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Abstract: This research was concerned with the identification of rational models in stochastic 
processes and we use the Padé-Laurent Approximation to identify a Transfer-Function Model with 
Expectations. We mention the T-table method and focus in studying the generalised epsilon-algorithm, 
emphasizing the main role of the statistical significance of their numerical entries. Empirical work is 
made for non-causal TF models using both simulated and economic real data. 
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INTRODUCTION 

 
 Over the last two decades, several studies have 
considered the use of rational approximation and 
related techniques in stochastic processes. Some of 
these techniques (e.g.[5,2,14,20,8]), which are closely 
related to the Padé Approximation and Orthogonal 
Polynomials (e.g.[1,6]), constitute useful tools for 
modelling time series and computing the orders of their 
rational structures.  
 Some interesting research provide reliable methods 
to specify the causal linear Transfer-Function (TF) 
model, a special case of VARMA models that 
constitutes one of the most frequent dynamic 
specification in time series modelling (e.g.[5,14,13,19]). 
 The inclusion of expectations for the input 
variables in this type of models implies considering to 
non-causal models proposed[10] that we present in 
Section 2. This approach has provided not only a 
general framework to study dynamic relationships 
between variables with expected values but also 
extending the identification methods that have been 
proposed for classic causal models. The methodological 
basis which underlies this approach is the Padé-Laurent 
Approximation[7]. In this context we deal with the 
Toeplitz and the generalised epsilon methods. Section 3 
is concerned with the generalised epsilon algorithm to 
identify a TF model with expectations. Also, the 
statistical significance of numerical entries in the 

algorithm is introduced analogously as in the classical 
case. 
 Empirical work is made using SCA package[15], 
MATHEMATICA Software[20] and FORTRAN 
Programming. We contribute with numerical findings 
for non-causal TF models. Empirical results point out 
the role of the statistical significance for the epsilon-
algorithm to get parsimonious formulations and reduce 
possible competing models to only a few for further 
testing. 
 In an economic context, we illustrate this proposal 
for studying some consequences in the banana 
production’s evolution in the Canary Islands, the main 
banana producer area in European Union.  
The research concludes with the most relevant 
conclusions and some open questions of interest. 
 

THE NON-CAUSAL TF MODEL 
 
 A TF model with expectations[10] for a bivariate 
and stationary process ' '

t t tz (y ,x )= with yt one-
dimensional and ' * ** '

t t tx (x ,x )=  of dimension m can be 
expressed as follows 
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 Now yt (output variable) is explained by two terms: 
a systematic one, which is described by one or more 
independent variables xit

* (real data) and that includes 
xit

** (expected values) that can follow or not the same 
distribution and a non-systematic component which is 
described by an ARMA process. 
 The existence of a dynamic, one-way, causal 
relation xit

*,xit
**→yt is assumed. Therefore, a 

unidirectional relationship is given on yt by both 
contemporary and lagged effects of the input variables but 
also by the expected values described by xit

**. 
 In the case of a single input variable and defining 
Lj(xit) = xit-j ∀j∈ Z, a closed form for the TF model with 
expectations can be expressed as 
 

j
t j t t
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= �  denotes the IRF, now the double 

infinite series of weights in Z. 
 A finite representation for v (L) with orders 
(p+a,s+b) and (-d,r) could be given by the expression  
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 In this finite structure for V(L), Wp+a,s+b (L) and Ψ-d,r 
(L) are Laurent polynomial operators in L.  
 The lagged and lead effects on yt due to changes in 
xt appear expressed in Wp+a,s+b (L) with a<0 and b≥0 
respectively:  
 

 
p+a p+a+1

p a,s b p a p a 1

a b s b
a b s b

W (L) w L +w L ...

w L w L ... w L     (p,s Z)

+ + + + +

+
+

= + +

+ + + ∈
  (2) 

 
Furthermore, 
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 It is considered that Wp+a,s+b (L) and Ψ-d,r (L) have 
no common factors and model stability is guaranteed in 
terms   of  the  roots for the characteristic polynomial 
Ψ-d,r (L). 
 In accordance with the guidelines proposed by the 
Padé-Laurent Approximation for studying doubly 
infinite series, a TF model with expectations can be 
identified by using the Toeplitz method[10] which 
generalises the corner method[2,14,20] given for causal 
models. 
 Therefore, a similar method to that one described 
for the causal model can now be used. For instance, 
given the sequence of weights j Zv ) ∈≡ ���  and of 

relative ones j j Z( ) ∈η ≡ η , that is, j j j,maxv / vη = , the 
Toeplitz determinants 
 

g
f ,g f k j k, j 1T ( ) det ( )+ − =� �η = η� � 

 
provide the next theoretic “corner characterization” for 
v(L) in a non causal TF model: V(L) has a rational 
representation with orders (p,s,d,r,a,b), 

p a,s b

d,r

W (L)
V(L)

(L)
+ +

−

=
Ψ

, if and only if 

 
f ,r b s,g

f ,d p a ,g

f ,g

T ( ) 0,  f b s;  T ( ) 0,  g r; 

T ( ) 0,  f p+a; T ( ) 0,  g d;

T ( ) 0,    (f b+s+1,  g r)  

         (f p+a-1,  g d+1) (a f b)

+

+

η ≠ ≥ η ≠ ≥

η ≠ ≤ η ≠ ≥

η = ≥ ≥ ∧

≤ ≥ ∧ < <

+

 

 
 This theoretic characterization can be clearly 
displayed in a tabular form (T-table) in Table 1. 
 This proposal extends the well-known classic 
approach to carry out the identification of a causal TF 
model starting from the sequence i ij j Nˆ ˆ( ) ( ) ∈η = η , 
where ' *

t tx x= , that is, **
tx  is not considered. In this 

particular case, another possible numerical method to 
provide a rational characterization is the epsilon-
algorithm[12]. The study of the statistical significance in 
the epsilon-algorithm can be seen in[3] and[12]. Other 
methods have recently been proposed by[11]. 
 Some adequate transformations in the sequence of 
relative weights could be necessary to avoid 
computational instability in some specific cases.  
 Next, we refer to the generalised epsilon-algorithm 
in a non-causal context and contribute with by studying 
the statistical significance of their numerical entries. 
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Table 1: T-table  

 g 
 -------------------------------------------------------------------------------------------------- 
f 1 … d d+1 … r r+1 … M 

M’’ … … …   … … … … 
… … … x 0 0 0 0 0 … 
p+a-1 Tp+a-1,0 x Tp+a-1,d-1 0 0 0 0 0 … 
p+a Tp+a,0 x Tp+a,d-1 Tp+a,d x x x x … 

… … … … … … … … … … 
a Ta,0 x x x x x x x … 
a+1 0 0 0 0 0 0 0 0 … 
…          
b+1 0 0 0 0 0 0 0 0 … 
b Tb,0 x x x x x x x … 

… …  …  …  …  … 
s+b  …    Ts+b,r-1 Ts+b,r x … 
s+b+1 …  …  … Ts+b+1,r-1 0 0 0 
…  …    x 0 0 0 
M’ …  …  … … … … … 
“0” denotes a significantly null element 
 

THE GENERALIZED EPSILON-ALGORITHM 
AND ITS STATISTICAL SIGNIFICANCE 

 
 The epsilon algorithm constitutes an alternative 
method to identify a causal TF model. This iterative 
procedure can be derived from the cross rule between 
five adjacent Padé Approximants (see[6]). If 

n
2k f=[(n+k)/k] (z)ε  is the Padé Approximants of orders n+k 

(numerator) and k (denominator) for a given formal 

power series i
i

i 0

f (z) c z
∞

=

=� , given a fixed value of z and 

we define n
2k 1+ε  in an adequate form, the numbers n

2kε  
can be related for all k, n as follows 

 
n n 1
k 1 k 1 n 1 n

k k

1
k,n Z   = +

+ − +∀ ∈ ε ε +
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 Displaying these values in a tabular form we obtain 
a useful tool to identify if f is a rational function indeed. 
Let i

i
i 0

f (z) c z
∞

=

=�  be a formal power series; defining 

n n
0 n 1(c) c , (c) 0, n 0−ε = ε = ∀ ≥ , then n

2k (c) 0ε =  if and only if 
 

n 1
n k 2 i j i, j 1(n,k 1) det[(c ) ]+

− − + + =∆ + =  
 
associated to c = (cn) is zero. Consequently, it can be 
proved that f is a rational function with degrees [p/q] if 
and only if  

p q
2q (c) 0−ε ≠  and j

2q (c) 0, j p qε = ∀ > −  
 
 For a stochastic process with expectations we can 
generalize this previous result as follows: 
 An approximated finite structure with orders 
(p,s,r,d,a,b) for V(L) is given by (1)-(2)-(3) if and only 
if 

s b r j
2r 2r

p a d j
2d 2d

( ) 0, ( ) 0, j s b r

( ) 0, ( ) 0, j p a d

+ −

+ −

ε η ≠ ε η = ∀ > + −
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 These conditions are shown in the epsilon-table 
(Table 2). Another condition, 
 

j 0,   j a 1,...,b 1η = = + − , 

 
leads to identify the lag and lead values, that is, b and a 
respectively, in the response of the output to input 
changes. 
 Given a stochastic process, in order to study the 
significance of epsilon-values associated to the 
estimated sequence j j K...Kˆ ˆ( ) =−η = η , for a chosen K value, 

it is advisable to consider the asymptotic standard 
deviation. This can be made by computing the t-Student 
statistical values 
 

n
2k

n
2k

ˆ( )
,k 0,n K...K k

ˆvar( ( ))

ε η
≥ = − −

ε η
, 
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Table 2: Epsilon-table  
 Col 
 ----------------------------------------------------------------------------------------------------------------------------------------------------- 
Fil 0 … 2(d-1) 2d … 2(r-1) 2r 
… … … … … … … … 

p+a-1 p a 1
0

+ −ε  … p a d
2(d 1)

+ −
−ε  0 … … … 

p+a p a
0

+ε  … p a d 1
2(d 1)

+ − +
−ε  p a d

2d
+ −ε  … … … 

… … … … … … … … 

a a
0ε  … … … … … … 

a+1 0 … 0 0 … 0 0 
… … … … … … … … 
b-1 0 … 0 0 … 0 0 

b b
0ε  … … … … … … 

… … … … … … … … 

s+b s b
0
+ε  … … … … s b r 1

2(r 1)
+ − +

−ε  s b r
2r
+ −ε  

s+b+1 s b 1
0
+ +ε  … … … … … 0 

… … … … … … … … 
“0” denotes a significantly null element 
 
where n

2k ˆvar( ( ))ε η  represents the estimated variance, 
which can be approximately represented by 
 

'n n n n
2k k k kˆ ˆ ˆ ˆvar( ( )) F ( )M ( )F ( )ε η ≅ η η η  

 
 n

k ˆM ( )η  is the sample variance-covariance matrix of 

the sequence n k nˆ ˆ( ,..., )+η η , that is, 
 
 

n k ,n
k ij i , j 1,...,k 1ˆM ( ) (m ) = +η =  

 
where 

k ,n
ii k i 1ˆm var( )+ −= η  

and 
k ,n
ij n i 1 n j 1ˆ ˆm cov( , )+ − + −= η η ; 

Finally, 
n
k ˆF ( )η = n n n k n

k kˆ ˆ( ( ),..., ( ))+ε η ε η  
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Note that the initial values are now  

i n i n
1 0

1 i n
ˆ ˆ( ) 0, ( ) ,    i,n K...K

0 i n−
=�ε η = ε η = ∀ = −� ≠	

. 

 
With all these values we can construct a new table, the 
Asymptotic Standard Deviation Table, for the epsilon-
table containing the associated value to the t-Student 

statistical 
n
2k

n
2k

ˆ( )

ˆvar( ( ))

ε η
ε η

 in the same position that n
2k ˆ( )ε η . 

Consequently, we can consider the value n
2kε  in Table 2 

as a significantly null element if the 
n
2k

n
2k

ˆ( )

ˆvar( ( ))

ε η
ε η

value 

associated is minor than a given critical value (1.28 or a 
greater one). 
 

EMPIRICAL RESULTS 
 
 Empirical work is made using MATHEMATICA 
software to estimate weights j j 9...9ˆ ˆv (v ) =−=  by OLS 
method. Having computed the sequence of relative 
weights ( j j 9...9ˆ ˆ( ) =−η = η ) and the variance-covariance 
matrix, the generalised epsilon algorithm was 
implemented using FORTRAN programming language. 
In order to illustrate the generalized epsilon-algorithm 
and the role of the statistical significance to confirm the 
identified patterns, numerical results were obtained for 
the average weights. 
 
Example 4.1 a simulated model: We consider the 
following simulated single input TF model with 
expectations: 



J. Math. & Stat., 3 (4): 268-276, 2007 
 

 272 

Table 3: The epsilon-table for ...ˆ ˆ(( ) ) =−= − j
j j 9 91η ηη ηη ηη η . Average of 200 simulations 

 0 2 4 6 8 10 12 14 16 18 
-9 -0.039 
-8 -0.050 -0.040 
-7 0.030 2.500 0.098 
-6 0.108 0.161 -0.552 0.048 
-5 0.139 0.112 0.102 0.137 0.163 
-4 -0.039 0.099 0.110 0.183 0.142 -0.040 
-3 0.577 0.185 0.134 0.120 0.106 0.068 0.033 
-2 -0.500 0.000 0.048 0.041 0.175 0.202 -0.063 0.013 
-1 0.435 0.073 0.043 0.048 0.198 0.172 0.091 0.059 0.036 
0 -0.154 0.011 0.083 0.006 -0.443 0.024 0.014 0.156 0.028 0.042 
1 0.075 -0.112 -0.421 -0.072 -0.087 0.015 0.025 -0.066 0.006 
2 -0.950 -0.278 -0.178 -0.084 -0.074 -0.044 -0.028 -0.017 
3 1.000 0.128 0.032 0.018 0.025 0.046 0.117 
4 -0.577 -0.020 0.014 0.022 0.013 -0.001 
5 0.284 0.027 0.042 -0.110 -0.007 
6 -0.081 0.038 0.017 0.004 
7 0.096 0.064 0.003 
8 0.057 0.083 
9 0.134 
 
Table 4: Asymptotic standard deviation to epsilon-table for ...ˆ ˆ(( ) ) =−= − j

j j 9 91η ηη ηη ηη η . Average of 200 simulations  

 0 2 4 6 8 10 12 14 16 18 
-9 -0.297 
-8 -0.339 -0.427 
-7 0.208 0.006 0.061 
-6 0.738 0.249 -0.011 0.110 
-5 0.958 1.160 1.687 0.843 0.867 
-4 -0.266 1.214 1.681 0.305 1.127 -0.042 
-3 3.955 2.781 2.774 2.994 3.354 1.406 0.309 
-2 -3.417 0.006 0.994 0.779 1.182 0.809 -0.116 0.133 
-1 2.967 1.119 0.903 0.976 0.961 1.063 1.232 1.623 1.453 
0 -1.052 0.145 0.997 0.131 -0.436 0.362 0.184 0.515 1.136 1.003 
1 0.511 -1.251 -1.338 -2.093 -2.287 0.252 0.308 -0.849 0.305 
2 -6.543 -4.120 -3.636 -2.440 -2.278 -1.702 -1.194 -0.768 
3 6.877 2.038 0.666 0.405 0.519 0.651 0.499 
4 -3.960 -0.298 0.270 0.553 0.169 -0.004 
5 1.954 0.386 0.350 -0.025 -0.024 
6 -0.559 0.554 0.056 0.009 
7 0.660 0.708 0.005 
8 0.388 1.232 
9 1.001  
 

3 2 1 2 3

t t t

t t t t

0.8L 0.2L 0.25L 1.25L 0.75L
y x

1 0.5L
(1 0.5L)x a ;    a N(0,1);    N(0,4)

− − −+ − + += + ε
−

− = ε� �

 

 
with orders (-2,1,0,1,-1,2). 
 In order to obtain asymptotic results, 200 dataset 
were simulated with 130 data each one. First data were 
not considered in order to avoid numerical instability. 
Therefore, a 113 effective data series was considered 
for each dataset. The epsilon and asymptotic standard 
deviations values for the average over 200 simulations 
with the statistical significance of their numerical 
entries are shown in Table 3 and 4 respectively. 

 According to the identified pattern given in Table 
2, epsilon values in Table 3 clearly exhibit the 
simulated model structure (-2,1,0,1,-1,2). However, 
other possible patterns could be also observed without 
studying previously the statistical significance of 
numerical entries, for example, (-2,2,0,0,-1,2). Table 4 
is obviously needed, considering the Asymptotic 
Standard Deviation. The shaded regions in this table 
indicate the first elements minor that 1.28 
(corresponding  to  significantly  null  elements  in 
Table 3).  In  this way, a = -1, b = 2, p = -2, s = 1, d = 0, 
r = 1 and therefore the orders (-2, 1, 0, 1, -1, 2) can be 
identified in a more clear way. Nevertheless, other 
possibilities  that also appear in the table, such as (-2, 3, 
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-1, 0, -1, 2), (-2, 3, 0, 0, -1, 2), (-2, 1, -1, 1, -1, 2), are 
less parsimonious. 
 It can be also concluded that as the number of 
simulations increases the results are clarify still more.  
From the perspective of real data modelling it 
frequently happens that according to certain critical 
values, the statistical significance table reduce possible 
competing patterns to only a few for further estimating 
and testing. 
 
Example 4.2 multivariate models to banana from 
canary islands: production, income and cost: A 
three-dimensional relationship between Production, 
Income and Average Production Cost is studied, taking 
data for the period 1938-2002 in the Canary Islands. 
Banana production and farmer income historical series 
were taken from[4,18,16]. We had to consider data about 
water and fertiliser collected from the accounting of 
three representative private properties in the North of 
Tenerife. Linear interpolation was necessary to obtain a 
reasonable sample size[17]. Data are shown in Fig. 1, 2 
and 3. 
 Some necessary logarithmic and first-differences 
transformations have been achieved to obtain a more 
homogenous variance in data and guarantee both 
stationary series. Let us define at time t, zt = (1-
L)lnProdt, where Prodt is banana Production in 
thousands of tons; xt = (1-L) lnIt where It is the farmer 
indexed Income (ptas/kg) (Index 1996 = 100), 
including the market price and the compensatory aid; yt 

= (1-L)lnCostt, where Cost is the indexed Average Cost 
(ptas/kg) (Index 1996 = 100). “ln” represents the 
logarithm operator. 
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Fig. 1: Banana production data 

A multivariate causal TF model for production with 
two inputs (income and cost): Previous results and the 
other aspects about the relationship between Production 
and Income can be found in[9]. 
 The existence of a one-way causal dynamic 
relation xt,yt→zt and the non-presence of 
autocorrelation between the input series can be 
confirmed. Having studied the noise term structure and 
estimated the IRF for each input variable, the corner 
method and epsilon-algorithm lead finally to the  model  
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Fig. 2: Average Cost 
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Fig. 3: Income data 1938-1997 and income 

expectations since 1997 (including 
compensatory aid 
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zt  = 0.1091(2.81)L
4 xt + 0.0460(1.58) L

2 yt + 
(1+0.6798 (-13.15)L-0.3526(5.74)L

2)at 

 
 Outlier detection only produced one abnormal 
observation in 1955 and the re-estimated model is 
basically the same. Fig. 4 shows fitted models until 
1993 and forecasted values considering the last 
observation as origin of the forecasted interval 
(Prediction 1) and respectively the last forecasted value 
as origin of the next forecasted point (Prediction 2). So, 
we see four lines in the Fig.: two lines for initial model 
and the other two for the model including the outlier 
effect. However, although the causal model is suitable 
for fitting available data it fails to provide a satisfactory 
response in terms of its predictive performance from 
1993. 
 Empirical results show the farmer income is a more 
relevant variable for the banana farmer than Production 
Costs. That is why we concern with a bivariate 
Production-Income TF model which suggests including 
income expectations. 
 
Non-causal TF model with income expectations: 
Next we consider the dataset for production, income 
and also income expectations. A main date is 1993, 
when the European Union (EU) introduced the 
compensatory aid to guarantee the banana sector 
subsistence, a sector actually hard conditioned by a 
tariff only system for the banana imports in the EU. 
 Specifically, four theoretical hypotheses on the 
income expectations are considered using 1993 as the 
starting date of the compensatory aid, ' *

t tx x ,t 1992= ≤ , 
' **
t tx x ,t 1993= ≥ . The four series differ in how **

tx  is 
generated and that includes income expectations from 
1997 (Fig. 5). A sensitivity analysis is carried out 
considering next possible schemes. 
 
Case 1: The banana farmer expects stable earnings 
throughout the next decade. According to the T-table 
method and epsilon-algorithm the final estimated model 
is 
 

zt = (0.2001(4.07)+0.1296(2.69)L)L-7xt+ 
(1+0.8776(11.32)L-0.1153(1.48)L

2)at 

 
Case 2: The banana farmer expects decreasing earnings 
according to the European Union’s decision of reducing 
production costs. The next specification is finally 
obtained 
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Fig. 4: TF models for banana production (income, cost) 
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Fig. 5: Non-causal TF models for banana production 
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Case 3: The banana farmer expects that after a crisis 
period, the earnings will return to an acceptable level. 
The chosen model is 
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Case 4: The banana farmer does not have certainty on 
when crisis will finish. Against this background 
pessimistic the obtained model is 
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 Figure 5 illustrates fitting and predictive 
performance of the four cases and the causal TF 
described in 4.2.1.  
 We observe that all identified models provide a 
satisfactory response from the perspective of fitting to 
banana output data. However, TF models with 
expectations offer better predictions in the short-term. 
This behaviour could be explained by the fact that the 
farmer plans banana output not only considering his 
previous earnings but also taking into account other 
main variables, such as his future income expectation in 
the next three or four years. The case 3 can be 
considered the least realistic but it shows the optimism 
vision of the banana grower. The case 1 is the most 
desirable, although it implies reducing banana output. 
However, it could help to prevent the overproduction 
that occurred in the final years of our survey period. As 
it can be deduced from Case 4, without the 
compensatory aid, the subsistence of the sector will be 
threatened. An approximately half of current production 
would be lost and serious economic, social and 
ecological consequences would result.  
 

CONCLUSIONS AND OPEN QUESTIONS 
 
 This research points up the goodness of several 
numerical methods closely related to the Padé 
Approximation for providing suitable rational structures 
in the context of time series modelling. Here we refer to 
the generalised epsilon algorithm as an alternative to 
the T-table method in a non-causal TF model, both 
proposals linked to the Padé-Laurent Approximation. 
Special emphasis is given to the statistical significance 
as a generalization of several previous results in the 
field of time series analysis. These related techniques 
can be considered “feasible alternatives” to contrast 
and/or confirm previously identified models. 
 Empirical findings emphasize the role of the 
epsilon table to pick up dynamic structures and also the 
table of asymptotic standard deviations to confirm the 
identified patterns and reduce possible competing 
models to only a few for further testing. Obtained 
results also stand out the goodness in terms of their 
asymptotic results. 
 For future research topics, we point out that the 
correct generalization of these results to VARMA 
models is not evident. For the corner method, for 
example, consideration has to be given to the rank of 
the matrices and not the determinants. The 
generalization of other numerical methods such as the r-
s and q-d algorithms to VARMA models has not yet 

been considered. It would also be of interest to consider 
the generalization of these numerical algorithms to non-
causal contexts, considering the TF models with 
expectations.  
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