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INTRODUCTION 

 
 The Wallis formula[1,2,6]: 
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and closely related Stirling formula: 

 
m

mm

2 m!
lim 2

m m→+∞
= π  (2) 

 
are ubiquitous in Mathematics and its applications. Yet 
of many proofs available in the literature none is quite 
simple or “elementary”. Attempts to find a simple and 
elementary proof have not stopped to this day as 
manifested by regular papers appearing in the literature, 
some of the recent and not so recent ones are given in 
Bibliography[1-6]. What constitutes a simple and/or 
elementary proof is, of course, in the eyes of the 
beholder-what is simple to one may be fairly 
complicated to another. The simplest proof known to 
the author is in[5]; yet it does not appear to be natural in 
the sense that it is a proof to an already known result 
without revealing how one may arrive at the result. 
Somewhat more natural is the probabilistic proof in[3]; 
yet it is fairly complicated. 
 Here we provide a derivation of the Wallis formula 
by examining the binomial probability distribution, the 
simplest probability distribution known. The Stirling 
formula trivially follows from the Wallis formula. 
 Consider a one-dimensional random walk of a 
point Q that starts at x = 0 and at each step jumps from 
the point it occupies to either right or left adjacent 
integer with probability 1/2: 

 
 
 The probability of finding point P in location x = K 
after N steps from its initial position is given by the 
binomial distribution: 
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 Let us now assume that: 
 
N = 2n is even (4a) 
 
and ε satisfies: 
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 Formula (3) can be rewritten as: 
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 Formula (5) implies that for sufficiently large n: 
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and for | k |≤ n0.5+ε: 
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 The proof of formulas (6) and (7) is given in the 
Appendix. 
 Formula (7) implies: 
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Taking now limit as n → +∞ and using 
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 What formulas (6 and 7) tell us is that inside 

| k |≤n0.5+ε probability P(2k; 2n) ≈ 
k2
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 while the 

total probability outside of | k |≤n0.5+ε  is negligibly 
small. 

 To obtain (2) consider sequence 
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monotonically decreasing from f1 = e and hence must 
have a limit mm
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or 2π ; the former is easily ruled out leaving us with 
the latter. 

 Note that besides the formula 
2te dt
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requires the knowledge of double integrals usually 
covered in the second year of non-honors Calculus, the 
derivations provided here do not require any knowledge 
beyond the high school non-honors Calculus and basic 
probability/combinatorics. 

 
Appendix: Proof of formula (6). Formula (6) follows 
from the following string of identities and inequalities: 
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Proof of formula (7): Assume for simplicity's sake that 
k≥0. Applying a rather obvious inequality: 
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with correspondingly 
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 Dividing the first one by the second yields: 
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which, with the help of 
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 Formula (7) follows. 
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