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Abstract: Some models of probabilities are described by generalized stochastic equations. These 
models (like that prediction) lead to the resolution of boundary problems for random distributions 
(generalized equations). We are interested in the equation Lx f= in dS IR⊂  where L is a linear 
operator, f is a random distribution and to the class of boundary conditions on the frontier SΓ = ∂  in 
order to define for the corresponding boundary conditions. The resolutions of boundary problems for 
random distributions lead to the Markov property for the solution of these equations. 
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INTRODUCTION 

 
The Markov property can for stochastic generalized 
equations be studied from several different angles, see, 
e.g. Levy (1956), Kallianpur and Mandrekar (1974), 
Rozanov (1981, 1987), Khaldi (1989, 2000). In this 
paper we consider the classical case where L is a linear 
operator. 
The boundary problems for the linear equations of the 
type: 

( ) ( )Lx t f t , t S= ∈  (1)  
where L is a linear operator , lead to search the 
distribution x(t), t∈T, in dT E⊆ , containing the 

domain dET ⊆ , such as 
( ) ( )x t v t , t T= ∈ \S (2) 

where T\S is the additional of S in T. 
 So that the problem admits a (only) solution, the 
distributions f(t) and v(t) as the solution x(t) have to 
belong to a certain class which we shall describe more 
low. The solution x(t) is bound to the operator L 
verifying the equation: 

( ) ( )*L t t , t Tξ = ξ ∈  (3)  
where ( )tξ t) and ( )* tξ  are distributions with values in 
Hilbert's space H. 
 By distribution with values in H, we understands a 
linear continuous application: 

( ) ( )0: C T , H∞ξ ϕ∈ → ϕ ξ ∈  (4)  

 In first, we are interested in the properties of the 
solution ( )tξ  of the boundary problem (3) that we 

prolong in ( )*
0W C T∞=  space of distributions 

( )u , u= ϕ , ( )0C T∞ϕ∈ . The distribution ( )0u C T∞∈  is, 
( ) ( ) ( )

T

, u t u t dtϕ = ϕ∫  (5) 

we define for a some set S ( ( )S T⊂  the space 

( ) ( ){ }*H S u, , u W ,Supp u S+ = ξ ∈ ⊆  (6) 

 
 MAIN RESULTS 

 
The solution ( )tξ  of the equation (3) for a local 
operator L possesses the following Markov property: 
for everything S T⊆  with border SΓ = ∂ , the 
projection of the space H+ (T\S) in H+ (S) coincides 
with ( )H+ Γ . 
 One notices that an equation of the type (3) with 

*L l l=  and ( ) ( )* *t l tξ = η  occupies an important place 
in the theory of the stochastic differential equations of 
the type ( ) ( )L t t , t Tξ = η ∈ , where l is a differential 

linear operator, ( )tη  a distribution in H (Hilbert's 
space) called "white noise" in t T∈ . 
 For every ( )0u C T∞∈ , the distribution 

( ) ( )0Lu , Lu , C T∞= ϕ ϕ∈  is a positive linear application 
u→Lu : 
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( ), 0≥Luϕ  (7)  

with ϕ = ( )
1
2, Luϕ  and one considers the space de 

Hilbert's W, completed of ( )0C T∞  by the scalar product 
( )u, v u, Lv ,u, v= ∈ ( )0C T∞  (8) 

 By using (8), one corresponds to every v W∈  the 
distribution Lv: 
Lv ( ), Lv , v= ϕ = ϕ , ( )0C T∞ϕ∈  (9)  
and one introduces *W  (set of distributions Lv  
 
prolonged by continuance on W): 
Lv ( ) vuLvu ,, ==  (10) 
 It is evident that *W  is the dual of W and exactly 

*W  is the set of functional linear on W described by 

(9), with Lv = ( )
1
2

1Lv,Lvu Supp , vϕ == ϕ .  
The equation (1) is understood in the sense 
( ) ( )0, Lx , f , C S∞ϕ = ϕ ϕ∈  (11) 
and the boundary conditions (2) as 
( ) ( ) *u, x u, v , u W , Supp u T= ∈ ⊆ \S (12) 
 For the search for the solution of the problem (1)-
(2), one considers the Hilbert's space H defining the 
isometric application 

( )* *: ,∈ → ∈u W u Hξ ξ  (13) 
defined by (3). 
 The application (4) maybe identified with the 
isometric application 

( ) ( )* 1 *: , ,−∈ → = ∈u W u L u Hξ ξ ξ  (14) 
 We define ( )H S  and ( )*H S  respectively by 

( ) ( ) ( )( )0, , ∞= ∈H S C Sϕ ξ ϕ  and ( ) ( ) ( )( )* *
0, , ∞= ∈H S C Sϕ ξ ϕ . 

It is evident that ( ) ( )*=H T H T . Afterward, one define 

( )=H H T . 
  That is to say { },ξ η  the scalar product of ξ  and 
∈Hη . One has so 
( ) ( ){ } ( ) ( ){ }

( ) ( )

* * 1 *

1 1

, , , , , ,

, , ,

−

− −

=

= = =

u L u

L u LL u u

ϕ ξ ξ ϕ ξ ξ

ϕ ϕ ϕ
 (15) 

 The condition ( ) ( ) ( )( )*
0, , , ∞⊥ ∈u C Sξ ϕ ξ ϕ , for an 

opened set ⊆S T  is equivalent in ⊆Suppu T \S. By 

indicated by ( ) ( )* *⊥ =H S H T ⊖ ( )*H S , one has 

H+ (T\S) ( )* ⊥= H S  where 

H+ (T\S) ( ){ }, , ,= ∈ ⊆v v W Suppu Tξ \S  because 

( ) ( ){ } ( ) ( )*, , , , ,= =v u v u u vξ ξ  (16) 
that one deducts of (15) by passage on the limit of 
ϕ → ∈v W . 
 
Theorem 1: The unique solution x∈W of the problem 
(1)-(2) is given by: 

( ) ( ) ( ), , ,+
Γ= = + Πx u x g f x v  

Where +
ΓΠ  is the operator of projection on ( )+ ΓH  and 

g the solution of the equation 
* ,+

Γ= −Π ⊆L g x x Supp u S . 
 
Proof: As ( ) ( )⊥= ⊕H H S H S  

( ) ( ) ( )
⊥ ⊥

+= ⊕ Γ ⊕H S H H T S\ , every ∈x H  can be 

written under the shape 1 2 3= + +x x x x  where 1x , 2x  

and 3x  are the orthogonal projections of x on the sub-

spaces ( )⊥H S , ( )+ ΓH  and ( )⊥H T S\ . One has then 

( ) ( ) ( ) ( )1 2 3, , , ,= + +u x u x u x u x , ( )⊥∈x H S . As 

( ) ( ) ( )1 1* * *, , , ,
− −

= = =u x Lu L x L Lu x u L L x , one has 

( ) ( ) 1*
3 3, ,

−
=u x f L x  because ∀ ∈y ( )* ⊥L H T S\ , 

( ), ,=u y Lu g , ∈g ( )⊥H T S\ , ( ) 1* −
=g L y . It 

remains to show that , ,=Lu g f g , ∈g ( )⊥H T S\ . 

The equation =Lx f  means ( ) ( ), ,=Lx fϕ ϕ , 

( )0
∞∈C Sϕ  or −Lx f ( )⊥∈H T S\ . As a consequence 

, 0− =Lx f g , ∈g ( )⊥H T S\  and so any solution of 
the equation =Lx f  can be represented by 

( ) ( ) ( )( )1*
2 3, , ,

−
= +u x u x f L x  or ( ) ( )2, , ,= +u x u x f g  where 

( ) ( )1*
2

−
= −g L x x  with 2

+
Γ= Πx x . 

 
Theorem 2: The equation 

( ) 0,= ∈Lx t t S   (17) 
where L is a local operator local with the boundary 
conditions 
( ) ( ) *, , , ,= ∈ ⊆ Γu x u v u W Suppu  (18) 
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possesses a unique solution x∈W in S. 
 
Proof: As one say that the solution is written by 

( ) ( ), ,= =x u x g f ( ),+
Γ+ Π x v . It remains to check that 

all solution x∈W with null boundary conditions is egal 
to 0 in S. The condition (18) give 
( ) ( )* *

1 1, ,⊥ =x H S S Sξ  and 

( ) ( ) ( ){ }*
*

0 , , , , , ,= = = ⊆ Γu x u Lx u x Suppuξ ξ  mean 

that ( ) ( )*, +⊥ Γx Hξ .  

The decomposition ( ) ( ) ( )
⊥ ⊥

+= ⊕ Γ ⊕H H S H H T S\  

implies ( ) ( ) ( )* *, +∈ =x H T S H Sξ \ . It means that 

( ) ( ) ( ){ }*, , , , 0,= = ⊆u x u x Suppu Sξ ξ . 
 
Theorem 3: The equation (3) with a local operator L 
possesses the Markov property. 
 

Proof: As ( ) ( )( )*
⊥

+ Γ = ∪H H S T S\  where 

( )( ) ( ) ( )* * *
⊥

∪ = ⊕H S T S H S H T S\ \  direct sum of the 

two sub-spaces ( )*H S  and ( )*H T S\  because 

( )( )0
∞∀ ∈ ∪y C S T S\ , 1 2= +ϕ ϕ ϕ , ( )1 0

∞∈C Sϕ and 

( )2 0
∞∈C T Sϕ \ , which, as elements of W are 

orthogonal: 1 2 1 2, , 0= =Lϕ ϕ ϕ ϕ . One has 

consequently ( ) ( ){ }* *
1 2 1 2, , , , 0= =ϕ ξ ϕ ξ ϕ ϕ . We 

have so the orthogonal decomposition 

( ) ( ) ( )
⊥ ⊥

+= ⊕ Γ ⊕H H S H H T S\  in which 

( ) ( ) ( ) ( )* * * ⊥
+⊕ Γ = =H S H H T S H S\  and 

( ) ( ) ( ) ( )* * ⊥
+ +Γ ⊕ = =H H T H S H T\S \S . By 

indicating by ( )+Π S  and ( )+Π T \S  the orthogonal 

projections on ( )+H S  and ( )+H T \S  respectively, 

one has 
( )+Π S ( )+H T \S ( )+= H T \S ( )+Π S ( )+= ΓH . 

That means that the distribution ( )tξ (t) possesses, in 
the space of Hilbert, the Markov property. 
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