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The Shortest Path with Intelligent Algorithm
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Abstract: Problem statement: Path planning algorithms need to be developedimptemented in a
suitable manner to give better understanding alibat intelligent system and also stimulates
technological supply to enormous demands in adligeat vehicle industryApproach: This study
concerned with intelligent path planning using Aasch algorithmResults: This study introduced
intelligent path planning with A* search algorithmihich use to generate the most efficient path to
goal. The algorithm was tested on simulat@onclusion: This study is an implementation of a path
planning for an intelligent path planning. The implentations are tested and verified with the
simulation software. The path planning algorithmerev selected for the implementation and to
verify them.
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INTRODUCTION In a network of one dimensional curve, called the
roadmap, a sub path combined in the roadmap and a
For a number of differences navigational controlsub path connector the roadmap to the goal
strategies have been adopted by various partiesonfiguration (Sotelo and Rodriguez, 2004). A
Consider a highly automated factory where mobilevisibility roadmap is obtained by generating ahédi
robots pick up parts and deliver them to assemblgegments between pairs of obstacle region verthass.
robots. The robots must find their way to partgkpi line segment that lies entirely in the free spacadded
them up and move to the assembly stations. Arno the roadmap. When a path planning is given the
automatic motion planner will relieve the operatorsinitial position and goal position are also treatsl
from this tedious job and enable them to controhat vertices. This generates a connectivity graph¢hatbe
supervisory level. In turn, this increases efficigrby  searched for a solution. The sweep-line principle lbe
eliminating human errors. All these motions havdbéo applied to yield a more efficient algorithm. This
executed without colliding with Objects and otherdiagram is the set of ah the free configuration®seh
robots. Without a motion planner for the robots andminimal distance to the obstacle region. The acgmt
arms, human operators have to constantly specdy thof this diagram is that it yields free paths whiehd to
motions. The need for collision avoidance and &ffit maximize the clearance between the robot and the
motions leads to the problem of motion planningefEh obstacles. Cell Decomposition methods are perhaps t
are two approaches for the path planning, glob#t pa motion planning methods which have been the most
planning and local path planning (Czarnecki andextensively studied so far. They consist of deccsimp
Rotten, 1995). In real world applications of mobile the robot's free space into simple region callelli ce
robots both global and local maps are used. Globajuch that a path between any two configurationa in
maps should decompose hierarchically into local snapcell can be easily generated. A non directed graph
to allow easy movement between the two. One obviousepresenting the adjacency between the cells in the
advantage of this structure is a reduction in the of constructed and searched. This graph is called the
local memory without loss of detail because theconnectivity graph. Its node is the cell extractexin
computer in the robot has to store only the globap the free space and two nodes are connected bk & lin
and a detail local map for the area it is in noetailed and only if the two corresponding cells are adjacen
map of its whole universe. This assumes that loegls The outcome of the search is a sequence of callsdca
can be retrieved from secondary storage, or a host channel.
computer, at any time.
Local path planning: The reduction of the calculation
Global path planning: Thy roadmap method consists time for planning is decisive for the controllingncept
of capturing the connectivity of the robot s frgase.  (Everett, 1995). Between the planning steps a
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discrepancy occurs between the present obstacl8ince the cost of traveling from the goal to thalge
knowledge and last calculated global plan. Theseero, the goal cell is always set to 0.0. Sinceeliag
discrepancies have to be bridged by the local gann through obstacles is not normally desire. We disage:
until the new global plan is calculated. This leanlsa  this by setting the cost at obstacle cells to ditrarily
different consideration of the online in comparison large value called Big-cost. After setting the setb
the off-line concept. Demand can be made for tiallo initial values, the program repeatedly scans thinathg
planner depending on the discrepancy. This Stud?l’ld looking for cells it can reset to lower valudhe
assumes that the discrepancy is relatively smddls T 1OWer cost is computed by looking at neighboringsce
leads to the demand that the local planner shoatd n&nd using an estimate of travel cost from the afjac

— : cells to the current cell. For orthogonal adjacsstls the
gi\elgu?i ocr? mprlr?i;(] dnawga'uon strategy when havingsa fa estimate is 1.0. This is just the distance fromaéeter of

one cell to the center of the next, assuming eath ¢
MATERIALSAND METHODS measures one unit on a side Note that if the cost
estimates were multiplied by the resolution of gl
This study concerns with intelligent path planningthe values at each cell would reflect the trueadist to
using A* search algorithm. the goal. The paths used in this system are cuitadhl
paths. Most path planner abstracts the search space
A* search algorithm: The environment has to be graph of possible paths. This graph is then seardind
represented in a grid, the size and resolution Wthv  the shortest path. This approach arises naturally i
are usually determined by speed and memoryearning environment, where a robot may have temder
limitations. Each goal square is given a distanceseveral paths to map the world.
transform value of 0. The minimum cost of moving to From Fig. 1 the solution X to Y has cost is shown
each square from the minimum of its neighbors isin Table 1.
calculated in a series of forward and reverse raste  So the shortest cost from X-Y is path number 4,
operations. This algorithm terminates when the emlu Which is 3+6 (X~ B -Y) equal 9 m (Table 1).
in eaqh square no Ipnger chang_e after a raster RESULTS
operation in each direction. The required patihénta

simple gradient descent from the robot's current  This study introduces intelligent path planninghwi
square to the nearest goal. First the program &ets A* search algorithm, which use to generate the most
the cells in the grid to initial values. Goal arlustacle  efficient path to goal (Staugaard, 1987; StentA419
cells have constant values throughout the céetipn.  Arikan et al., 2001; Dai, 2005). The algorithm is tested

_ on simulator, which is developed from Gulliveig's
Table 1: The solution X to Y

source code. The start point is green circle, w@dtgor

Path 1 From XA=5M  ghstacles and blue point for goal point. The pathito
From A-S=2m . . . .
From s.y=am testbefore algorithm start is shown in Fig. 2. Tésult
Path 2 From x.,A=5m  after using algorithm is shown in Fig. 3. The shstt
From A.B=4m path from start to goal point is shown in greee.lin
From B-Y=6m
Path 3 From XB=3m
From BLA=4m
From A-S=2m
From S-Y=3m .
Path 4 From X%B=3m ®
From B-Y=6m

o
@ startPoint
@ Obsiacle
@ GoalPoint

Fig. 1: Robot path planning with A* search algamith Fig. 2: Path used to test before algorithm start
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