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Elementary Combinatorial-Probabilistic Proof of the
Wallisand Stirling Formulas
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Abstract: This short note provides a remarkably simple dgidn of the Wallis and Stirling formulas
based on elementary estimates applied to binoro&dficients. As a byproduct an elementary proof of
the central limit theorem for the binomial distrilaun is also obtained.
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The Wallis formul&->*¢: The probability of finding point P in location xk
after N steps from its initial position is given lbye
binomial distribution:
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”**W(Zn)!\/ﬁ P(K,N)
N! if|K|I<N;N-Ki
and closely related Stirling formula: ) 2N[N+KIJ(N'K|)’I| [ N;N -Kis even, 3)
2 )L 27
. 2™"ml 0, otherwise
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Let us now assume that:

are ubiquitous in Mathematics and its applicatiofest _

of many proofs available in the literature nongjiste N = 2nis even (42)
simple or “elementary”. Attempts to find a simpleda o

elementary proof have not stopped to this day agnde satisfies:

manifested by regular papers appearing in theatitee,

some of the recent and not so recent ones are given 0<e<> (4b)
Bibliography™®. What constitutes a simple and/or 30

elementary proof is, of course, in the eyes of the

beholder-what is simple to one may be fairly Formula (3) can be rewritten as:

complicated to another. The simplest proof known to

the author is if¥; yet it does not appear to be natural in p 2k, 2n)= P(2K, 2n) (5)
the sense that it is a proof to an already knoveulte (2n) ()2

without revealing how one may arrive at the result. . : =

Somewhat more natural is the probabilistic pro&¥;in _ |27 ()" (n+ K)n—k)!

yet it is fairly complicated. (2n)t 5 n= (k=) ifo<k<n
Here we provide a derivation of the Wallis formula 2yl n+j T
by examining the binomial probability distributiotine 0, otherwise

simplest probability distribution known. The Stirdj
formula trivially follows from the Wallis formula.
Consider a one-dimensional random walk of a
point Q that starts at x = 0 and at each step juingus
the point it occupies to either right or left adjat 1- z P(2k,2n)E z P(2k,2ny 2" (6)
integer with probability 1/2: kP Ik o2
408

Formula (5) implies that for sufficiently large n:
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and for |k |< n®%*: (2n)! ny ny?
207 s (N+ K= K)L g 0+ KN K)!
2 K n= (k- ) K| k
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The proof of formulas (6) and (7) is given in the

Appendix. 05 Y ( ”m)rﬂfﬂs (n- P> (%) nG =

Formula (7) implies: n e\ N N n+ rf

n_n0.5+s < n- n0.5rz n— nO.&s s
2 1 05 | e 257 T 28"
1 ’L —gn 05 22n (n!)2 . |:(1+ 0,5—E]n :|2
— en e < P(2k,2n n
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1 N s Proof of formula (7): Assume for simplicity's sake that
{‘/ﬁ Z e ”:le's” k=0. Applying a rather obvious inequality:
|k|sn°5"

e <1+ x< &% | validfor| x&k
Taking now Ilimit as n - +o and using

lim " = lime® """ =1, lim > P(2k,2n)=1 due

n- +oo n- +0o kTP

-]

with correspondinglyx = k=) andx=1 gives us:
n n

to (6) , lim =3 > ern= J' e dt=+/m we obtain (1).

+00 k=i (k=i ) k=i (k=i)?
g S ki T
What formulas (6 and 7) tell us is that inside , no .
k2 11 ; 14(L
e - . n n J n
[k |<n®* probability P(2k; 2n} %e n while the e (3 <ltes e (5
m

total probability outside of|k|<n®>*

small.

i negligibly Dividing the first one by the second yields:
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To obtain (2) consider sequenck, =
"<
<1, f, is positive and

> ‘

1+

S e

. f . e
Since f, > 0, FmIZW

k
monotonically decreasing from & e and hence must Which, with the help of 2L k=D +i*]s(k +1)°<

have a limit limf =A>0. Since due to (1 . =
mote M @) (n*** +1)°< 8n** * gives us:

(Jim f,) =<2miim £, imit im f _must be either 0

mo +00 Mo +o0 _ki_gn’o-?I ’i[£+(k_j)j+j2] . 1_@
ory/2m; the former is easily ruled out leaving us with en <e®" T g |'J '; <
the latter. = Ty

+00 ) ) k 7£+(k—j)2+]2 on
Note that besides the formulfe™ dt=/mt which eé{ N e L o
requires the knowledge of double integrals usually
covered in the second year of non-honors Calcties, Formula (7) follows.
derivations provided here do not require any knogyée
beyond the high school non-honors Calculus andcbasi ACKNOWLEDGMENT
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