Journal of Mathematics and Statistics 5 (2):88-89, 2009
ISSN 1549-3644
© 2009 Science Publications

On Algebra and Tachyons

${ }^{1}$ M. Sivasubramanian and ${ }^{2}$ S. Kalimuthu
${ }^{1}$ Department of Mathematics, Mahalingam College of Engineering and Tech Udumalai Road, Pollachi, Tamil Nadu 642 003, India
${ }^{2}$ G.S. No. 212/4, Kajampatti P.O. Pollachi Via, Tamil Nadu-642 00

Abstract: Problem statement: After formulating the special theory of re
dy in
 Einstein politely remarked: "for velocities that are greater than light
meaningless". In 1962, Sudarshan and his co-researchers proposed a hy whose rest mass is imaginary can travel by birth faster than light. Afte pu ion of Sudarshoin's research, many scholars began to probe into faster than light phenomen. In exte elativity, many properties of tachyons have been found. But still this micro second the velocity of a a chyon with respect to us is unknown. In this research the researchers for in velocity. Ap $\mathbf{p}_{\mathbf{n}}$ ch this research, Einstein's variation of mass with velocity equatio as transformed into quadratic equation. We introduced a new hypothesis to find the roots of the q atic equation. ${ }^{r}$ ults: By introducing a new hypothesis in tachyon algebra, the researchers found t respect to us is $v=c \sqrt{3}$ where c is the velocity of the ligh road to tachyon is too long. Hereafter it is up to existence/generation of tachyons.

Key words: Einstein, special theory of relati sum bypothesis, superluminal phenomena, quadratic equations and new conje

$$
\begin{equation*}
K=-1 \tag{5a}
\end{equation*}
$$

Squaring (1a):

$$
\begin{equation*}
m 4 n^{2}-2 m 4 n+m 4-1=0 \tag{6}
\end{equation*}
$$

Equation 6 is also quadratic in n.
Assuming (3) and (4) in (6), $\mathrm{K}+\mathrm{L}=2 \mathrm{~m} 4 / \mathrm{m} 4=2$:

$$
\begin{gathered}
\mathrm{KL}=\mathrm{m} 4-1 / \mathrm{m} 4=1-1 / \mathrm{m} 4 \\
\text { Adding } \mathrm{K}+\mathrm{L}+\mathrm{KL}=3-1 / \mathrm{m} 4
\end{gathered}
$$

Using (1b) in RHS:

$$
\begin{equation*}
\mathrm{K}+\mathrm{L}+\mathrm{KL}=2-\mathrm{n}^{2}+2 \mathrm{n} \tag{7}
\end{equation*}
$$

In both the quadratic Eq. 2 and 6 the roots K and L denote the velocity of one and the same tachyon. So, putting (5a) in (7) $n^{2}-3-2 n=0$:

$$
\begin{align*}
& (\mathrm{n}+1)(\mathrm{n}-3)=0 \tag{8}\\
& \mathrm{n}=-1 \\
& \mathrm{n}=3
\end{align*}
$$

If we put $\mathrm{n}=-1$ in (2) the equatio \quad and if we apply $n=-1$ in (6),

So, $n=[3,-1]$, the sol we get that:

RESULTS AND DISCUSSION

 formula $x=-B \pm\left[B^{2}-4 A C\right]^{1 / 2}$ for the quadratic Eq. 2 of
the general form $\mathrm{Ax}^{2}+\mathrm{Bx}+\mathrm{C}=0$. Quadratic equa an interesting mathematical topic. The membe British parliament had a nice debate on Jup 1993 on this topic. Even Einstein's formula $\mathrm{E}=\mathrm{ma} \quad$ 'ro a quadratic equation. We can not find th olutio the Eq. 2 and 6 by applying the ocal forn That's why the authors introduc above hypothesis. Replacing $m \quad \sqrt{2}$ an 3 the Eq. 1, 2 and 6 satisfy. So, the acceptable and agreeable.

It is well k tha

LUSION

 the supreme judge in physic result is consistent in theoretical ics, it is consistent in experim sics also. Albert a sein requested the physi to locate solutions for the burning problems of ph s in the easte piritual philosophy. Thripura Rahs is one of th ost famous meta physics in Hindu The great e Thathathreya reveals the existenc this masterpiece. If tachyons are inconsis, not easy to derive Eq. 8b. Here up to experimental physicists to locate or gom trons.
ACKNOWLEDGEMENT

The researchers wish to thank the management of Mahalingam College of Engineering and Technology, Pollachi, Tamilnadu- 642 003, India for their kind encouragement.

REFERENCES

1. Bilanuik, O.M.P., V.K. Deshpande and E.C.G. Sudarshan, 1962. Meta relativity. Am. J. Phys., 30: 718-723. DOI: 10.1119/1.1941773
2. William Dunhan, 1990. Journey Through Genius: Great Theorem of Mathematics. 1st Edn., John Wiley and Sons, ISBN: 10: 0471500305, pp: 320.
3. Jones, A., A. Sidney Morris and R. Kenneth Pearson, 1991. Abstract algebra and Famous Impossibilities. 1st Edn., Springer-Verlag, New York, USA., ISBN: 0387976612, pp: 187.
