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Abstract: The moving frame and associated Gauss-Codazzi equations for surfaces in Minkowski three 
space are introduced. A split-quaternionic representation is used to identify the Gauss-Weingarten 
equations with a Lax pair representation. This Lax pair representaion is calculated and given explicitly. 
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INTRODUCTION 

 
 The study of surfaces in higher-dimensional spaces 
and in non-Euclidean spaces has been an active area of 
study recently due to the variety of applications of 
surfaces to the areas of integrable systems and 
mathematical physics (Bracken and Grundland, 1999; 
Bracken et al., 1999). Recently, the Gauss-Codazzi 
equations for surfaces in Euclidean three-space were 
established from a three by three matrix representation 
and a quaternionic representation was introduced for 
the moving frame of the conformally parametrized 
surface (Konopelchenko and Taimanov, 1996). This 
work is extended here in what is intended to be a 
companion paper (Konopelchenko and Taimanov, 
1996; Bracken, 2004). Here a hyperbolic version of 
what was done in (Bracken, 2004) is presented. For this 
other case, it will be shown that a Lax pair can be 
derived for the Gauss-Codazzi equations by using a 
representation of the split-quaternions (Bracken and 
Hayes, 2002). This algebraic structure will be defined 
and some of their relevant properties will be given. It 
will be shown how the frame equations can be written 
down using a matrix representation for the split-
quaternions (Inoguchi, 1998; 1999). 
 To begin to introduce Minkowski three-space, let 

3 3
1E , .,.= ℝ  denote Minkowski three-space 

(Dorfmeister et al., 2002; Inoguchi, 1998) under the 
natural metric .,.  which can be expressed in terms of 

the natural coordinate system as 2 2 2
1 2 3.,. d d d= − ξ + ξ + ξ . 

Let M be a connected two-manifold and 3
1: M Eϕ →  an 

immersion. The immersion ϕ is said to be timelike if 
the induced metric I on M is Lorentzian (Weinstein, 
1996). 
 Let us assume M is an orientable time-like surface 
in 3

1E  immersed by ϕ. The Lorentzian metric of a 

timelike surface M determines a conformal structure 
with ϕ as a conformal immersion. On a timelike surface 
M, there exists a local coordinate system (x, y) such 
that: 
 
I = eω(-dx2+dy2) (1) 
 
 This is referred to as a Lorentz isothermal 
coordinate system. Let (u, v) be the null coordinate 
system obtained from (x, y) by a rotation, such that: 
 
u = x + y; v = -x + y (2) 
 
 The partial derivatives of ϕ satisfy: 
 

u u v v u v

1
, , 0,  ; e

2
ωϕ ϕ = ϕ ϕ = ϕ ϕ =  (3) 

 
 If   H   is   the   mean   curvature   function,   then 
H = 2e−ω〈ϕuv, N〉 and Q and R will be given as Q = 〈ϕuv, 
N〉 and R = 〈ϕuv, N〉. The first and second fundamental 
forms are given with respect to the Lorentz isothermal 
coordinate system as follows: 
 

I

II

1 0
M e

0 1

Q R He Q R
M d ,dN

Q R Q R He

ω

ω

ω

− 
=  

 

 + + −
= − ϕ =  

− + + 

 (4) 

 
 From these, the product MII⋅M I

−1 can be calculated: 
 

1
II I

Q R He Q R
M M e

R Q Q R He

ω
− −ω

ω

 + − −
⋅ =  

− + + 
  (5) 

 
 The matrix in (5) has the characteristic polynomial: 
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t2-2Ht+H2-4QRe−2ω = 0 (6) 
 
 The roots of (6) give the principal curvatures of the 
surface, namely 1,2 H 2 QRe−ωκ = ± . 

 The average of these two just yield H, the mean 
curvature and the product gives the Gaussian curvature: 
 
K = H2-4QRe−2ω (7) 
 
 A moving frame is defined by σ = (ϕu, ϕv, N)T, 
which is required to satisfy the following Gauss-
Weingarten equations: 
 
σu = Uσ, σv = Vσ (8) 
 
where, U and V are defined to be the matrices: 
 

1
u 2

1
u2

0 Q 0 0 He

U 0 0 He ,V 0 R

H 2Qe 0 2Re H 0

ω

ω

ω −ω

   ω
   

= = ω   
   − − − −   

 (9) 

 
 It is required that system (8) satisfy the 
compatibility condition σuv = σvu. This in turn implies 
that U and V in (9) satisfy the condition: 
 
U-V+UV-VU = 0 (10) 
 
 Taking the two matrices in (9) and substituting 
them into (10), the left-hand side of (10) takes the 
following form: 
 

21
uv 2

21
uv 2

v u u v

1
v u2

1
u v2

H e 2RQe 0

H e 2RQe0
H 2R e H 2Q e

Q H e

R H e

0

ω −ω

ω −ω

−ω −ω

ω

ω

 ω + −
 

− ω − + 
 − + + 
 +
 

− + 
 
 

 (11) 

 
 The matrix in (11) will be the zero matrix provided 
the following equations hold: 
 

2
uv

u v v u

1
H e 2RQe 0

2
H 2Q e , H 2R e

ω −ω

−ω −ω

ω + − =

− −
  (12) 

 
 These equations will be referred to as the Gauss-
Codazzi equations. Based on the matrices U and V 
given in (9), the equations for the frame (8) can be 
written down as well: 

uu u u u

1
vu v 2

u u v

1
uv u 2

vv v v v

v v u

QN

U HNe ,

N N H 2 Qe

HNe

U RN

N N H 2 Re

ω

−ω

ω

−ω

     ϕ ϕ ω ϕ +
     

ϕ = ϕ =     
     −ϕ − ϕ     

     ϕ ϕ
     

ϕ = ϕ = ω ϕ +     
     −ϕ − ϕ     

 (13) 

 
 It will now be shown how this frame can be 
described within the context of a new algebraic 
structure and that this new form can be used to 
determine a two-by-two representation of (12). 
 
Theorem 1: Every nontotally umbilic timelike constant 
mean curvature surface has a one parameter family of 
nontrivial isometric deformations preserving the mean 
curvature. 
 This is easy to see. On a constant mean curvature 
timelike surface M, the Gauss-Codazzi equations are 
invariant  under  the  deformation  Q→Qλ = λQ, 
R→Rλ = λ−1R. Integrating the deformed Gauss-Codazzi 
equation, one obtains a one-parameter family of time-
like surfaces. This deformation does not effect the 
induced metric and the mean curvature. Hence all the 
surfaces are isometric and have the same constant mean 
curvature. 
 There is a quaternionic description of surfaces in 
this space. Let 3

1: M Eϕ →  be a timelike surface with 

moving frame (ϕu, ϕv, N) and define a frame Φ by 
means of: 
 

( )( ) /2 / 2 /2
x yAd i,  j', k ' (e , e ,N), det e−ω −ω ωΦ = ϕ ϕ Φ =  (14) 

 
 The 3-dimensional Minkowski spacetime 31E  is 

naturally identified with the imaginary part of the split-
quaternion algebra: 
 

1 2 3 iImH' { i j' k ' | }= α + α + α α ∈ℝ  (15) 
 
 The split-quaternion algebra H' is a real algebra 
spanned by the basis {1, i, j', k'}. The multiplication in 
H' is defined as follows: 
 

2 2 2

ij' ji ' k ', j'k ' k ' j' i, k 'i ik ' j',

i 1, j' k ' 1

= − = = − = − = =

= − = =
 (16) 

 
 For a split quaternion 0 1 2 31 i j' k 'ξ = ξ + ξ + ξ + ξ , the 

conjugate ξ  of ξ is defined by 0 1 2 31 i j' k 'ξ = ξ − ξ − ξ − ξ  

and clearly they satisfy 2 2 2 2
0 1 2 3−ξξ = −ξ − ξ − ξ − ξ . Thus H' 

can be identified with a semi-Euclidean space: 
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( ){ }4 4 2 2 2 2
1 0 1 2 3 0 1 2 3E , , , , d d d d= ξ ξ ξ ξ − ξ − ξ − ξ − ξℝ  (17) 

 
 Let { }G H' | 1= ξ ∈ ξξ =  be the multiplication group 

of the timelike unit split-quaternions. The Lie algebra g 
of G is the imaginary part H': 
 

1 2 3 ig ImH' { i j' k ' | }= = ξ + ξ + ξ ξ ∈ℝ  (18) 

 
 The Lie bracket of g is simply the commutator of 
the split-quaternion product and the commutation rules 
for g are given by [i, j'] 2k ',[ j',k '] 2i,[k ',i] 2 j'= = − = . The 
Lie algebra g is naturally identified with Minkowski 3-
space: 
 

( ){ }3 3 2 2 2
1 1 2 3 1 2 3E , , | d d d= ξ ξ ξ − ξ + ξ + ξℝ  (19) 

 
as a metric linear space and recall (15) as we require. It 
is most important here to know that there is a matrix 
representation for H'. The basis elements can be written 
as: 
 

1 0 0 1 0 1 1 0
1 ,i , j' ,k '

0 1 1 0 1 0 0 1

− −       
↔ ↔ ↔ ↔       

       
 (20) 

 
 Let the last three matrices in (20) be called {τ1, τ2, 
τ3}. Therefore, an arbitrary element of H' takes the 
form: 
 

0 3 1 2

1 2 0 3

 ξ − ξ −ξ + ξ
ξ =  

ξ − ξ ξ + ξ 
 (21) 

 
 Under the identification (20), the group G of 
timelike unit split-quaternions corresponds to an 
algebra M2R of all real matrices of degree two. The 
semi-Euclidean matrix of H' corresponds to the 
following scalar product: 
 

1
X,Y (tr(XY) tr(X)tr(Y))

2
= −  (22) 

 
 Now let us take Φ∈H' to be a matrix valued 
function which transforms the basis i, j', k' into the 
frame ϕx, ϕy, N: 
 

/2 1 /2 1 1
x ye i , e j' , N k 'ω − ω − −ϕ = Φ Φ ϕ = Φ Φ = Φ Φ  (23) 

 
 Using the matrix representation (20), it follows 
that: 

/2 1
u x y

/2 1
v x y

0 01
( ) e

1 02

0 11
( ) e

0 02

ω −

ω −

 
ϕ = ϕ + ϕ = Φ Φ 

 

 
ϕ = −ϕ + ϕ = Φ Φ 

 

 (24) 

 
 It is now possible to obtain a two-by-two matrix 
representation of (12) by first introducing the following 
H0-valued pair: 
 

u vU , VΦ = Φ Φ = Φ  (25) 

 
where U and V are defined to be the traceless matrices: 
 

11 12 11 12

21 22 21 22

U U V V
U , V

U U V V

   
= =   
   

 (26) 

 
 Explicit forms for the matrix elements of U and V 
can be obtained by enforcing both sides of (13) using 
the representation (24) and the forms given by (26) for 
U and V. Requiring that ϕuv = ϕvu implies that U and V 
must satisfy: 
 
Uv-Vu+UV-VU = 0 (27) 
 
 To carry out this procedure, begin with ϕu in (24) 
and differentiate it with respect to u to obtain: 
 

/2 1 /2 1
uu u

/2 1

12/2 1

1
u 11 22 122

0 0 0 01
e e U

1 0 1 02

0 0
e

1 0

U 0
e

U U U

ω − ω −

ω −

ω −

   
ϕ = ω Φ Φ − Φ Φ +   

   

 
Φ  

 

 −
= Φ Φ  ω + − 

 (28) 

 
 Using the matrix representation (24) and (23) for 
N, it is also clear that: 
 

/2
/ 2 1

u u /2
u

Qe 0
QN e

Qe

−ω
ω −

−ω

 −
ω ϕ + = Φ Φ 

ω − 
 (29) 

 
 The results in (13) imply that (28) and (29) be the 
same. This serves to fix two of the elements of the 
matrix U, namely U11 = ωu/4 = -U22 and U12 = Qe−ω/2. In 
a similar way, the second derivatives of ϕ with respect 
to v can be evaluated using (24) and we find that: 
 

1
/2 1 21 v 11 222

vv

21

V V V
e

0 V
ω −  ω − +

ϕ = Φ Φ 
− 

 (30) 
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12/2 1
uv 1

v 22 11 122

V 0
e

V V V
ω −  −

ϕ = Φ Φ  ω − + 
 (31) 

 
1

/2 1 21 u 11 222
vu

21

U U U
e

0 U
ω −  ω − +

ϕ = Φ Φ 
− 

 (32) 

 
 Using (30-32) with (13), the remaining elements of 
U and V can be calculated just as in the previous case. 
These results are summarized in the following 
Theorem. 
 
Theorem 2: Under the isomorphism 

3

1 2 31
Y X (X ,X ,X )α αα=

→ τ →∑ in Minkowski three space, 

the moving frame (ϕu, ϕv, N) of the parameterized 
surface is described by ϕu, ϕv given by (24), where 
Φ∈H' and the matrices U and V in (25) and (27) are 
given by: 
 

/ 2 / 21 1 1
u v4 4 2

/2 /21 1 1
u v2 4 2

Qe He
U , V

He Re

−ω ω

ω −ω

   ω − ω
= =      − − ω − ω   

 (33) 

 
 The quantity Φ, which is regarded as an H0-valued 
quantity satisfies the pair of Eq. 25. 
 To show that (25) is an equivalent form of the 
Gauss-Codazzi Eq. 12, it is required that the pair in (33) 
satisfy the condition (27) obtained from the 
compatibility condition for (25). Calculating this, the 
result gives the following Theorem. 
 
Theorem 3: System (33) satisfies (27) if and only if the 
Gauss-Codazzi Eq. 1) are satisfied by the respective 
functions ω, Q and R. Therefore, (25), (33) represent a 
two-by-two equivalent matrix form of (8) and (10). 
 As a simple example of a solution to the frame 
Eq. 25 can be solved explicitly for the vacuum 
solution ω = 0. The matrix Φ∈H' corresponding to the 
vacuum solution is given by: 
 

1 1
2 2

1 1
2 2

cosh( (u v)) sinh( (u v))
,

sinh( (u v)) cosh( (u v))

1
Q , R 1, H 1

2

− − 
Φ =  − − 

= = = −

 (34) 

 
 The Gauss-Codazzi Eq. 12 imply that for every 
simply connected timelike constant mean curvature 
surface in 3

1E , there exists a timelike extremal surface 

in 3
1S  which is isometric to the original. Of course, 

timelike extremal surfaces in 31S  can be regarded as 

simple mathematical models of rigid strings in particle 
theories as well. 
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