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Abstract: Problem statement: A two dimensional steady laminar free convective flow of viscous 
incompressible fluid between two parallel porous walls is considered. Approach: Using the similarity 
variable, the partial differential equations were reduced to ordinary differential equations. The coupled 
ordinary differential equations were solved numerically using shooting method. The effect of various 
physical parameters, such as the Prandtl number, Grashof number, permeability parameter and ratio of 
the free stream velocity to parallel wall parameter on the boundary layer velocity and skin-friction 
coefficient were investigated. Results: Some of the several important findings of the results were (i) 
the fluid velocity increased as either of the Grashof number, permeability parameter, ratio of free 
stream velocity parameter to parallel wall parameter was increased. (ii) The fluid temperature 
decreased as either of the Grashof number, ratio of free stream velocity parameter to parallel wall 
parameter increased and increased as permeability parameter was increased. (iii) Skin friction increase 
owing to an increase in Grashof number, ratio of free stream velocity parameter to parallel wall 
parameter and decrease with increasing permeability parameter. In this study, a similarity solution for 
free convective flow between two parameter porous walls situated a distance L apart was considered. 
Numerical results were presented to illustrate the details of the flow, skin-friction characteristics and 
their dependence on the flow conditions and fluid properties. Conclusion: In particular, we found that, 
the fluid velocity increased as either of the Grashof number, permeability parameter, ratio of free 
stream velocity parameter to parallel wall parameter was increased.  
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INTRODUCTION 

 
  There are several situations where forced and 
natural convection occur with relatively comparable 
significance. This case is referred to as mixed 
convection heat transfer. Accurate knowledge of the 
overall convection heat transfer is important in many 
fields, including heat exchangers, hot water and stream 
pipes heaters, refrigerators and electrical conductors. 
Because of its industrial importance, this class of heat 
transfer has been the subject of many experimental and 
analytical studies (Bassam and Abu-Hijleh, 2002). 
 Chaudhary and Merkin (1994) discussed the free 
convection boundary layer flow on a vertical surface 
which results when there was an exothermic catalytic 
chemical reaction on that surface. The system was seen 
to be governed by the two dimensionless chemical 
parameters ε and α which were measures of the 
activation energy and heat of reaction respectively, as 
well as the Prandtl and Schmidt numbers. A series 
solution was obtained valid near the leading edge of the 
plate and this was continued downstream by numerical 

solutions of the full equations. The numerical solutions 
indicate the criticality of the system by local rapid 
increases in the reaction rate when ε and α were small. 
Asymptotic solutions valid at large distances 
downstream were obtained and these we shown to be 
essentially different in character between the cases 
when α = 0 and when α ≠ 0. A singularity was seen to 
developed at a finite distance down stream when both ε 
= 0 and α = 0 and this was analyzed. Kafoussians 
(1989) studied heat transfer flow through a very porous 
medium bounded by a semi infinite horizontal plate. He 
observed that when the permeability parameter k 
increased the temperature of the fluid increases. 
  Sharma and Singh (2008) investigated the effects 
of variable thermal conductivity and heat source/sink 
on flow of a viscous incompressible electrically 
conducting fluid in the presence of uniform transverse 
magnetic field and variable free stream near a 
stagnation point on a non-conducting stretching sheet. 
The equations of continuity, momentum and energy 
were transformed into ordinary differential equations 
and solved numerically using shooting method. The 
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velocity and temperature distributions were discussed 
numerically and presented through graphs. Skin-friction 
coefficient and the Nusselt number at the sheet were 
derived, discussed numerically and then numerical 
values for various values of physical parameter were 
presented through tables. It was observed that fluid 
velocity decreases due to increase in the Hartmann 
number for λ<1 while reverse effect is observed when 
λ>1 and there was boundary layer formation when λ = 1. 
Prasad and Kulachi (1984) discussed numerical 
solutions for two-dimensional steady, free convection 
for rectangular cavity with constant heat flux on one 
vertical wall, the other vertical wall being isothermally 
cooled. The horizontal walls were insulted. Results 
were presented in terms of streamlines and isotherms, 
local and average Nusselt numbers at the heated wall 
and the local heat flux at the cooled wall flow patterns 
were observed to be quite different from those in the 
case of a cavity with both vertical walls at constant 
temperatures. Specifically, symmetry in the flow field 
is absent and any increase in applied heat flux was not 
accompanied by linearly proportional increase in the 
temperature on the heated wall. Also, for low Prandtl 
number, the heat transfer rate based upon the mean 
temperature difference is higher as compared to 
experimental results for the isothermal case. Heat 
transfer results, further indicate that the average Nusselt 
number is correlated by a relation of the form Nu = 
constant *m n

aR A where *m
aR  is the Rayleigh number and 

A the height to-width ratio of the cavity. Mahanti and 
Gaur (2009) investigated the effects of linearly varying 
viscosity and thermal conductivity on steady free 
convective flow of a viscous incompressible fluid along 
an isothermal vertical plate in the presence of heat sink. 
The governing equations of continuity, momentum and 
energy were transformed into coupled and non-linear 
ordinary differential equations using similarity 
transformation and then solved using Runge-Kutta 
fourth order method with shooting technique. They 
showed that the velocity and temperature of the fluid 
decrease with the increase in Prandtl number. Skin- 
friction coefficient decrease while rate of heat transfer 
increases with the decrease in the heat sink. 
Mahapatra and Gupta (2001) reported MHD 
stagnation point flow towards isothermal stretching 
sheet and pointed that velocity decreases/increases 
with the increase in magnetic field intensity when free 
stream velocity is smaller/greater respectively than the 
stretching velocity. 
  From the existing literature non has studied, free 
convective flow between parallel porous walls 
maintained at different temperatures. Therefore, this 
study will be devoted to it. 

MATERIALS AND METHODS 
 
Mathematical formulation of the problem: Consider 
a two-dimensional steady laminar free convection flow 
of a viscous incompressible fluid between two parallel 
porous walls situated a distance L apart. The x-axis is 
taken along the wall and y-axis is transverse to the 
parallel walls. The fluid is injected into the lower wall 
at y = 0 and is sucked through the upper wall with 
uniform velocity, under the usual Boussineq’s and 
boundary layer approximation, the governing equations 
for conservation of mass, momentum and energy 
respectively are as follows: 
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Where:  
u,v = Fluid velocity in the x,y direction 
p = pressure 
k = Thermal conductivity 
cp = Specific heat capacity at constant pressure. 
ν = Kinematic viscosity 
T = Fluid temperature 
Ρ = Density of the fluid 
K = Permeability of the porous medium 
Β = Coefficient of thermal expansion 
x,y = Cartesian coordinate along x and y axes. 
  
 The boundary conditions of the problem under 
consideration are:  
 
u 0, v 0, T T , y 0

u u T T , y
∞

∞ ∞

= = = =
→ → → ∞

 (4) 

  
Where: 
u∞ = Free stream velocity 
T∞ = Free stream temperature  
Tw  = Temperature of the horizontal wall 
 
 In the free- stream velocity u∞= u(x) = bx where b 
is the free stream velocity parameter. Equation 2 
becomes: 
 

1 p du
u u

x K d x
∞

∞ ∞
∂ ν− − =

ρ ∂
  (5) 
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 Eliminating 
p

x

∂
∂

 between Eq. 2 and 5, we get: 

  
2

2

u u d u u
u v u g (T T ) (u u)

x y d x y K
∞

∞ ∞ ∞
∂ ∂ ∂ ν+ = + ν + β − + −
∂ ∂ ∂

 (6) 

 
Method of solution: Introducing the stream function 
ψ(x,y) as define by: 
  

u and v
y x

∂ψ ∂ψ= = −
∂ ∂

  (7) 

 

 The similarity variable 
1

2(c / ) yη = ν  and  

 
1

2(x, y) (c ) xf ( )ψ = ν η  (8) 
 
Where: 
c  =  The parallel wall parameter 
η  =  The similarity variable  
ν  =  Kinematic viscosity 
ψ  = The stream function and the dimensionless 

temperature is given as: 
 

w

T T
( )

T T
∞

∞

−θ η =
−

 (9) 

 
 Equation 7-9 into Eq. 3 and 6, we get: 
 

' ' ' ' ' ' 2 ' 2f f f (f ) Gr A( f ) 0+ − + θ+ γ − + γ =   (10) 

 
' ' 'Pr f 0θ + θ =  (11) 

 

where the Grashof number w
2

g (T T )
Gr

c x
∞β −= , the 

permeability parameter 
1

A
Kc

= , the ratio of the free 

stream velocity parameter to parallel wall parameter 
b

c
γ = ,  the  Prandtl number pc

Pr
k

µ
= . It is noted that 

Eq. 1 is identically satisfied. The corresponding 
boundary conditions are reduced to: 
 

' 'f (0) 0 f (0) 0 f ( ) (0)

1 ( ) 0

= = ∞ = γ θ
= θ ∞ =

  (12)  

  
 The governing boundary layer and thermal 
boundary layer Eq. 10 and 11 with the boundary 
conditions (12) are solved numerically using shooting 
technique along with fourth order Runge-Kutta 

integration. The basic idea of shooting method for 
solving boundary value problem ordinary differential 
equations is to try to find appropriate initial condition 
for which the computed solution “hit the target” so that 
the boundary conditions at other points are satisfied. 
Furthermore, the higher order non-linear differential 
Eq. 10 and 11 are converted into simultaneous linear 
differential equations of order first and they are further 
transformed into initial valued problem applying the 
shooting method incorporating fourth order Runge-
Kutta. The iterative solution procedure was carried out 
until the error in the solution became less than a 
predefined tolerance level. Other predefined parameters 
needed for the solution method include the step length 
(h), Grash of number (Gr), Prandtl number (Pr), 
permeability parameter (A), ratio of free stream 
velocity to parallel wall parameter (γ). Extensive testing 
was carried out in other to determine the effect of these 
parameters. The testing includes the value of Gr (2.0, 
4.0, 6.0), Pr (0.71, 0.73, 0.75), γ (0.1, 0.2, 0.3), A (0.1, 
0.3, 0.5), thus results are shown in Fig. 1-17. 
 
Skin-friction: Skin-friction coefficient at the wall is 
given by: 
  

' 'w
f 1

2

C xf (0)

c(c )

τ= =
ρ ν  

 

where, w

y 0

u v

y x =

 ∂ ∂τ = µ + ∂ ∂ 
is the shear stress at the wall. 

 
Particular case: (i) In absence of Grashof number i.e. 
Gr = 0, the results of the present paper are reduced to 
those obtained by Kafoussians (1989). 
 

RESULTS AND DISCUSSION 
 
 Similarity solutions for free convective flow 
between parallel porous wall at different 
temperatures has been considered. The parameter 
that govern the present flow situation are Grashof 
number (Gr), Prandtl number (Pr), the permeability 
parameter (A) and the ratio of free stream velocity 
parameter to parallel wall parameter (γ), Also, 
comprehensive set of numerical results is displayed 
graphically in Fig. 1-17 to illustrate the influence of 
the various physical parameters on the locally 
similarity solutions. Figure 1and 2 illustrate the effect 
of varying the Prandtl number (Pr) on the velocity and 
temperature profiles. The increase in Prandtl number for 
this problem has no noticeable effect on the entire 
hydrodynamic  and  thermal  boundary  layers growth.  
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Fig. 1:  Velocity  distribution  verses η when A = 0.1, 

γ = 0.1, G = 2.0 
 

 
 
Fig. 2:  Temperature distribution verses η when A = 0.1, 

γ = 0.1, G = 2.0 
 

 
 
Fig. 3:  Velocity  distribution  verses  η when A = 0.1, 

γ = 0.1, Pr = 0.71 

 
 
Fig. 4: Temperature distribution verses η when A = 0.1, 

γ = 0.1 and Pr = 0.71 

 

 
 
Fig. 5: Velocity  distribution  verses  η  when γ = 0.1, 

G = 2.0 and Pr = 0.71 

 
The effect of Grashof (Gr) on the velocity and 
temperature  distributions  is  displayed  in Fig. 3 
and 4 respectively. As shown increasing the values 
of Gr  produces  increase  in  the velocity of the 
fluid which agrees with natural phenomena because 
of  the   buoyancy   force   which   assists   the  flow. 
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Fig. 6: Temperature distribution verses η when γ = 0.1, 

G = 2.0 and Pr = 0.71 
 

 
 
Fig. 7: Velocity distribution verses η when Pr = 0.71, 

G = 2.0 and A = 0.1 
 
While increase in Gr causes a decrease in the fluid 
temperature. This result is in agreement with what 
Sharma and Singh (2009) obtained. Figure 5 and 6 
reveal the effect of permeability parameter (A) on 
the  velocity  and  temperature  profiles  respectively. 

 
 
Fig. 8: Temperature  distribution  verses   γ when Pr 

= 0.71, A = 0.1 and G = 2.0 
 

 
 
Fig. 9: Effects  of A and Pr on local skin-friction for 

G = 2.0, γ = 0.1 
 
These Fig. 5 and 6 confirm that the velocity and 
temperature increases with increase in permeability 
parameter. This is in excellent agreement with what Pathak 
and Maheshwari (2006), Kafoussians (1989) obtained.  
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Fig. 10: Effects of Gr and Pr on local skin-friction for 

A = 0.1, γ = 0.1 
 

 
 
Fig.11: Effects of γ and Pr on local skin-friction for A 

= 0.1, Gr = 2.0 
 
Figure 7 and 8 depict respectively the effect of ratio of 
free stream velocity parameter to parallel wall 
parameter (γ) on velocity and temperature profiles. It 
is found from Fig. 7 and 8 that the velocity increases 
whereas temperature decreases significantly. 

 
 
Fig. 12: Effects of A and Gr on local skin-friction for 

Pr = 0.71, γ = 0.1 
 

 
 
Fig. 13: Effects  of  A and γ on local skin-friction for 

Pr = 0.71, Gr = 2.0 
 
 Figure 9-11 reveal the effects of permeability 
parameter (A), Grashof number (Gr), the ratio of free 
stream velocity parameter to parallel wall parameter (γ) 
and Prandtl number on the local skin-friction coefficient.  
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Fig. 14:  Effects of Pr and Gr on local skin-friction for 

A = 0.1, γ = 0.1 
 

 
 
Fig. 15: Effects  of  A and γ on local skin-friction for 

Pr = 0.71, Gr = 2.0 
 
Figure 9 and 10 confirm that the local skin-friction 
coefficient decreases, whereas Fig. 11 shows it 
increases. Figure 12-14, show the combined effects of 
A,  γ,  Pr  and  Gr  on  the local skin-friction coefficient.  

 
 
Fig. 16: Effects of γ Gr and on local skin- friction for 

A = 0.1, Pr = 0.71 
 

 
 
Fig. 17: Effects  of  Pr and γ on local skin-friction for 

Gr = 2.0, A = 0.1 
 
From Fig. 12 the local skin-friction decreases as 
permeability parameter increases, whereas the local 
skin-friction increases as the ratio of free stream 
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velocity parameter to parallel wall parameter increases 
Fig. 13. The skin-friction coefficient does not change as 
Prandtl number increases Fig. 14. Figure 15-17 depict 
the effect of A, Gr, Pr and γ on the local skin friction 
coefficient. The local skin friction increases as A, Gr 
increases Fig. 15 and 16, whereas Prandtl number does 
not have effect on Fig. 17. 

 
CONCLUSION 

 
 In this study, similarity solutions for free 
convective flow between two parallel porous walls at 
different temperature are studied theoretically. A set of 
similarity equations governing the fluid velocity and 
temperature was obtained by using an appropriate 
similarity transformation. The dimensionless locally 
similar and non-linear ordinary differential equations 
are solved numerically by using shooting method. From 
the present numerical investigation we may conclude 
that: 

 
• The fluid velocity increased as either of the 

Grashof number, permeability parameter, ratio of 
free stream velocity parameter to parallel wall 
parameter was increased 

• The fluid temperature decreased as either of the 
Grashof number, ratio of free stream velocity 
parameter to parallel wall parameter was increased 
and increased as permeability parameter was 
increased 

• Skin-friction increases owing to an increase in 
Grashof number, ratio of free stream velocity 
parameter to parallel wall parameter and decrease 
with increasing permeability parameter 
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