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Abstract: One of the main purposes of any theory of joint business is to provide a convincing way for 
sharing the total utility available to the set of agents. The proportional rule is widely applied in practice 
but people using this method should be warned that it is not as innocent, effective, fair and consistent 
as it seems at first glance. Indeed, restricted domain, low sensibility derived from ignoring most 
marginal contributions, unjustified double discriminatory level and lack of additivity that derives in 
serious inconsistencies in costs/savings and added costs problems form part of the negative baggage of 
this rule, a fact that will probably surprise theorists and practitioners. Instead, nothing of this concerns 
the Shapley value whence the main conclusion of our analysis, which we hope the readers will find of 
interest, is that the Shapley value should replace the proportional rule in cooperative affairs and pure 
bargaining problems. 
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INTRODUCTION 

 
 The proportional rule has a long tradition in 
collective problems where some kind of utility (costs, 
profits, savings…) is to be shared among the agents. 
However, while its (apparent) simplicity might seem a 
reason for applying it in pure bargaining affairs, where 
only the whole and the individual utilities matter, it is 
much more questionable in the case of general 
cooperative problems, where all marginal contributions 
should be taken into account. The axiomatic foundation 
proposed by Lloyd S. Shapley, when introducing the 
value notion for cooperative games, enables us to 
discuss positive and negative aspects of the 
proportional rule.  
 We will contrast the proportional rule with the 
Shapley value in this kind of problems and show, 
moreover, that pure bargaining affairs can be viewed as 
particular cases of cooperative affairs by introducing a 
suitable cooperative game closely attached to each one 
of them, so that the replacement of the proportional rule 
with the Shapley value would be convenient even in the 
pure bargaining case. 
 

COOPERATIVE AFFAIRS 
 
 Let { }1, 2,...,=N n  be a set of agents (players). 
Each subset ⊆S N  is a coalition. A cooperative game 

on N (a game, for short, in the sequel) is a function u  
that assigns to each coalition S a real number ( )u S , 
which is interpreted as the worth or utility that coalition 
S  is able to obtain independently of the behavior of the 
outside players (the members of \N S ). The only 
condition imposed to u  is that ( ) 0∅ =u , where ∅  
denotes the empty coalition. Nevertheless, one often 
deals with particular classes of games: a game u  is 
* nonnegative if ( ) 0≥u S  for every coalition S 
* monotonic if ( ) ( )≤u S u T  whenever ⊂S T  
* super–additive if ( ) ( ) ( )∪ ≥ +u S T u S u T  whenever 

∩ =∅S T  
* additive if ( ) ( ) ( )∪ = +u S T u S u T  whenever 

∩ =∅S T  
* sub–additive if ( ) ( ) ( )∪ ≤ +u S T u S u T  whenever 

∩ =∅S T  
* symmetric if ( )u S  depends only on the cardinality 

of S for all ⊆S N . 
 Usually, u represents profits or savings arising 
from cooperation between the members of any 
coalition. In other cases, u may well represent costs: we 
will then prefer to denote as c  this function. Rather 
than on the individual strategic possibilities of the 
agents, the cooperative theory is merely based on the 
amounts of utility that coalitions can get. The main 
question related to the problems represented by 
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cooperative games is the way to share among the 
players, in a rational way, the total utility of the grand 
coalition, that is, ( )u N , in such a manner that all 
players agree and become (more or less) satisfied with 
the outcome. In this respect, an essential notion, of 
great relevance in economics, should be the following: 
the marginal contribution of a player ∈i N  in a game u 
to a coalition S containing i  is { }( ) ( \ )−u S u S i . 
 It will also be of interest to have in mind that 
∈i N  is a null player in a game u on N if all his 

marginal contributions vanish, i.e. if { }( ) ( )∪ =u S i u S  

for every { }\⊆S N i , and , ∈i j N  are equivalent 
players in a game u on N if their marginal contributions 
to each coalition coincide, i.e. if 

{ } { }( ) ( )∪ = ∪u S i u S j  for every { }\ ,⊆S N i j . The 

set NG  of all cooperative games on a given set of 

players N becomes a vector space of dimension 2 1−n  
endowed with the natural linear operations for real–
valued functions defined by ( )( ) ( ) ( )+ = +u v S u S v S  
and ( )( ) ( )=u S u Sλ λ  for all ⊆S N , , ∈ Nu v G  and 
∈λ . We will pay special attention to the sum of 

games. 
 
Example 2.1: Assume that three towns, A, B and C, 
wish to get some kind of supply (electricity, water, gas) 
from a supplier S. The locations are A(2,2), B(–2,2), 
C(–2,–2) and S(2,0), the distances being given in 
kilometres (Fig. 1). The connection cost amounts to 100 
monetary units per km. 
 For individual connections, the supplier offers lines 
SA, SB and SC. When A and B ask for the possibility 
of a joint connection, the supplier offers using SA and 
AB, which represent a connection less expensive than 
SA and SB. Instead, for A and C the offer is just SA 
and SC. For B and C, the supplier offers SO, OB and 
OC, where O denotes the origin. Finally, for A, B and C 
together, the offer is using SA, SO, OB and OC. The 
problem will be how to share the connection costs. 
 Then we have a cost game c  on { }1,2,3=N , 
where 1 is A, 2 is B and 3 is C, which states the costs 
derived from forming coalitions (including singletons) 
and signing contracts for establishing the necessary 
(either individual or joint) connections from the 
supplier to the towns and is given by ( ) 0∅ =c  and 

{ }( 1 ) 200=c , { }( 2 ) 448=c , { }( 3 ) 448=c ,  

{ }( 1, 2 ) 600=c , { }( 1,3 ) 648=c ,  { }( 2,3 ) 766=c

 and { }( 1, 2,3 ) 966=c . 

 

 
Fig. 1: Towns and supplier positions 
 
 Assume that the three towns sign a joint contract 
with the supplier. How should they share the total cost 
of 966? If, for example, only towns 1 and 2 sign a 
contract, how should they share their joint cost of 600? 
 Let us also consider an equivalent approach 
provided by considering the saving game u , which 
gives the savings derived from forming coalitions and is 
defined by 

{ }( ) ( ) ( )
∈

= −∑
i S

u S c i c S  for each ⊆S N . 

In our example, ( ) 0∅ =u  and 

{ }( 1 ) 0,=u  { }( 2 ) 0=u , { }( 3 ) 0=u ,  

{ }( 1,2 ) 48=u , { }( 1,3 ) 0=u , { }( 2,3 ) 130=u

 and { }( 1,2,3 ) 130=u . 
 Notice that both c and u are nonnegative and 
monotonic and c is sub–additive whereas u is super–
additive. Now the questions are: how should the three 
towns share the net saving of 130 for a whole contract, 
or towns 1 and 2 share the net saving of 48 in the 
second case mentioned above? Of course, a coherent 
solution should exist for both cost and saving (related) 
problems. 
 

THE PROPORTIONAL RULE 
 
 A well–known method to share ( )u N  or ( )c N  is 
given by the so–called proportional rule. The amount 
that this rule allocates to each agent ∈i N  in, say, 
game u  is given by 

{ }
{ } { } { }

( )
[ ] ( )

( 1 ) ( 2 ) ... ( )
=

+ + +i

u i
u u N

u u u n
π  (1)  
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 Although an obvious “advantage” of the 
proportional rule is the easiness of its calculation in 
practice, a first problem arises as long as the rule can be 
applied only if 
{ } { } { }( 1 ) ( 2 ) ... ( ) 0+ + + ≠u u u n  (2) 

so that its domain is limited to the class of cooperative 
games on N that satisfy this condition. This is by no 
means a trivial restriction. 
 
Example 3.1: In the case of the 3–member contract in 
Example 2.1, by applying formula (1) to game c  the 
proportional rule gives the sharing of the total cost of 
966: 

1[ ] 176.277cπ , 2[ ] 394.861cπ  and 3[ ] 394.861cπ . 
Notice that: (a) towns 2 and 3 get the same cost 
allocation although they are not equivalent players in 
game c  because their individual costs coincide but 2 is 
an interesting partner for 1 whereas 3 is not and this 
reflects a lack of strategic sensibility of the proportional 
rule; (b) the proportional rule cannot be applied to game 
u  since all individual utilities vanish in this game and 
no proportion is therefore possible to be applied, thus 
illustrating the restricted domain problem of this 
sharing method. 
 

AN AXIOMATIC APPROACH TO A VALUE 
NOTION 

 
 In a seminal work[1,2], Shapley addressed the 
sharing problem in completely general terms and 
introduced the axiomatic method in game theory. 
Indeed, he stated the problem of finding a value, that is, 
a map 

: → N
Nf G  

which would assign a payoff vector 
1 2[ ] ( [ ], [ ],..., [ ])= nf u f u f u f u  to every game u on N. 

This payoff vector should be viewed as the solution to 
the problem represented by game u. 
 Of course, there are infinitely many ways to define 
such a map. Shapley stated four appealing conditions 
that a value f should satisfy. They are the following: 
* Efficiency. [ ] ( )

∈

=∑ i
i N

f u u N  for every ∈ Nu G . 

* Null player property. If ∈i N  is a null player in a 
game ∈ Nu G  then [ ] 0=if u . 
* Symmetry. If , ∈i j N  are equivalent players in a 
game ∈ Nu G  then [ ] [ ]=i jf u f u . 
* Additivity. For all , ∈ Nu v G , [ ] [ ] [ ]+ = +f u v f u f v . 
 These properties deserve to be called “axioms” 
because of their elegant simplicity. It is hard to claim 

that they are not compelling... Efficiency means that the 
players are going to share the total amount available to 
them. The null player property states that if a player 
does not contribute anything to all coalitions to which 
belongs then this player must get 0. Symmetry 
establishes that two players that are equally interesting 
as coalition partners should receive the same payoff. 
Finally, additivity implies that the allocation in the sum 
game has to coincide with the sum of allocations in 
each game. Maybe, in spite of its simplicity and 
mathematical tradition, this latter property is, in 
principle, the least clear one: the reason is that one does 
not easily capture the meaning of the sum game in 
practice. 
 In his study, Shapley proved that there is one and 
only one function f that satisfies these four axioms 
(which, moreover, form a logically independent 
system). He denoted it by φ  and found that its 
expression is, for arbitrary ∈i N  and ∈ Nu G , 

{ }
:

( 1)!( )![ ] [ ( ) ( \ )]
!⊆ ∈

− −
= −∑i

S N i S

s n su u S u S i
n

φ  (3) 

where | |=s S  for each ⊆S N . 
 Of course, the subsequent literature has been 
referring to φ  as the Shapley value. Other not essential 
but interesting properties follow from the axioms. For 
example, positivity: if a game u  is monotonic, then 

[ ] 0≥i uφ  for each ∈i N . Or: if u  is super–additive, 
then the Shapley value is an imputation in the sense 
that, jointly with efficiency, we have { }[ ] ( )≥i u u iφ  for 
all ∈i N . Notice moreover that, in fact, the Shapley 
value becomes a linear map from NG  to N  since 

[ ] [ ]=u uφ λ λφ  for all ∈ Nu G  and all ∈λ . 
 Also notice that, on one hand, the calculus for the 
Shapley value is more laborious than for the 
proportional rule. Nevertheless, computer programs 
exist that provide the Shapley value of a game and the 
multi–linear extension of a game[3] becomes an 
interesting tool for using, if necessary, approximation 
methods. On the other hand, all marginal contributions 
of a player matter when computing the Shapley value 
for this player. This implies a great deal of strategic 
sensibility on the side of the Shapley value that should 
be highly appreciated by practitioners and will be 
illustrated by all our following examples. 
 
Example 4.1: In the case of the 3–member contract in 
Example 2.1, the Shapley value gives, using formula 
(3), 
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1
200 152 200 200 1152[ ] 192,

3 6 6 3 6
= + + + = =cφ  

2
448 400 318 318 2250[ ] 375
3 6 6 3 6

= + + + = =cφ , 

3
448 448 318 366 2394[ ] 399,
3 6 6 3 6

= + + + = =cφ  

so that: (a) as should be expected, the Shapley value 
discriminates between 2 and 3 by taking into account 
all marginal contributions of each town; (b) 
analogously, it perfectly applies to the saving game u 
and yields 

1[ ] 8,=uφ  2[ ] 73,=uφ  and 3[ ] 49=uφ ; 
and (c) it is coherent in the sense that, for every town i , 

{ }[ ] [ ] ( )+ =i ic u c iφ φ  
(that's why town 2 gets more profit than town 3 in game 
u). The conclusion is that, using the Shapley value, all 
towns are indifferent between sharing costs and sharing 
savings, as it should be. 
 
Example 4.2: Let u be the nonnegative and super–
additive (and hence monotonic) game defined by 

( ) 0∅ =u  and { }( 1 ) 1,=u  { }( 2 ) 2=u , { }( 3 ) 0=u ,  

{ }( 1,2 ) 6=u , { }( 1,3 ) 6=u , { }( 2,3 ) 5=u and  
{ }( 1,2,3 ) 11.=u  

Notice that player 3 is not null and players 1 and 2 are 
not equivalent in this game. The proportional rule gives 

1[ ] 3.67uπ , 2[ ] 7.33uπ  and 3[ ] 0.00=uπ  
whereas the Shapley value yields 

1[ ] 4=uφ , 2[ ] 4=uφ  and 3[ ] 3=uφ . 
 Although in this instance both allocation rules are 
imputations, the striking differences arise from the fact 
that the proportional rule completely ignore (the 
marginal contributions of the players to) the coalitions 
of size 2. 
 

CHECKING THE PROPORTIONAL RULE 
 
 The framework established by Shapley allows us to 
evaluate any allocation method and, in particular, to 
compare the proportional rule and the Shapley value. 
The relevant points are the following: 
I. As was pointed out before, a first essential failure 

of the proportional rule is its restricted domain, 
defined by condition (2). Instead, the Shapley value 
applies without any restriction to all cooperative 
games.  

II. A second important problem is that the 
proportional rule does not take into account most 
of the marginal contributions (see Examples 3.1 

and 4.2); this becomes more and more critical as 
the number of players increases and results in the 
very low sensibility already mentioned. On the 
contrary, the Shapley value is always concerned 
with all marginal contributions without exception 
and enjoys therefore a nice sensibility with regard 
to the problem data.  

III. It is instructive to put together formulas (1) and (3) 
for two–player games. If i and j are these players 
(so that { } { }, 1, 2=i j ) then we have 

{ } { }
{ } { } { } { } { }( )

[ ] ( ) [ ( , ) ( ) ( )]
( ) ( )

= + − −
+i

u i
u u i u i j u i u j

u i u j
π  (4) 

 and 

{ } { } { } { }1[ ] ( ) [ ( , ) ( ) ( )]
2

= + − −i u u i u i j u i u jφ  (5) 

 The procedures look partially similar: first, 
each player is allocated his claim (say, { }( )u i  in 
case of player i ); then, the remaining worth is 
shared among both. However, it is worthy of 
mention that the Shapley value simply shares the 
residual utility equitably, whereas the proportional 
rule shares it proportionally to the individual 
utilities. This means that, conceptually, the 
proportional rule is more complicated than the 
Shapley value and includes a double discriminatory 
level that rewards twice the player that individually 
can get the highest utility by his own. We fail to 
find a reasonable justification for this. The use of 
formulas (4) and (5) is illustrated in Example 5.1 
and an interesting generalization of the 
phenomenon is presented in Example 5.2. 

IV. In which cases do both allocation rules coincide? It 
is not difficult to see that, in the two–player case, 
the Shapley value and the proportional rule 
coincide on a game u  (such that 
{ } { }( 1 ) ( 2 ) 0+ ≠u u , of course) if and only if this 

game satisfies some of the following conditions:  
 (i) { } { }( 1 ) ( 2 )=u u  (symmetric game). 

 (ii) { } { } { }( 1,2 ) ( 1 ) ( 2 )= +u u u  (additive game).  
 In general (arbitrary n ), for any additive game 
u  satisfying (2) we have [ ] [ ]=u uφ π  (in fact, the 
i –component of both values coincides with { }( )u i  
for each ∈i N ). Also, for any symmetric game u  

satisfying (2) we get ( )[ ] [ ]= =i i
u Nu u

n
φ π  for all 

∈i N . 
V. As to Shapley's axioms, it is easy to check that, in 

its restricted domain defined by inequality (2), the 
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proportional rule satisfies the axioms of efficiency, 
null player and symmetry. Even positivity is 
satisfied and the proportional rule gives 
imputations for super–additive games. 

VI. This leaves us with the lack of additivity for this 
rule (otherwise, it would coincide with the Shapley 
value by the uniqueness of the value). Then, 
although the proportional rule satisfies 

[ ] [ ]=u uπ λ λπ  for all game u  in its domain and 
all ∈λ , the proportional rule is not linear. Let us 
raise the following question: is this failure 
important or, on the contrary, additivity is simply a 
standard mathematical property, just of a technical 
nature, without special relevance for practitioners? 
The answer is quite surprising. From the lack of 
additivity, serious inconsistencies of the 
proportional rule derive when applying it to certain 
problems. Examples 5.3 and 5.4 will illustrate this. 

 
Example 5.1: Going back to Example 2.1, let us 
consider the case where only towns 1 and 2 sign a joint 
contract with the supplier. Then only coalitions 
excluding town 3 have to be taken into account and this 
leads us to the restricted games 'c  and 'u  defined on 

{ }' 1, 2=N  as follows:  

{ }'( 1 ) 200=c , { }'( 2 ) 448=c , { }'( 1, 2 ) 600=c , 

{ }'( 1 ) 0=u , { }'( 2 ) 0=u , { }'( 1, 2 ) 48=u , 
and, of course, '( ) 0∅ =c  and '( ) 0∅ =u . By applying 
e.g. formulas (4) and (5), we get 1[ '] 181.185cπ  and 

2[ '] 414.815cπ  but no possibility to apply the 
proportional rule to 'u ; instead, 

1[ '] 176=cφ , 2[ '] 424=cφ , 1[ '] 24=uφ  and 2[ '] 24=uφ , 
so that φ  is, again, coherent: { }[ '] [ '] '( )+ =i ic u c iφ φ  for 

1,2=i . 
 
Example 5.2: A pure bargaining problem for a set of 
agents N can be described by a set of utilities 

1 2, ,..., nu u u  available to the agents individually and a 
total utility Nu  they can jointly get by cooperating. As 
we will see, not only the proportional rule but also the 
Shapley value can be applied to share Nu . To this end, 
we need to introduce a cooperative game. 
 Since nothing is said about the utility available to 
each intermediate coalition, we can reasonably assume 
that such a coalition can get the sum of individual 
utilities of its members. Then we define the quasi–
additive closure of the pure bargaining problem as the 
cooperative game u  on N  given by 

( ) = Nu N u  and ( )
∈

= ∑ i
i S

u S u  for ⊂S N . 

Notice that { }( ) = iu i u  for all ∈i N . In general, game 
u  is not additive because Nu  needs not coincide with 

1 2 ...+ + + nu u u . An elementary calculus shows that the 
generalizations of (4) and (5) hold, i.e.  

[ ] [ ]
∈

∈

= + −∑∑
i

i i N j
j Nj

j N

u
u u u u

u
π  

and 
1[ ] [ ]

∈

= + −∑i i N j
j N

u u u u
n

φ , 

using, in the second case, the well known fact that 

:

( 1)!( )! 1
!⊆ ∈

− −
=∑

S N i S

s n s
n

 for each ∈i N . 

 Therefore we find again an unjustified double 
discriminatory behavior of the proportional rule that 
contrasts with the simplicity of the Shapley value. In 
addition, it is shown that the Shapley value (applied to 
the quasi–additive closure) is also a better solution even 
for pure bargaining problems. 
  
Example 5.3: Let { }1,2,3=N  be a purchasing pool of 
three firms and assume that, periodically, its members 
make, to a common supplier, orders of 1000, 1500 and 
2000 units, respectively, of a product whose unitary 
cost is 1. The supplier offers the following abseiling: 
 
nothing from 1 to 999 units 
10% off from 1000 to 1999 units 
15% off from 2000 to 2999 units 
20% off from 3000 upwards. 
      
 Table 1 provides the full data for this purchasing 
pool. The members of the pool do not form a joint 
venture. They join just to get discounts for accumulated 
orders. Two alternatives are offered: (a) sharing the 
actual joint cost of 3600; (b) sharing the joint saving of 
900 after assuming that, previously, all members have 
individually deposited in a joint bank account the cost 
of their respective orders without discounts. Table 2 
provides the result of applying the proportional rule and 
the Shapley value to each alternative. 
 Notice that we have three games: an additive game 
c  of costs without discount, game cd of costs with 
discount and game u  of savings. They are obviously 
related by = +dc c u . While the Shapley value is 
consistent in the sense that [ ] [ ] [ ]= +dc c uφ φ φ , which 
follows by additivity from = +dc c u , this is not the 
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Table 1: Purchasing pool data 
group order discount real cost saving 
 c  cd u 
{1} 1000 10%  900 100 
{2} 1500 10% 1350 150 
{3} 2000 15% 1700 300 
{1,2} 2500 15% 2125 375 
{1,3} 3000 20% 2400 600 
{2,3} 3500 20% 2800 700 
{1,2,3} 4500 20% 3600 900 
     
Table 2: Purchasing pool allocations 

i [ ]i cπ  [ ]d
i cπ  [ ]i uπ  [ ]i cφ  [ ]d

i cφ  [ ]i uφ  

1 1000  820.25 163.64 1000  812.50 187.50 
2 1500 1230.38 245.45 1500 1237.50 262.50 
3 2000 1549.37 490.91 2000 1550.00 450.00 
sums 4500 3600.00 900.00 4500 3600.00 900.00 
 
case for the proportional rule, which does not satisfy 
this property as can be checked in Table 2. Notice, 
moreover, that [ ] [ ]=c cπ φ  because c  is an additive 
game. 
 Therefore, when using the Shapley value all 
members of the pool are indifferent between sharing 
costs with discount and sharing savings. Instead, this is 
not the case if the proportional rule is applied: firms 1 
and 2 prefer sharing costs whereas firm 3 prefers 
sharing savings: the inconsistency (or lack of fairness) 
of the procedure is obvious. 
 
Example 5.4: Let us assume now that Example 2.1 was 
referring to e.g. gas supply and the towns are also 
interested in an additional water supply (carried out by 
the same supplier), the cost of which is given in (the 
second column of) Table 3. 
 Again, we consider three games: the additive and 
nonnegative (and hence monotonic) game cw, where 1 
is  a  null  player  and  2  and  3  are  equivalent players, 
describes the water costs; game cg (equivalent to game 
c in Example 2.1) gives the gas costs; and the sum 
game cw + cg yields the added costs. Table 4 provides 
the result of applying the proportional rule and the 
Shapley value to each one of these games. Notice that 
the proportional rule and the Shapley value coincide on 
cw since this is an additive game. While the Shapley 
value is consistent in the sense that 

[ ] [ ] [ ]+ = +w g w gc c c cφ φ φ  and this follows from 
additivity, this is not the case for the proportional rule, 
which does not satisfy this property and fails therefore 
to be consistent in added costs problems. 
 In this case, if the proportional rule is applied, town 
1 prefers to share the payment of separate bills whereas 
towns 2 and 3 prefer to share the payment of a water + 
gas joint bill. Instead, by using the Shapley value, all  

Table 3: Water and gas supply 
group water gas water + gas 
 costs costs costs 
 cw cg cw + cg  
{1}  0  200  200 
{2}  50  448  498 
{3}  50  448  498 
{1,2}  50  600  650 
{1,3}  50  648  698 
{2,3} 100  766  866 
{1,2,3} 100  966 1066 
{1}+{2}+{3} 100 1096 1196 
 
Table 4: Water and gas allocations 
i [ ]i wcπ  [ ]i gcπ  [ ]+i w gc cπ  [ ]i wcφ  [ ]i gcφ  [ ]+i w gc cφ  

1  0 176.277  178.261  0 192  192 
2  50 394.861  443.870  50 375  425 
3  50 394.861  443.870  50 399  449 
 
sums 100 965.999 1066.001 100 966 1066 
 
towns are indifferent between sharing separate bills and 
sharing a joint bill. 
 

USE AS POWER INDICES 
 
 An important class of cooperative games is formed 
by the so–called simple games. A game u  is simple if 
it is monotonic, ( ) 0=u S  or 1 for every coalition S  
and ( ) 1=u N . Such a game is completely defined by 
the family of winning coalitions 

{ }( ) : ( ) 1= = ⊆ =W W u S N u S . 
 Even more, the subfamily of minimal (in the 
inclusion sense) winning coalitions mW  also 
determines the game. Simple games are frequently used 
to represent voting systems at all levels, such as 
shareholder corporations, participated firms, town 
councils, parliamentary bodies and supranational 
organizations and the notion of power has therefore 
been closely attached to them. Let NSG  denote the set 
of all simple games on a given player set N . This set is 
not a linear subspace of NG  but a sub–lattice under the 
standard composition laws ∨  and ∧ , which are given 
by { }( )( ) max ( ), ( )∨ =u v S u S v S  and { }( )( ) min ( ), ( )∧ =u v S u S v S  
for all , ∈ Nu v SG  and every ⊆S N .  
 Although there is no general agreement on a single 
power index, among either game theorists or political 
scientists, there is an almost common view of power as 
a “cake” to be shared. Then, at least two properties are 
desirable for a map : → N

Ng SG  to be considered as 
a suitable power index: 
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[ ] 1
∈

=∑ i
i N

g u  for all ∈ Nu SG . 

[ ] 0≥ig u  for all ∈i N  and all ∈ Nu SG . 
 And indeed, the restriction of the Shapley value φ  
to NSG  satisfies these properties: property 1 is nothing 
but efficiency, while property 2 derives from the 
positivity property of the Shapley value and the fact 
that any simple game is monotonic. Moreover, the null 
player property and symmetry have also a nice 
interpretation for simple games. In effect, it is easy to 
check that a player is null in a simple game if and only 
if this player does not belong to any minimal winning 
coalition. Then, it is only natural that such a player gets 
a power of 0. Quite similarly, one can check that two 
players are equivalent in a simple game if and only if 
they appear symmetrically in the list of minimal 
winning coalitions. It is also completely reasonable that 
two such players have the same power. Thus, as was 
first pointed out by Shapley and Shubik[2,4], the 
restriction of the Shapley value to the lattice of simple 
games behaves perfectly well as a power index. Since 
then, it is usually called the Shapley–Shubik index of 
power. 
 As to additivity, it makes no sense in simple 
games. However, Dubey[5] discovered that an axiomatic 
characterization of the Shapley–Shubik power index, 
as, say, an allocation rule or “value” on the class of 
simple games, can be achieved by replacing that useless 
property with the so–called transfer property, which 
characterizes valuations in a lattice: 

[ ] [ ] [ ] [ ]∨ = + − ∧g u v g u g v g u v  for all , ∈ Nu v SG . 
Although the proportional rule satisfies properties 1 and 
2 above in its restricted domain, it is clearly unable as a 
power index since almost all simple games fail to 
satisfy condition (2) because, in such games, { }( ) 0=u i  
for all ∈i N  unless i  is a dictator or a winner (very 
exceptional cases). 
 Instead, the Shapley–Shubik power index not only 
applies to all simple games but also shows an extreme 
sensibility to data changes, as is illustrated by the 
following example. Let us point out that, in view of 
conditions 1 and 2, the allocations given by the 
Shapley–Shubik power index can be expressed as 
percentages. 
 
Example 6.1: Let us consider a participated firm where 
the share among four stockholders, denoted as 1, 2, 3 
and 4, is 36.25, 34.50, 15.50 and 13.75%, respectively. 
Assuming decisions are taken under the absolute 
majority rule, the game among the shareholders is the 
weighted majority game u  denoted by 

Table 5: The Shapley–Shubik index of power in the participated firm 
case quota stockholder 1 2 3 4 
(0) 50.01 weight  36.25 34.50 15.50 13.75 
 (1/2) power  41.67 25.00 25.00  8.33 
(1) 50.01 weight  51.25 29.50 10.50  8.75 
 (1/2) power 100.00  0.00  0.00 0.00 
(2) 50.01 weight  41.25 34.50 15.50  8.75 
 (1/2) power  41.67 25.00 25.00  8.33 
(3) 50.01 weight  36.25 39.50 15.50  8.75 
 (1/2) power  33.33 33.33 33.33  0.00 
(4) 60.00 weight  36.25 34.50 15.50 13.75 
 (3/5) power  33.33 33.33 16.67 16.67 
(5) 66.67 weight  36.25 34.50 15.50 13.75 
 (2/3) power  50.00 50.00  0.00  0.00 
 

u ≡  [50.01; 36.25, 34.50, 15.50, 13.75]. 
 
 This means that u  is a simple game where each 
agent i  has been allocated a weight of 0≥iw  
(percentage of share in our case), there is a quota q  
(50.01 in our case) and the winning coalitions are 
defined by 

( )∈ =S W W u  if and only if 
∈

≥∑ i
i S

w q . 

Thus, in this example we have 
{ } { } { }{ }1, 2 , 1,3 , 2,3,4=mW . 

 Game u  is super–additive. Starting at this initial 
situation, that will be denoted by (0) in Table 5, let us 
consider several variations, all of them defined by 
super–additive simple games: 
(1) player 1 buys 5% of the share to each one of the 
remaining players 
(2) only player 4 sells 5% of the share to player 1 
(3) player 4 sells 5% of the share to player 2 
(4) without purchase of stock, the majority is raised to 

3/5 
(5) without purchase of stock, the majority is raised to 

2/3 
 Table 5 provides the Shapley–Shubik index of 
power for the original game and each one of the games 
arising from the above changes. 
 

CONCLUSION 
 
 So far we have analyzed the proportional rule, from 
the axiomatic viewpoint established by Shapley when 
defining the value notion for cooperative games but 
also from a practical viewpoint. Several properties and 
failures of the proportional rule have been remarked 
(items I–VI and a statement previous to Example 6.1) 
and especially, practical implications of the non–
additivity of this rule have been evidenced that result in 
a serious inconsistency when dealing with costs/savings 
related problems and added costs problems. 
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 Summing up, it might be said that, in spite of its 
greater difficulty of calculus (easily solved by using 
computer programs or approximation methods for a 
high number of players), the Shapley value should 
replace in practice the proportional rule in cooperative 
affairs, where coalitions of intermediate size 
(1 | |S n< < ) matter, but also in pure bargaining 
problems, as has been shown in Example 5.2. 
 We would like to end the study by mentioning 
several references. First, the material included here 
might be completed with references[6-8], where 
additional information is provided. Applications of 
cooperative games to economic problems may be found 
in[9] and[10] and even in (the chapters on cooperative 
games of)[11], a great classical book on game theory. For 
an attempt to give to the proportional rule a greater 
relevance in cooperative games[12]. 
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