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Abstract: Recently an important and interesting nonlinear generalized likelihood ratio (GLR) detector 
emerged in functional magnetic resonance imaging (fMRI) data processing. However, the study of that 
detector is incomplete: the probability density function (pdf) of the test statistic was draw from numerical 
simulations without much theoretical support and is therefore, not firmly grounded. This correspondence 
presents more accurate (asymptotic) closed form of the pdf by resorting to a non-central Wishart matrix 
and by asymptotic expansion of some integrals. It is then confirmed theoretically that the detector does 
possess constant false alarm rate (CFAR) property under some practical regimes of signal to noise ratio 
(SNR) for finite samples and the correct threshold selection method is given, which is very important for 
real fMRI data processing.  
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INTRODUCTION 
 
 In   our   research   on voxelwise detection of 
fMRI, we encountered  the  following  model  and  
problem [1]. Let x denote an N 1×  complex random 
vector: 

i i
1 c cx (a br)e n (1 r)ae n , with b / aϑ ϑ= + + σ = +µ +σ µ . 

 The observation data x represents a complex time 
series at one voxel and its consists of three complex 
components. The first component a1 is a constant (DC) 
baseline component, where 1 denotes an N 1×  vector of 
1’s. DC component is always present and typically 
a 1≥σ . The second component br is a real oscillating 
signal. The vector r is a reference function that models 
the expected response characteristic of activation 
pattern. We assume r to be known throughout the study. 
The third component of additive complex Gaussian 
white noise cnσ  models errors primarily due to thermal 
noises in the patient. The term nc denotes a standard 
complex Gaussian vector (with mean zero and 
covariance matrix N NI × ). In general, a, b, ϑ  and 2σ  are 
unknown scalars and are different for each voxel time-
series. The detection is with regard to b: under H0, b=0 
indicates there is no brain activity in the corresponding 
voxel; under H1, b 0≠  indicates the presence of activity 
in the voxel. We have compared this model to actual 

fMRI time-series and found that our assumptions are in 
good agreement with actual data[1]. 
 As in [1], we express the complex model as a 2N 1×  
dimensional real-valued model: y S H n= φ + µ φ + σ , 
where 

cRR

I cI

nx 1 0 r 0 a cos
y ,S ,H , ,n

x 0 1 0 r asin n
ϑ         

φ         ϑ        
 (1) 

The subscripts R and I denote real and imaginary parts, 
respectively. 
 The detector was systematically studied in[1]. Since 
its publication, [1] has received many citations, 
including but not limited to[2,3]. In particular, our model 
and methods were also validated and generalized by 
some other work[2]. Readers are strongly suggested to 
read[1], because many practical issues (like the 
orthognality of 1 and r to be mentioned and numerical 
results- tables and curves illustrating our detector’s 
performance) are contained in[1]. While the 
methodology and main conclusion of[1] are still valid, it 
is defective in one aspect: the closed form of the test 
statistic’s pdf was achieved by numerical simulations 
(for only one fixed sample length N=120) and thus not 
firmly grounded. Because of the fundamental 
importance of threshold selection in detection problems 
and the above-mentioned importance of[1] in fMRI data 
processing, it is worthwhile to do some rigorous 
theoretical work to fix the defect. 
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 Due to inherent difficulty in dealing with nonlinear 
problems, we first attack a simpler problem with known 
noise variance. In the second part, we attack the more 
complex problem with unknown noise variance. The 
second problem is more realistic and is our ultimate 
goal. However, as we will see, the study on the first part 
provides a lot of insight and serves as a very useful 
basis for the second part. 
 Before specializing in individual case, we 
explicitly write the pdf of observation data y, which 
will be used in both cases. It is: 

2N
22 22

T T T
2 N

2 2

T T T T
2 N

2 2

py(y, ) (2 ) exp[ y S H /(2 )]

y y 2y (S H ) (S H ) (S H )(2 ) exp exp
2 2

y y 2y S 2y H (S H ) (S H )exp (2 ) exp
2 2

−

−

−

Θ = πσ − − φ−µ φ σ

   − φ+µ φ φ+µ φ φ+µ φ
= πσ − −   σ σ   

   − φ− µφ φ+µ φ φ+µ φ
= π −   σ σ   

(2) 

with Θ standing for unknown patameters. 
We further make some definitions and matrix 
decompositions, for subsequent use. 

T
1 2 12 2 1 [SH] 12 12

T
[SH] 3 3 12 3

H SU ,U ,U [U U ] P U U ,
N N

P U U , U [U U ]⊥

=
 (3) 

T 2 T 2
2 1 2 11 2
1 2

T 2
(2N 4) 1 3
3

U y U y~ N( , I), ~ N( , I)
N NN N

U y ~ N(0, I)
NN

× ×

− ×

σ σ
θ µφ θ φ

σ
θ

 (4) 

 The decomposition of two projection matrices P[SH] 
and [SH]P⊥  follows from this fact: suppose n nP ×  is a 
projection matrix with rank r. Then there exists 

n r T r r
P P PU Q ,i.e.,U U I× ×∈ = , such that n n T

P PP U U× = . 
Matrix analysis theory[4] can be used to justify this fact. 
Note 2N 2 2N 2 2N 4 2N (2N 4)

1 2 12 3U ,U ,U , U× × × × −  are all quasi-
orthogonal matrices (refer to nomenclature), while 

2N 2NU ×  is an orthogonal matrix. One should notice that 
orthogonality between them, that is T

i jU U 0, i j.= ≠  

 Put T T T T
1 2 3[ ]θ = θ θ θ , it follows that 

TU y
N

θ = . 

Therefore, the covariance matrix of θ is 
T 2

2U Ucov( , ) I I.
NN N
σ

θ θ = σ =  In other words, 

1 2 3, ,θ θ θ are independent, jointly Gaussian. 
 Following[1], we assume T T1 r 0 and r r N.= =  We 
thus have some preliminary results which will be used 
very often, like T T T T 2 2S H H S 0S S H H NI ,×= = = =  

2 22 2
SH HyP y Psy P y⊥ + + =  

 

and 
2 2T T

1 1 2 2 HyN( ) P Psyθ θ + θ θ + + , etc. where 

1 2 3, ,θ θ θ  are defined in equation (4). 
 
Results on known noise variance 
GLR test statistic: Recall GLR test statistic is given 
by: 

2

( , ) 2
( 1) y 1

1 2
0 y 0

2

2
,

2

2

S
2

y S H
max exp

2max p (y, )
l (y)

max p (y, ) y S
max exp

2

min y S H
exp

2

P y
exp

2

µ φ

Θ

Θ

φ

µ φ

⊥

 − φ−µ φ
− 

σΘ   =
Θ  − φ

− 
σ  

 − φ−µ φ
 −

σ  =
 
 −
 σ
 

 (5) 

Where y ip (y, )Θ is the pdf of observation y under Hi, 
i=1,0 with unknown parameters iΘ . Everything is 
straightforward except for the minimization in (5). 
Following the spirit in Appendix I of[1] to achieve the 
optimization, we have the result: 

2 2
1 2

2 1 2 2 2 2 2
1 2 1 2

Nl y 2lg l (y)
2 ( ) 4( , )

 θ − θ +
 =
 σ θ − θ + θ θ 

(6) 

 
Probability density function of test statistic: Direct 
calculation of the pdf of test statistics l2(y) from 
equation (6) is formidable. Instead we simplify it to a 
form in terms of normalized quantities. 

2 2
1n 2n

2 2 2 2 2
1n 2n 1n 2n

1l (y)
2 ( ) 4( , )

 θ − θ
 =
 + θ − θ + θ θ 

 (7) 

Where we have introduced the following normalized 
random vectors to facilitate computation 

1n 1 2n

2

2N 4
3n 3

N N~ N( , I),

N N~ N( , I)

N ~ N(0, I )−

θ = θ µφ θ
σ σ

= θ φ
σ σ

θ = θ
σ

 (8) 

 Also, although 3nθ  is not immediately used here, 
for sake of comparison and unity they are prepared for 
use later together with 1n 2n, andθ θ . The subscript n 
means normalized. Also notice the independence 
between 1n 2n,θ θ  and 3nθ . 
 



J. Math. & Stat., 3 (2): 38-43, 2007 
 

 40

Introduction of a non-central Wishart matrix: To 
compute the pdf of l2(y), we further define a matrix 

2 2 2 2
2n 1nZ [ ] ~ N(M, I I )× ×θ θ ⊗  with 

N N NM [1 ]
 

= φ µφ = φ µ 
σ σ σ 

 and another matrix 

2
2n 2n 1n 11 12T 2 2

22
21 221n 2n 1n

( , ) a a
A Z Z ~ W (2, I , )

a a( , )
×

 θ θ θ   = ω    θ θ θ 

 

 
Where 2 2

2W (2, I , )× ω  denotes a non-central Wishart 
distribution[5] with noncentrally matrix ω , 

2
2 2 2 T

2 2

11N NaI ( ) [1 ] .× µ  
ω = φ φ µ =   µσ σ µ µ   

 

 
The pdf of matrix A is explicitly given by[5] 

2

2

11 12 22

2Na
2

a a a 11 12 22

2

0 1 2 2

exp (1 )
f (a ,a ,a )

4 det(A)

11 Naexp tr(A) F 1; A
2 4

σ
 − +µ =

 µ   −      σ µ µ    

(9) 

 Partially, this is good news: in theory, equation (9) 
provides a basis for all other pdf’s in question. 
However, because of the very cumbersome 
hypergeometric function, equation (9) is still very 
intractable, particularly under H1. The difficulty of our 
problem lies in the noncentral Wishart distribution, 
about which little is known. Derivation of the pdf of 
l2(y) from equation (7) is still difficult. To bypass the 
difficulty, we examine the two eigenvalues 1 2 0λ > λ >  
of matrix A. 

2 2
1 2 11 22 1n 2n

2
1 2 11 22 12

2 2
1 2 11 22 12

2 2 2 2
1n 2n 1n 2n

a a ;

det(A) a a a

(a a ) 4a

( ) 4( , ) .

λ + λ = + = θ + θ

λ λ = = −

λ − λ = − +


= θ − θ + θ θ

 (10) 

Using these relationships, the test statistic l2(y) is 
greatly simplified to 

2
2 1 2 1 2 2n 1 11

1l (y) [( ) ( ) 2 ] a .
2

= λ + λ + λ −λ − θ = λ −  (11) 

 The joint pdf of 1λ , 2λ  and 11a of matrix A under 
H0, is critically useful both in this section and in next 
section. 
 
Joint pdf of two eigenvalues and a11 of matrix A 
under H0: Under H0, µ=0, the pdf of noncentral 
Wishart matrix A in equation (9) is simplified to[6] 

11 12 22a a a 11 12 22

11 22

0 1 112
11 22 12

f (a ,a ,a )

a a1exp( ) exp( )1 12 2 F (1; a )
4 4a a a

=

+
− δ −

δ
π −

 (12) 

with 2 2Na / .δ = σ  Make a transformation from (a11, 
a12, a22) to (a11, 1 2,λ λ ), we get that is. 

11 11

2 2
1 11 22 11 22 12

2 2
2 11 22 11 22 12

11 11

12 11 11 1 2 1 2

22 11 1 2

a a
1 a a (a a ) 4a
2
1 a a (a a ) 4a
2

a a ,

a a ( a )
a a .


 =

  λ = + + − +  
  λ = + − − +  

=


⇒ = ± − + λ + λ −λ λ
 = − + λ + λ

 

 Evaluating the Jacobin of the inverse transform 
(from now on, many intermediate results and operations 
are omitted). 

11 1 2

11 12 22

a 11 1 2

11 12 22
a a a 11 12 22

11 1 2

1 2

1 2

1 2
0 1 11 2

11 1 2 11 1 2

p (a , , )

(a ,a ,a )
f (a ,a ,a )

(a , , )
1exp( )exp( )1 2 2

4

1F (1; a )
4 a ( )a

λ λ λ λ =

∂
∑

∂ λ λ

λ + λ
− δ −

=
π λ λ

λ −λ
δ

− + λ + λ −λ λ

 (13) 

There are two terms in the above ∑  operation. 
 
Closed form of pdf of l2(y) at finite samples: One can 
perform the standard procedure to calculate the pdf of 
l2(y) under H0 and the exact closed form turns out to be 
still quite complicated and is omitted here. It shows 
that, for finite samples and very small signal to noise 
ratio, our detector generally doesn’t have the property 
of constant false alarm rate (CFAR). Hence, selection 
of proper threshold to satisfy a prescribed probability of 
false alarm Pf is impossible in general, because it is 
dependent on unknown parameters. 
 To proceed, let us take a short-cut from another 
perspective. It is shown in[7] (asymptotic distribution of 
GLR test statistics) that 2

2 1l (y) ~ χ , for large samples 
(N )→∞ . Here asymptotic analysis is a statistical 
term, referring to the behavior of some quantity for 
large data samples. However, large samples assumption 
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is not feasible in fMRI problem, due to the temporal 
resolution limitation in fMRI[8]. How can we then 
design an implementable detector for finite samples? 
To get around this difficulty, we combine result from 
previous subsection and asymptotic result. We notice 
one feature, that is, the pdf of l2(y) (under H0) depends 

on unknown parameters through 
2

2

Na
δ =

σ
. For this 

parameter, the contributions from N and from 
2(a / )σ are equivalent. Therefore, with fixed finite 

samples but at some reasonably large signal to noise 
ratio SNR δ , it must also have CFAR property. 
 In practice, we can do numerical simulations to 
probe some SNR region in which the detector is 
practically, locally with 2

2 0 1l (y) H ~ .χ  And if that SNR 
region is commensurate with real application settings, 
our detector is implement able and is CFAR in that 
region and we should be content. Invariance property 
can save us a lot of numerical work in this aspect. 
Since[1] already elaborated the numerical results for the 
case of unknown noise variance, which is our ultimate 
goal, we omit corresponding work for this similar part. 
 
Results on unknown noise variance 
GLR test statistic: The GLRT statistic is given by 

N22 N
y 1 1 01

3 2 N 2
0 1y 0 0

ˆp H (y; ) ˆˆ min(2 min( ))
l (y)

ˆ ˆ ˆ(2 min( )) minp H (y; )

−

−

Θ  σπ σ
= = =  π σ σΘ  

 

Naturally we consider another monotonous function of 
1 2

0N
3 4 3 2

1

ˆmin
l (y), l (y) (l ) .

ˆmin
σ

=
σ

 

Following[1], instead of using l4(y) directly, we use 
equation (14) as our test statistic. 

3 4

2 2 2 2 2 2
1 2 1 2 1 2

2 2 2 2 22 2
1 2 1 2 1 2 3

t (y) [l (y) 1](N 1)

(N 1)[ ( ) 4( , ) ]
.

( ) 4( , ) 2

= − − =

− θ − θ + θ − θ + θ θ

θ + θ − θ − θ + θ θ + θ

 (14) 
The detailed derivation was already published in[1]. 
 Similar to previous section, we further use the 
normalized quantities in lieu of their counterparts, the 
very complicated form is then drastically simplified 
into one in terms of eigenvalues (when the noise of 
variance 2σ  is known, no one would doubt feasibility 
of introduction of the normalized quantities, since they 
are not only beneficial to mathematical computation, 
they are also physically implementable. In present case 
of unknown noise variance, the normalized quantities 

are not implementable, introduction of them is purely to 
benefit mathematical calculation). 

2 2 2 2 2 2
1n 2n 1n 2n 1n 2n

3 2 2 2 2 22 2
1n 2n 1n 2n 1n 2n 3

2
1 2n 2

2
2 332 3n

(N 1)[ ( ) 4( , ) ]
t (y)

( ) 4( , ) 2 n

(N 1)[ ] l
(N 1) .

a

− θ − θ + θ − θ + θ θ
=

θ + θ − θ − θ + θ θ + θ

− λ − θ
= −

λ +λ + θ

(15) 

 
Probability density function of the test statistic 
Theorem: Regarding the statistic defined in equation 
(15), under H0 and asymptotically 

1 2 1 11
2 2

2 2 1 2 1

(as ) : , and a are

mutually independent with ; l ~ , ~ .

δ → ∞ λ >> λ λ

λ χ λ χ
 

Combined with the trivial result that 
2 2

33 3n 2N 4a ~ −θ χ  is independent of the other three, 

3 0 1,2N 3
N 1t H ~ F .

2N 3 −

−
−

 

 
Proof step 1: The marginal (asymptotic) pdf of l2 in the 
numerator is already derived in previous section. We 
first find the (asymptotic) joint distribution of 1λ  and 

2λ  from equation (13). 

1 2

1

2

1 2
1 2

1 2
1 2

0 1 11

11
1 11 11 2

1 exp( )exp( )( )
4 2 2f ( , )

1F (1; a )
4 da

( a )(a )

λ λ

λ

λ

λ + λδ
− − λ − λ

πλ λ =
λ λ

δ

λ − − λ∫

 (16) 

with 

0 1 11 11 0 110

1 1F (1; a ) exp( a cos )d I ( a ).
4

π
δ = δ θ θ = δ

π ∫  

We first cope with the integral in the above equation. 
By a series of change of variables, 

1

2

1 2

1 2

11
1 1 2 110

1 11 11 2

1 2

1 22
110

2 1 2 1 2

exp( a cos )
I ( , ) d da

( a )(a )

exp( cos x )1 2d dx x a
2

( x)( x)
2 2

π λ

λ

λ −λ
π

λ −λ
−

δ θ
λ λ θ

π λ − −λ

λ + λ
δ θ + λ + λ

= θ = −
π λ −λ λ − λ

+ −

∫ ∫

∫ ∫

 

1 2 1 2

1

0 1
1 2

x
1 2 1 22

x0
1 22

x
1 2 1 22

x 0
1 22

exp cos y
2 21 xd dy y

(1 y)(1 y)
2

1 d exp( cos sin )d y sin
2

1 d exp( cos sin )d .
2

π

−

π

−

π

−

 λ − λ λ + λ
δ θ + 

  = θ =
λ −λπ + −

λ −λ λ + λ
= θ δ θ φ + φ = φ
π λ − λ

λ −λ λ + λ
= φ δ θ φ + θ
π λ − λ

∫ ∫

∫ ∫

∫ ∫
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 Now we are going to do some asymptotic 
expansion to the above integral. Here, asymptotic 
expansion is completely a mathematical term, referring 
to the behavior of some integral when some parameter 
is very large. Specifically, we will use Laplace method 
for asymptotic expansion several times in this section. 
The reader is referred to some mathematical book[9] for 
more exposition on Laplace method and other methods 
for asymptotic expansions. 
 Repeating Laplace method for asymptotic 

expansion, we have 
1

12
1 2 1

2
1 2

exp( )
I( , ) ( )

( )

− δλ
λ λ ≈ δ

λ −λ
 and  

 

1 2

1 2
1 2 1

1 2 1
2

1 2

exp( ) exp exp exp1 2 2 2f ( , ) .
4λ λ

−λ −λδ
− λ − λ δλ

λ λ ≈
π

δ λ λ

(17) 

 
 
Step 2: Now we will prove, asymptotically (for large 
δ ), 1 2 .λ >> λ  Equivalently, we need to prove 

2 2

1 1

0, i.e., P( ) 0for any 0,
λ λ

→ >∈ → ∈>
λ λ

 where P stands 

for probability. For 1∈≥ , it is obvious because P=0. 
We consider 0 1<∈< . From equation (17) 
 

1 1
2

1

1 1
2

1
2

2
2 1

1

1 2
1 1 2

1 20
1 2

1
1

1 22
1 20 0

1 2

1
1

10
1

P( ) P( )

exp( ) exp( )1 2 2exp( ) d d
4 2

exp( )1 2exp( ) d exp( ) d
4 2 2

exp( )1 2exp( ) d .
4 2

∞ λδ−

∈λ

∞ λδ−

∞δ−

λ
>∈ = λ >∈λ

λ
λ λ

δλ − − λ −λδ
= − λ λ

π λ λ

λ
δλ − λ −λλδ

< − λ − λ
π λ λ

λ
δλ −δ

< − λ π
π λ

∫ ∫

∫ ∫

∫

 

due to the fact that the integral 
 

1 11 22 1
20 0

2

x 2
2 012

0

r 1 rexp( ) d exp( ) dr
2 2 r

sin
exp( )2cos d e .2.1. .

2 2

λ λ − λλ λ −
− λ = −

λ

λ θ π
= − θ θ < = π

∫ ∫

∫
 

 
Repeatedly using the Laplace method, we get, as 
δ → ∞ , 

1
1 1
2

2 1 10
1

1 12
12 2 2

1 10

1 1 1
2 2 2 2 2

exp( )
2P( ) exp( ) d

4 2

( )1 e exp( ) d
4 2 8
1 1e e 2. 8 0.
4 2 2

δ− ∞

δ −
− − ∞

δ δ
− − − −

λ
δλ −π δ

λ >∈λ < − λ
π λ

λ − δδ
< δ − λ λ

δ
π

= δ δ π δ = δ →

∫

∫  

Equation (17) can thus be factored as 

1 2 1 2

1

1 2 1 2

1
12

1 1

f ( , ) f ( )f ( ) with

1f ( ) exp( ) exp( ),
2 22 2

λ λ λ λ

−
δ

λ

λ λ = λ λ

λ−δ
λ = δλ −

π

 

2

2

2
2 1 1 2

2

exp( )1 2f ( ) ~ ,i.e., ,
2λ

−λ

λ = χ λ λ
π λ

 are 

(asymptotically) independent. 
 
Step 3: We are to prove that 11 2a ,λ  are also 
independent (asymptotically), which is much easier 
than the above derivation. From equation (13) and since 

1 2λ >> λ  which is just established, 

11

11 2

11

2
0 1 a

a 11 2
2 11 2

1
1

1a
1 11

1exp( ) F (1; )1 2 4p (a , ) exp( )
4 2 a

exp( )
2 d

a

λ

∞

λ
− δδ

λ = −
π λ −λ

λ
− λ

λ
λ −∫

(18) 

 The integral is only a function of a11, however, 
complex it is. And obviously 

2 2
11 2 11 11 2 2 1a a as becausea ~ ( ), ~ (0).−λ ≈ δ→∞ χ δ λ χ  

Therefore, equation (18) factors and 11 2a ,λ  are 
independent (asymptotically). And finally our theorem 
ensues. 
 
Closed form of GLRT test statistic’s pdf at finite 
samples: We use the same reasoning as in previous 
section. We already have the result that 

2

3 0 1,2N 3 2

N 1 Nat (y) H ~ F for larg e .
2N 3 −

−
δ =

− σ
 For this 

parameter, the contributions from N and from 
2a 

 σ 
 are 

equivalent. Therefore, for finite sample but at some 
reasonably high SNR, the detector is practically CFAR 
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and the correct threshold should be chosen according to 

1,2N 3
N 1 F

2N 3 −

−
−

. 

 In[1], extensive numerical simulations reveals that 
the GLR test is also CFAR when a 1,≥σ  which is the 

case for most if not all fMRI experiments. More 
importantly and more interestingly, to achieve the 
desired Pf, the proper threshold of our GLR detector is 
almost exactly one half that of the corresponding 
threshold required for a 1,(N 1)F −  distributed test statistic. 

Equivalently this means that 3 1,N 1
1t ~ F .
2 −  The 

discrepancy between result in[1] and theoretical result 
here is easily explained. The numerical simulations 
were only performed for N=120 in[1]. In this case 

1,2N 3 1,N 1
N 1 1F F .

2N 3 2− −

−
≈

−
 If N gets much smaller (in 

either fMRI or coherent interference detection to be 
discussed), theoretical instead to numerical result need 
be used. 
 

DISCUSSION AND CONCLUSION 
 
 This study provides an asymptotic, closed form of 
the pdf of the test statistic of one non linear GLRT 
detector with important applications to fMRI, thereby a 
more accurate threshold selection method is established 
for finite samples. This is very important for practical 
fMRI data processing.  
 As pointed out in introduction, our model is the 
simplest, but it leaves room for extension to deal with 
more complex situations such as trends, physiological 
fluctuations (respiration and cardiac cycle), patient 
motions etc. Color noise can be whitened provided we 
know data correlation matrix. Practical issues like these 
are already mentioned in[1]. Solution of the nonlinear 
problems with general representation of signal subspace 
and nuisance subspace H and S will be presented in the 
future. 
 
Nomenclature: Scalors, vectors and matrices are not 
distinguished notationally (except in the very beginning 
part of introduction of the model). In other words, all 
quantities in the study are regarded as matrices (of 
commensurate dimensions), following Matlab 
convention. 
A ⊗ B: Kroneker product between matrix A and B 
a b: a is defined through b and vice versa 
A ≡ B: A is identically equal to B 
AT: transport of matrix A 
tr(A): trace of matrix A 

det(A): determinant of matrix A 
m nA × : matrix A with dimension m n×  

p pI × : the p p× identity matrix 
m mO × : the set of all orthogonal matrices with dimensions 

m m×  
n pQ × : the set of all n p(p n)× <  quasi-orthogonal 

matrices, meaning of UTU= p p n pI if U Q× ×∈  
PM: matrix that projects a vector onto the range space 

of matrix M, PM=M(MTM)-1MT 

MP⊥ : I-PM, 2 2
n m,n,F : and Fdistributionsχ χ  

T
1 2 1 2( , )θ θ θ θ : the inner product between two vectors 1 2,θ θ  

Tv v v : 2-norm of vector v 

(n)Γ : Gamma function 

nI (x) : modified Bessel function of the first kind with 
order n[7] 

0 1F(1;a) : hypergeometric function of a, a can be a scaler, or 
a matrix[5] 

pdf: probability density function 
GLR: generialized likelihood ratio 
A~p: matrix A has a pdf (the pdf of a matrix is of 

course defined as the joint pdf of all its elements) 
of p 

N(m, C): Guassian pdf with mean m and covariance matrix 
C. 
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