concentration by microbial 
transformation. 
 Kim and Corapcioglu[21] gave a model to simulate 
contaminant transport in riverbank filtration in the 
presence of DOM and bacteria.  The model equations 
are solved numerically with a fully implicit finite 
difference method. 
  

CONTAMINANT TRANSPORT MODELS 
 

 Describing contaminant transport requires the 
solution of the equation for saturated water transport 
and the convection-dispersion- reaction equation for 
contaminant transport through porous media. For the 
saturated zone of the subsurface, contaminant transport 
is assumed to be isothermal and a heat balance equation 
is not required. Microscopic contaminant transport 
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model equations are developed using a small 
representative element of volume in the subsurface.  

 
Water Transport:  If only isothermal contaminant 
transport in the saturated zone of the subsurface is 
considered, the general physical law equation for 
saturated water transport through a representative small 
volumetric element in the porous structure of the 
subsurface is given as  

)(),( hKtxW
t
h

s satt ∇••∇=+
∂
∂  (1) 

where St is the storage coefficient of the aquifer, 
dimensionless, h is hydraulic head, cm, W(x,t) is the 
volume flux per unit area source term (positive for 
outflow and negative for inflow) cm/hr, ∇  is the del 
operator defined as x∂∂ /  cm-1, •  denotes the dot 
product of vectors and tensors, Ksat is the hydraulic 
conductivity tensor, related to fluid velocity, V, by 
Darcy's law, cm/hr. 
 
Contaminant Transport: The general physical-
chemical law, convective-dispersive-reaction 
contaminant transport equation for this same element of 
volume for a single chemical is given as  
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where S is contaminant concentration sorbed to soil or 
other solid surfaces, g/cm3, C is contaminant 
concentration, g/cm3, B is bulk density, g/cm3,ω is 
porosity, dimensionless, D is the hydrodynamic 
dispersion tensor, cm2/hr, V is the fluid velocity vector 
in a porous media calculated from Darcy's law, cm/hr, 
Λ is the reaction rate coefficient of order ω for 
transformation of the contaminant by either chemical or 
biological processes, (cm3/g)ω -1/hr, Ss is contaminant 
concentration in the source or sink fluid, g/cm3, Q is 
volumetric flow rate, cm3/hr, Vol is the volume of the 
volumetric element used in developing this model, cm3.  
 For equilibrium sorption approximated by a linear 
Freundlich isotherm, the amount sorbed to solid 
components of the subsurface is approximated as  
 

S=KwC, 
 

where Kw is the equilibrium sorption coefficient, cm3/g. 
As used here, Kw is an overall or composite equilibrium 
sorption coefficient and is a function of sorption to all 
solid components, e.g., silica, clay minerals, and 
organic matter. Substituting for S, and assuming that all 

biological and chemical transformations are first order 
reaction processes, gives  
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where the retardation factor, Rf (dimensionless), for 
equilibrium sorption is defined as  

ε
ρ ωK

R B
f += 1

                (4) 

If sorption is not an equilbrium process, it can be 
described by an interphase mass transfer  process as  
 
S=KCω                             (5) 

where K is an overall mass transfer coefficient with 
units of cm3/g) -1and ω is the order of the mass transfer 
reaction of the chemical with the solid surfaces of the 
porous media. With this modification, the retardation 
factor is given as   
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Equation (2) is valid for a single chemical contaminant 
that is present in the aqueous phase in dilute 
concentrations. For most chemical contaminants, single 
chemical models are appropriate because the solubility 
of the chemical in the aqueous phase is very low. Thus, 
changes in time and space of contaminant 
concentrations are substantial. The first two terms on 
the right-hand side of Equation (2) are associated with 
the transport dynamics of flow in porous media, namely 
hydrodynamic dispersion and convective transport. The 
last term accounts for first-order chemical and 
biological reaction rate processes that transform or 
convert contaminants into other chemicals in the 
subsurface. For dilute solutions, the assumption that 
reaction rate processes can be represented as first-order 
processes is reasonable because only the concentration 
of the contaminant changes substantially during 
degradation or transformation. For example, with 
hydrolysis reactions the water concentration remains 
virtually unchanged, a pseudo first-order degradation 
mechanism. For the element of volume in the saturated 
zone of the subsurface, a general form of the 
concentration profile for contaminant transport in the 
subsurface is given as a function of these transport 
parameters and subsurface characteristics as  
 

),,,,,(),,,( Bsat KKDFtzyxC ρε∇=                 (7) 

However, some subsurface contaminant transport 
problems occur in conduit-type flow aquifers that do 
not behave like flow-through porous media. For these 
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aquifers and flow regimes, equivalent hydraulic 
characteristics must then be defined and used in 
Equation (7) to describe the contaminant concentration 
profile. 
 
Bacteria Transport: Wastewater contain a great 
variety of pathogenic bacterias and viruses.  In what 
follows, we consider a mixture of N reacting species 
with partial densities di , Ni ,,1 �=  Let d be the 
density of the mixture and Yi the mass fracture of 
species i. We have  
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The difference between v  and iv  can be decomposed 

in the migration velocity and the diffusion velocity, the 
former representing, for instance, sedimentation: 

.iii vvv +=− σ  

According to Onsager's law (see Bermudez[3]), we can 
write 
 

Nidvd iiii ,,1 �=∇−= β  

The mass conservation equation is: 
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where iβ is the diffusivity term, while Ri and Si 

represent the biochemical reaction term and  the 
external sources respectively. 
 After discharge, concentration of bacterias or 
viruses decrease very quickly due to unfavorable 
conditions like lack of nutrients, low temperature, sun 
rays, etc. Death rate is frequently modeled as a first 
order reaction (see Bermudez[3]). This means that the Ri 
term in equation (8) is given by 

 
CkR ii −=  

where ki is a kinetic constant. 
 Actually, biologists prefer to speak of the T90,i, 
which is the time after which concentration decreases 
90 percent. This parameter is related to ki by 
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On the other hand assuming pointwise wastewater 
discharges, as those from outfalls, the term Si in  
equation (8) is given by  
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where j is the number of the discharge, qj is the flow 
rate, rji is the partial density of species i for the jth 

discharge, )( jPδ  denotes the Dirac measure at the 

discharge point 
jP  

 
Biological Oxygen Demand BOD/ Dissolved Oxygen 
(DO): Oxygen plays a major role in all kinds of life. In 
particular, it is used by bacteria to decompose the 
organic matter. If the oxygen demand is not satisfied, 
plankton and other higher forms of animal life 
disappear. However, decomposition of organic matter 
goes on by anaerobic processes which do not use 
oxygen but produce sulfur of hydrogen and methane 
both having a nauseous smell. The organic matter can 
be measured in terms of the need of oxygen to 
decompose it, the so-called biological oxygen demand 
(BOD).If the pollution level is not too high this need 
can be satisfied by the dissolved oxygen (DO). 
 If the quantity of organic matter increases beyond a 
maximum value the dissolved oxygen is not enough to 
decompose it leading to modifications in the ecosystem. 
To avoid this phenomena some physico-chemical 
and/or biological treatments prior to discharge have to 
be made In what follows, we recall a classical model 
given by Streeter & Phelps for the evolution of BOD 
and DO 
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where 
1ρ is the concentration of the biochemical demand 

of oxygen (BOD),
2ρ is the concentration of the dissolved 

oxygen (DO), j is the number of the discharge, qj is the 
flow rate, rj

i is the partial density of species i for the jth 
discharge, )( jPδ denotes the Dirac measure at the 

discharge point Pj, k1  is a kinetic parameter (function of 
temperature), k2  is the interface transfer rate for oxygen, 

1β and 
2β are dispersion coefficients, ds is the saturation 

density of oxygen in water depending on temperature, IB is 
the intensity of sunlight on the bottom,  
M is the surface population density of algae, rP is a 
coefficient for respiration of algae, F represents other 
external sources of oxygen. 
 
Dissolved Organic Matter (DOM) 
Bacteria Transport in Presence of DOM: The 
movement of bacteria in soils and groundwater is mainly 
controlled by the advective\\-dispersive transport. The 
mass balance equation for the aqueous-phase bacteria can 
be described as 
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where θ  is the water content ),( bn σ−  n  is the porosity, 

bσ  is the volumetric fraction of bacteria attached onto 

the solid matrix (volume of bacteria deposited per unit 
total volume of porous media), Cb is the concentration of 
the aqueous-phase bacteria, Cd is the concentration of 
DOM in the aqueous phase, Db is the hydrodynamic 
dispersion coefficient for bacteria [L2T-1], vw is the pore-

water velocity [LT-1], cdσ is the mass fraction of the 

contaminant sorbed to DOM (mass of contaminant sorbed 

to DOM per unit mass of DOM), cbmσ is the mass 

fraction of the contaminant sorbed to the mobile bacteria 
(mass of contaminant sorbed to mobile bacteria per unit 

mass of mobile bacteria), bρ is the density of bacteria, kc 

and kr are the deposition and release rate coefficients of 
bacteria on the solid matrix [T-1], respectively. kdm is the 
decay rate coefficient for the mobile  bacteria [T-1], k0 is 
the first-order decay rate coefficient for DOM [T-1], and Y 
is the yield factor (mass of bacteria formed per unit mass 
of food source utilized). 
 

Contaminant Transport in Presence of DOM: The mass 
balance equation of the contaminant dissolved in the 
aqueous phase can be expressed as  
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where Cc is 

the concentration of the contaminant dissolved in the 

aqueous phase, sσ is the dry bulk density of the solid 

matrix, csσ is the mass fraction of the contaminant sorbed 

onto the solid matrix (mass of contaminant sorbed per unit 
solid mass of porous media). Dc is the hydrodynamic 
dispersion coefficient of the contaminant dissolved in the 
aqueous phase [L2T-1], k_p and kq are the adsorption and 
desorption rate coefficients for the contaminant on DOM 
[T-1], k3 and k4 are adsorption and desorption rate 
coefficients of the contaminant on bacteria [T-1], 
respectively.

maxmax ,/ µµµ sK= isthe 

maximum growth rate [T-1], and Ks is the half-constant 
[ML-3]. 
 If the sorption relationship between the aqueous phase 
and the solid matrix is assumed to be an equilibrium-
controlled process and represented by a linear isotherm, 
the mass fraction of the contaminant sorbed onto the solid 
matrix can be presented as 

ccs CK1=σ  

where K1 is the equilibrium distribution coefficient of 
contaminant between the aqueous phase and the solid 
matrix [L3M-1]. 
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the contaminant retardation factor, and represented  
 
as θρ /)(1 1kR sc +=  
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 The  one dimensional transport equation for the 
contaminant sorbed to DOM is:  
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 The one-dimensional transport equation for the 
contaminant sorbed to the mobile bacteria is: 
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NUMERICAL SOLUTION 

 
2-Dimensional Transport Equation 
The 2-D transport equation can be generalized as 
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where C is concentration of solute (bacteria or 
contaminant), u and v are the fluid velocity (which may be 
obtained from either the Navier-Stokes equation or the 
shallow water equation ), D is the diffusivity term, while R 
and S represent the biochemical reaction term and  the 
external sources respectively. 
 The boundary and initial conditions needed to solve 
equation (11) are: 
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The mass transport equation (11) can be solved by using 
the classical Crank-Nicolson finite difference scheme 
which is an implicit central difference scheme in space, 
and a forward difference method in time. The stability of 
the methods is controlled by the dispersion and advection 
Currant number, 
defined as 
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 The finite difference representation (see Andrea 
Bagnera) of equation (11) is for any point i,j, (a generic 
point (x,y) on the grid) at any time t) is : 
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1-Dimensional Transport Equation 
The 1-D transport equation can be generalized as 
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where R(C) in (11) is -kC(x,t) and assuming there are no 
source term, i.e S(C)=0.  If the velocity u(x,t) is taken as a 
constant i.e. q, thus we have (12) 
  
The mass transport equation (12) can be solved by using 
the Crank-Nicolson finite difference scheme. The finite 
difference representation of equation (12) is for any point 
i, (a generic point (x) on the grid) at any time t) is : 
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Thus we have 
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The boundary and initial conditions needed to solve 
equation (3.2) are: 
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The boundary conditions (see Schilling and Harris 
(2000))\\can be stated in general as: 
 
 (1-u1)C(0,t) - u1Cx(0,t)=g1(t)            (15a) 
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(1- u2)C(a,t) + u2Cx(a,t)=g2(t)            (15b) 
 
If u1 = 0 we have the Dirichlet boundary condition on the 
lower boundary of the domain Ω which we have taken to 
be regular in order to be able to apply the finite difference 
method of numerical approach to the solution. Otherwise 
we would need to propose another numerical method that 
will handle the nature of the domain, such as the finite 
element method. If on the other hand we have u2 = 0 we 
have the Neumann boundary condition on the upper 
boundary of the domain. 
 In order to evaluate (14) at i=1 and i=n, the boundary 
values C0

j and Cj
n+1} are needed.  To develop expressions 

for these values, we can use a two-point forward 
difference for the derivative in (15a) and a two-point 
backward difference for the derivative in (15b). This 
converts the boundary condition constraints into the 
following difference equations.  
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Solving (3.6) for the boundary values yields 
 

x )u-(1u
Cu x )(tg

C
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j

11j1j

0 ∆+
+∆

=           (17a) 

x )u-(1u
Cu x )(tg

C
22

j

n2j2j

1n ∆+
+∆

=+
                    (17b) 

 
 The Crank-Nicolson equations can be expressed in 
vector form be letting Tj

n

j

2

j

1

j ]C,,C,[CC �= denote the 
solution at time tk for m. j 0 ≤≤  Suppose both boundary 
conditions are Neumann, which means u1=1,  u2=1 in 
(3.5). For the case n=5, this result in the following implicit 
linear algebraic systems. 
suppose  
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The stability of the methods is controlled by the dispersion 
and advection Currant number, 
defined as 

. 
x

tD
   C and

x
 tv

 C
2dispadv ∆

∆=
∆
∆=  

 
RESULTS AND DISCUSSION 

 
 We solve the contaminant transport model by 
implementing the Crank-Nicolson numerical scheme, 
while varying the different parameter values. We observe 
in general, a decrease in contaminant concentration. In fig 
1, the profile for varying the decay rate, we observe that 
with a higher decay rate, the concentration of contaminant 
decreases faster than with a lower decay rate. In fig 2, the 
profile for varying contaminant velocity, we observe that 
the contaminant concentration with a higher velocity 
decreases at a higher rate  than that with a lower velocity. 
In fig 3, the profile for varying the diffusive term, we saw 
that when the rate of diffusion is high, the concentration of 
contaminant decreases faster. 
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Fig 1: Varying the value for the rate of decay 'k' 
 

 
Fig. 2: Varying the value for the velocity term 'q 
 

 
Fig. 3: Varying the value for the diffusive term 'D' 
 

CONCLUSION 
 
 In this paper we have discussed the various models 
involving water pollutant transport equation. We have also 
given the implicit central difference scheme in space, and 
a forward difference method in time for the evaluation of 
the generalized transport equation. And have given 
profiles for different parameter values 
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