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Abstract: This study focused mainly on the derivation of the 2 and 3-point block methods with
constant coefficients for solving special second order ordinary differential equations directly based on
Newton-Gregory backward interpolation formula. The performance of the new methods was compared
with the conventional 1-point method using a standard set of test problems. Numerical results were
presented to illustrate the effectiveness of the methods in terms of total number of steps taken,
maximum error and execution time. The results suggested a significant improvement in efficiency of
the r-point block method. AMS Subject Classification: 65L05.

Key word: Initial value problems, special second order ordinary differential equations, block method

INTRODUCTION
Special second order Ordinary Differential
Equations (ODEs) arises naturally in describing

mechanics and electrical systems, wave oscillations and
a variety of other physical problems. Such equations
can be written in the form:
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The easiest way to obtain the numerical solution of
Eq. 1 is to reduce it to a system of first order ODEs
twice the dimension. However some computational
advantage can be gained if we can use methods
specially designed to solve Eq. 1 directly, such methods
can be seen in Dahlquist[”, Van Der Houwen' and
Sommeijer®® and El-Mikkawy and Rahmo'”. These
methods compute the numerical solution at one point at
a time.

In this study we developed methods that can
compute the numerical solution at more than one point
at a time; such method is called block method. This
method can be seen in Omar'® whereby he developed
multiblock methods based on the divided difference
interpolation for the solution of general second order
equation y”"=f(x,y,y’). Lee! proposed block methods

based on backward difference interpolation for first
order ODEsy =f(x,y) and Majid®' developed the

method based on Lagrange interpolation polynomial for
general higher order ODEs y* =f (x,y, Yy, y",...,yd") )

In this study, we are going to derive the block
method for solving special second order ODEs directly
based on Newton-Gregory backward interpolation
formula.

MATERIALS AND METHODS

Derivation of explicit r-point block method: In r-
point block method, the interval is divided into series of
blocks with each block containing r points; r new
values are obtained concurrently at each iteration of
algorithm. Let x,, =x,+ih, i=1,2..., Vne[ab].

n

Therefore:
J.XMJ.X y’(x) dx dx =IX“+'IX f(x,y)dx dx
Integrating Eq. 1 twice, we obtain the formula:

y(x, +ih) - y(x,) =ihy'(x,) + 2
J::1+-(Xn+ih—x)f(x,y(x)) dx 2)

In order to eliminate the first derivative of y(x),
write the formula (2) with h replaced by -h and add the
two expressions:
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y(x, +ih)=2y(x,)+y(x, =ih)=
J‘: (Xn +ih —X)(f(x) +f(2xn - x)) dx

which can be written as:

Y (%) =2y (x,) +y(x,5) =

.[:H‘(xw—X)(f(X)+f(2Xn‘X))dx v

Define the interpolation polynomial P, (x) which

interpolates f(x,y) at the k back values as follows:

P, (x, +sh)= (—U“[jﬂvqfn )
P, (x, sh)zi(—l)“@vqfn (5)

X —
where, s=

Approximating f(x) and f(2x,—-x) with (4) and

(5), (3) is now used in the form:

Y(Xoi) =2y(x,) = y(x,) +

(1 (s —x)[[j}[zﬂvm o

and changing the limit of

(6)

Replacing dx =hds
integration in (6) gives:

y(x,) =2y(x,) =y (%,

Ei

- k-1

[} ;0(—1)q(i—s)h

q

which leads to:
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Where:

Let V,(t) be the generating function of the

coefficients o, , defined as follows:
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By comparing coefficients yields:
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By using the integration coefficients and Newton-
Gregory backward difference formula, we derive the
explicit methods of order four as shown.

Explicit 2-point block method:
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Explicit 3-Point block method:
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Derivation of implicit R-Point block method: Let
X,q =X, +ih,i=1,2,...,Vne[a,b]. Therefore:

J.:MJ.: y'(x) dx dx:J‘:wJ.: f(x.y) dx dx

Using the same approach as in the previous section,
we obtain:

Y (%) =2y (x,) +y(x,5) =

J':“.H‘(X"H—X)(f(X)+f(2xn—x))dx @)

The interpolating polynomials which interpolate

f(x,y) at the set of points (x,, .0, ) fOr
m=0,1,2,....,k as follows:
k —
Pk_m(xn+(s+i)h):Z(—1)“( Sjvmfm ®)
q=0 q
and
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e LI ©)
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Approximating f(x) and f(2x,-x) with (8) and

(9), (7) is now used in the form:

y(Xoi)=2y(x,) = y(x,5) +
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Replacing dx = hds and changing the limit of
integration in (10) gives:

¥ (X0 ) =2y(x,) = y(x,

’ in(—l)%—s)hH
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=S
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which leads to:
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In order to obtain a useful recurrence relation for
the coefficients v, , the method of generating
function is used. Let the generating function L, (t) be

defined as follows:
L (t)= i‘)a,q tl

q=0
>
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1,
o
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By comparing coefficients yields:
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With the integration coefficients and Newton-
Gregory backward difference formula, we derive the
implicit block methods of order four.

Implicit 2-Point block method:

i 9,
10 -1 2 520 £
Yos _ Yo + 0 0¥, B 240 n+l
0 1] ¥ao] 1O 2] ya ] [0 -]y, 16 1 \f,
15 15
7 17 1 1
0 20l S0 et
120 20 nl} | 20 @ [3}
16261 f, o L
15 15 15

Implicit 3-Point block method:
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Test problems: To illustrate the effectiveness of the
method, the existing 1-point method which was also
based on Newton interpolation”), the 2-point and 3-
point block methods with order k = 4 are used to solve
the following problems numerically.
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Problem 1: y'= 0)2y+(0)2—1)sinx, y(0)
y(0)=1+w, =10, xe[0,2].

17

Exact solution: y(x)=cos(®x)+sin(®x)+sinx 18],

177

”

Problem 2: = —_ax’y 2% yixeg) =0,
’ ” 2
v (x)=—+27 > Y, :—4x2y2+i, ¥,(x,)=1,

¥ (%) =0, with r* =y} +y3, xe{\/g,m]

Exact solution: y, (x)=cos(x*),

Problem 3: z"+2z=0.001e", z(0) = 1, z'(0)=0.9995i,
z€ C, z(x) = u(x)+iv(x), u, ve R, u(x) = cos(x)+0.0005x
sin(x), v(x) = sin(x)-0.0005x cos(x).

We choose to solve the equivalent real problems
u”+u=0.001cos(x) > u(0) 1, u'(0)=0>
v'+v=0.001sin(x). V(0) v/(0)=0.9995,
xe[0,40m]".

It is the “almost periodic” problem with the

theoretical solution represents motion on a perturbed
circular orbit in the complex plane.

O’

RESULTS AND DISCUSSION

Table 1-12 show the performance comparison of
new methods and the existing method in terms of the
total number of steps taken, maximum error and
execution time. The performance of the new code is
also compared to code by Omar'® as well. The new
code is used to solve the special second order ODEs
y”=f(x,y) directly whereas the code by Omar'® is for

y'=f(x,y.y) . The
notations used in the Table 1-12 are as follows:

the general second order ODEs

h = Step size used

METHOD = Method employed

TSTEP = Total number of steps taken to obtain the
solution

MAXERR = Magnitude of the maximum error of the
computed solution

TIME = Execution time taken in microseconds
(ms)

EIPN = Existing explicit 1-point method in"”’

E2PBN = The new explicit 2-point 1-block method

E3PBN = The new explicit 3-point 1-block method

I1PN = Existing implicit 1-point method in'’!

I2PBN = The new implicit 2-point 1-block method

I3PBN = The new implicit 3-point 1-block method

E1PO = Explicit 1-point method in Omar'®’

E2PBO = Explicit 2-point block method in Omar'®’

E3PBO = Explicit 3-point block method in Omar'®’

I1PO = TImplicit 1-point method in Omar'®

12PBO = TImplicit 2-point block method in Omar'®

I3PBO = TImplicit 3-point block method in Omar'®
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Table 1: Performance comparison between EI1PN, E2PBN and
E3PBN for solving Problem 1

h METHOD TSTEP MAXERR TIME

107 EIPN 200 1.04867(-2) 690
E2PBN 102 1.01941(-2) 670
E3PBN 69 9.17238(-3) 656

10° EIPN 2000 1.15576(-4) 4422
E2PBN 1002 9.12913(-5) 4140
E3PBN 669 6.68441(-5) 4015

10 EIPN 20000 1.16663(-6) 43710
E2PBN 10002 9.17045(-7) 41003
E3PBN 6669 6.67303(-7) 40142

10° EIPN 200000 1.19013(-8) 435537
E2PBN 100002 9.16555(-9) 409839
E3PBN 66669 6.70794(-9) 400231

Table 2: Performance comparison between EI1PN, E2PBN and

E3PBN for solving Problem 2

h METHOD TSTEP MAXERR TIME
10 EIPN 875 2.28442(-3) 2790
E2PBN 439 1.64625(1) 2394

3 E3PBN 294 2.57005 2426
10 EIPN 8747 6.11465(-6) 25036
E2PBN 4375 4.80547(-6) 21490

4 E3PBN 2918 4.40915(-6) 20988
10 E1PN 87467 6.09090(-8) 249919
E2PBN 43735 4.78556(-8) 212804

P E3PBN 29158 3.48057(-8) 208928
10 EIPN 874669 2.53863(-9) 2498769
E2PBN 437336 9.65937(-10) 2130344

E3PBN 291559 8.22541(-10) 2090620

Table 3: Performance comparison between EIPN, E2PBN and

E3PBN for solving Problem 3

h METHOD TSTEP MAXERR TIME
107 EIPN 12567 1.16486(-4) 40318
E2PBN 6285 9.25841(-5) 38059
3 E3PBN 4191 6.80643(-5) 37577
10 EIPN 125664 1.16492(-6) 399714
E2PBN 62834 9.15580(-7) 377070
4 3PBN 890 6.66222(-7) 372453
10 E1PN 1256638 1.18440(-8) 4006061
E2PBN 628321 9.36450(-9) 3767598
s 3PBN 418882 6.70706(-9) 3729101
10 E1PN 12566371 2.87949(-8) 40027952
2PBN 6283187 1.69135(-8) 37641623
3PBN 4188793 6.94793(-9) 37251793
Table 4: Performance comparison between 1PN, I2PBN and I3PBN
for solving Problem 1
h METHOD TSTEP MAXERR TIME
107 11PN 200 9.16935(-3) 980
12PBN 102 7.24986(-3) 945
I3PBN 69 5.36151(-3) 920
107 11PN 2000 9.93031(-5) 5942
I2PBN 1002 7.48576(-5) 5672
I3PBN 669 5.02747(-5) 5630
10* 11PN 20000 1.00021(-6) 59156
I2PBN 10002 7.50543(-7) 56323
I3PBN 6669 5.00710(-7) 55158
10% 11PN 200000 1.01023(-8) 591520
I2PBN 100002 7.55203(-9) 561423
I3PBN 66669 5.01627(-9) 549786

Table 5: Performance comparison between 11PN, I2PBN and I3PBN

for solving Problem 2

h METHOD TSTEP MAXERR TIME
107 11PN 875 2.52652(-3) 3655
I2PBN 439 2.48192(-3) 3469
I3PBN 294 7.12478(-3) 3478
107 11PN 8747 2.39947(-5) 33067
I2PBN 4375 3.10920(-5) 31730
I3PBN 2918 5.98919(-6) 31220
10* 11PN 87467 3.51616(-7) 329383
I2PBN 43735 3.71797(-7) 315150
I3PBN 29158 2.61012(-8) 310986
10° I1PN 874669 2.52969(-9) 3296280
I2PBN 437336 2.14713(19) 3152669
I3PBN 291559 7.74633(-10) 3100176

Table 6: Performance comparison between 11PN, I2PBN and I3PBN
for solving Problem 3

h METHOD TSTEP MAXERR TIME
10™ 11PN 12567 1.16487(-4) 54832
I12PBN 6285 7.51354(-5) 52640
I3PBN 4191 5.06011(-5) 51687
10°? 11PN 125664 1.16492(-6) 544661
12PBN 62834 7.49128(-7) 520697
I3PBN 41890 4.99765(-7) 510612
10* 11PN 1256638 1.18440(-8) 5439182
I12PBN 628321 7.56804(-9) 5198387
I3PBN 418882 5.13160(-9) 5099863
10° 11PN 12566371 2.87949(-8) 54426979
12PBN 6283187 1.69537(-8) 52040186
I3PBN 4188793 7.02614(-9) 51013287
Table 7: Performance comparison between E2PBN, E3PBN and
E2PBO, E3PBO for solving Problem 1
h METHOD TSTEP MAXERR
107 E2PBN 102 1.01941(-2)
E2PBO 102 4.69426(-2)
E3PBN 69 9.17238(-3)
E3PBO 69 4.17711(-2)
10°? E2PBN 1002 9.12913(-5)
E2PBO 1002 4.98878(-3)
E3PBN 669 6.68441(-5)
E3PBO 669 4.98097(-3)
10* E2PBN 10002 9.17045(-7)
E2PBO 10002 4.99914(-4)
E3PBN 6669 6.67303(-7)
E3PBO 6669 4.99906(-4)
107 E2PBN 100002 9.16555(-9)
E2PBO 100002 4.99992(-5)
E3PBN 66669 6.70794(-9)
E3PBO 66669 4.99992(-5)

Table 8: Performance comparison between E2PBN, E3PBN and
E2PBO, E3PBO for solving Problem .2

h METHOD TSTEP MAXERR
107 E2PBN 439 1.64625(1)
E2PBO 439 3.31501(-2)
E3PBN 294 2.57005
E3PBO 294 8.66280(-2)
107 E2PBN 4375 4.80547(-6)
E2PBO 4375 1.09973(-3)
E3PBN 2918 4.40915(-6)
E3PBO 2918 1.09963(-3)
10* E2PBN 43735 4.78556(-8)
E2PBO 43735 1.10003(-4)
E3PBN 29158 3.48057(-8)
E3PBO 29158 1.10003(-4)
10° E2PBN 437336 9.65937(-10)
E2PBO 437336 1.10003(-5)
E3PBN 291559 8.22541(-10)
E3PBO 291559 1.10003(-5)
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Table 9: Performance comparison between E2PBN, E3PBN and
E2PBO, E3PBO for solving Problem 3

Table 12: Performance comparison between I2PBN, I3PBN and
12PBO, I3PBO for solving Problem 3

h METHOD TSTEP MAXERR h METHOD TSTEP MAXERR
107 E2PBN 6285 9.25841(-5) 107 I2PBN 6285 7.51354(-5)
E2PBO 6285 4.99211(-3) I2PBO 6285 1.51236(-3)
E3PBN 4191 6.80643(-5) I3PBN 4191 5.06011(-5)
E3PBO 4191 4.98425(-3) I3PBO 4191 1.51236(-3)
10° E2PBN 62834 9.15580(-7) 10° I2PBN 62834 7.49128(-7)
E2PBO 62834 4.99497(-4) I2PBO 62834 1.51238(-4)
E3PBN 41890 6.66222(-7) I3PBN 41890 4.99765(-7)
E3PBO 41890 4.99489(-4) I3PBO 41890 1.51237(-4)
10 E2PBN 628321 9.36450(-9) 10* I2PBN 628321 7.56804(-9)
E2PBO 628321 4.99501(-5) I2PBO 628321 1.51239(-5)
E3PBN 418882 6.70706(-9) I3PBN 418882 5.13160(-9)
E3PBO 418882 4.99506(-5) I3PBO 418882 1.51243(-5)
10° E2PBN 6283187 1.69135(-8) 10° I2PBN 6283187 1.69537(-8)
E2PBO 6283187 4.99698(-6) I2PBO 6283187 1.51435(-6)
E3PBN 4188793 6.94793(-9) I3PBN 4188793 7.02614(-9)
E3PBO 4188793 5.00226(-6) I3PBO 4188793 1.51964(-6)
Table 10: Performance comparison between I2PBN, I3PBN and CONCLUSION

12PBO, I3PBO for solving Problem 1

h METHOD TSTEP MAXERR
107 I2PBN 102 7.24986(-3)
I2PBO 102 1.42942(-2)
I3PBN 69 5.36151(-3)
I3PBO 69 1.43029(-2)
107 I2PBN 1002 7.48576(-5)
I2PBO 1002 1.50554(-3)
I3PBN 669 5.02747(-5)
I3PBO 669 1.50553(-3)
10* I2PBN 10002 7.50543(-7)
I2PBO 10002 1.51305(-4)
I3PBN 6669 5.00710(-7)
I3PBO 6669 1.51305(-4)
10° I2PBN 100002 7.55203(-9)
I2PBO 100002 1.51381(-5)
I3PBN 66669 5.01627(-9)
I3PBO 66669 1.51381(-5)

Table 11: Performance comparison between I2PBN, I3PBN and
12PBO, I3PBO for solving Problem 2

h METHOD TSTEP MAXERR
10° I2PBN 439 2.48192(-3)
12PBO 439 3.28838(-3)
I3PBN 294 7.12478(-3)
13PBO 294 3.28838(-3)
107 I2PBN 4375 3.10920(-5)
12PBO 4375 3.32651(-4)
I3PBN 2918 5.98919(-6)
I3PBO 2918 3.32651(-4)
10 I2PBN 43735 3.71797(-7)
12PBO 43735 3.33029(-5)
I3PBN 29158 2.61012(-8)
13PBO 29158 3.33029(-5)
10° I2PBN 437336 2.14713(-9)
I2PBO 437336 3.33049(-6)
I3PBN 291559 7.74633(-10)
I3PBO 291559 3.33048(-6)
The maximum error is defined as

MAXERR = max_(|y(x,)-y)

I<i<TSTEP

The block and non-block methods based on
Newton-Gregory backward interpolation formula are
compared in terms of three parameters namely the total
number of steps, the accuracy and the execution time.
As the step size decreases, 2-point block and 3-point
block methods reduce the total number of steps taken to
almost one half and one third compared to 1-point
method. These results are expected since the r-point
block methods calculate the values of y at r point
simultaneously compared to non-block methods.

The maximum error for explicit 3-point block
method is slightly smaller compared to explicit 2-point
block method which in turn smaller compared to
explicit 1-point method for various values of h. In
general, the implicit methods are more accurate than the
explicit counterparts. The implicit block methods have
better accuracy than the implicit non-block methods.

Both the explicit and implicit block methods seem
to be superior to the non-block counterparts in term of
the execution time taken to obtain the solution. The
implicit methods require more time to generate the
solution since it involved extra computations. As the
step size becomes finer, the advantage of using block
methods is more obvious.

Table 7-12 show the advantage of using the new
codes over codes by Omar'® in term of accuracy. The
increase in the accuracy is more obvious as the step size
decreases. Thus, it can be concluded that the
performance of both the explicit and implicit block
methods based on Newton-Gregory backward
interpolation formula is better in terms of the total
number of steps taken, accuracy and execution time
compared to the non-block methods and is more
accurate compared to the existing block methods.



J. Math. & Stat., 4(3): 174-180, 2008

REFERENCES

Dahlquist, 1978. On accuracy and unconditional
stability of linear multistep methods for second
order differential equations. BIT Numeric. Math.,
18: 133-136. DOI: 10.1007/BF01931689

El-Mikkawy, M. and El-D. Rahmo, 2003. A new
optimized non-FSAL embedded Runge-Kutta-
Nystrom algorithm of orders 6 and 4 in 6 stages.

Applied Math. Comput., 145: 33-43. DOLIL:
10.1016/S0096-3003(02)00436-8
Hairer, E., S.P. Norsett and G. Wanner, 1993.

Solving Ordinary Differential Equations I (Nonstiff
Problems). 2nd Edn., Springer-Verlag, New York,
pp: 528. ISBN: 3540566708.

Lee, L.S., M. Suleiman, Z. Omar and F. Ismail,
2000. Two and three-point explicit block methods
for first order ordinary differential equations.
Proceedings of the International Conference on
Mathematics and its Applications in the New
Millenium, July 18-19, Renaissance Palm Garden
Hotel Putra Jaya, Malaysia, pp: 481-490.

Majid, Z. and M. Suleiman, 2007. Implementation
of four-point fully implicit block methods for
solving ordinary differential equations. Applied
Math. Comput., 184: 514-522.
http://cat.inist.fr/?aModele=afficheN &cpsidt=1851
9329.

180

6. Omar, Z., M. Suleiman, M.Y. Saman and D.J. Evans,

2002. Parallel r-point explicit block method for
solving second order ODEs directly. Int. J.
Comput. Math., 79: 289-298.
http://cat.inist.fr/?aModele=afficheN &cpsidt=1365
2392.

Papageorgiou, G., I.Th. Famwlis and Ch. Tsitouras,
1998. A P-stable singly diagonally implicit runge-kutta-
nystrom method. Numeric. Algorithm, 17: 345-353.
DOI: 10.1023/A:1016644726305.

Sallam, S. and A.A. Karaballi, 1999. A continuous
implicit nystrom method for solving ordinary
second order initial value problems. Int. J.
Comput. Math., 72: 189-198.

Van Der Houwen, P.J. and B.P. Sommeijer, 1987.
Predictor-corrector for periodic second order initial
value problems. IMA J. Numeric. Anal., 7: 407-422.
http://cat.inist.fr/?7aModele=afficheN&cpsidt=7432630.



