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ABSTRACT 

In this study a new lifetime class with decreasing failure rate is introduced by compounding truncated 

logarithmic distribution with any proper continuous lifetime distribution. The properties of the proposed 

class are discussed, including a formal proof of itsprobability density function, distribution function and 

explicit algebraic formulae for its reliability and failure rate functions. A simple EM-type algorithm for 

iteratively computing maximum likelihood estimates is presented. A formal equation for Fisher information 

matrix is derived in order to obtaining the asymptotic covariance matrix. Thisnew class of distributions 

generalizes several distributions which have been introduced and studied in the literature. 
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1. INTRODUCTION 

 Multi-parameter distributions to model lifetime data 

have been introduced by compounding a continuous 

lifetime and powerseries distributions. The Exponential 

Geometric (EG), Exponential Poisson (EP) and 

exponential logarithmic distributions were introduced 

and studied by Adamidis and Loukas (1998), Kus (2007) 

and Tahmasbi and Rezaei (2008), respectively. Recently, 

Chahkandi and Ganjali (2009) introduced the 

Exponential Power Series (EPS) distributions, which 

contain these distributions. 

 Situations where the failure rate function decreases 

with time have been reported by several authors. 

Indicative examples are business mortality (Lomax, 

1954), failure in the air-conditioning equipment of a fleet 

of Boeing 720 aircrafts or in semiconductors from 

various lots combined (Proschan,1963) and the life of 

integrated circuit modules (Saunders and Myhre, 1983). 

In general, a population is expected to exhibit 

Decreasing Failure Rate (DFR) when its behavior over 

time is characterized by 'work hardening' (in engineering 

terms) or 'immunity' (in biological terms); sometimes the 

broader term 'infant mortality' is used to denote the DFR 

phenomenon. The resulting improvement of reliability 

with time might have occurred by means of actual 

physical changes that caused self-improvement or simply 

it might have been due to population heterogeneity. 

Indeed, Proschan (1963) provided that the DFR property 

is inherent to mixtures of distributions with constant 

failure rate (McNolty et al., 1980 for other properties of 

exponential mixtures) and Gleser (1989) demonstrated 

the converse for any gamma distribution with shape 

parameter less than one. In addition, Gurland and 

Sethuramm (1994) give examples illustrating that such 

results may hold for mixtures of distributions with 

rapidly increasing failure rate. A mixture of truncated 

geometric distribution and exponential with DFR was 

introduced. The Exponential-Poisson (EP) distribution 

proposed by Kus (2007) and genearalized by  

Hemmati  et al. (2011) using Wiebull distribution and 

the exponential-logarithmic distribution discussed by 

Tahmasbi and Rezaei (2008). Silva et al. (2010) did a 

new distribution with decreasing, increasing and upside 

down bathtub failure rate. A two-parameter distribution 

family with decreasing failure rate arising by mixing 

power-series distribution has been introduced by 

Chahkandi and Ganjali (2009). A Weibull power 

series class of distributions with Poisson presented by 

Morais and Barreto-Souza (2011). Morais (2009) in a 

master degree thesis presented a class of generalized 

Beta distributions, Pareto power series and Weibull 

power series. Lately, Alkarni and Oraby (2012) 

obtained a class of truncated Poisson with any 

continuous lifetime distribution. 
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 A further exponentiated type distribution has been 

introduced and studied in the literature. The exponential 

weibull (EW) distribution was proposed by Mudholkar 

and Srivastava (1993) to extend the GE distribution. This 

distribution was also studied by Mudholkar et al. (1995); 

Mudholkar and Hutson (1996); Nassar and Eissa (2003). 

Nadarajah and Kotz (2006) introduced four more 

exponentiated type distributions: the exponentiated 

gamma, exponentiatedWeibull, exponentiatedGumbel 

and exponentiatedFréchet distributions by generalizing the 

gamma, Weibull, Gumbel and Fréchet distributions in the 

same way that the GE distribution extends the exponential 

distribution. Barreto-Souza and Cribari-Neto (2009) 

introduced the generalized exponential-Poisson 

distribution which extends the exponential-Poisson 

distribution in the same way that the GE distribution 

extends the exponential distribution. 

 In this study we generalize the work of Tahmasbi 

and Rezaei (2008) to a class of several lifetime 

continuous distributions and hence any mixture of 

continuous lifetime with truncated logarithmic 

distribution such as exponential, weibull, pareto becomes 

a special case of this class. This study is organized as 

follow. The new class of logarithmic lifetime 

distributions with its probability and distribution 

functions are introduced. The corresponding survival and 

hazard rate functions with some of their properties are 

derived. Maximum likelihood estimate of the unknown 

parameters are obtained based on arandom sample via 

EM algorithm. The entropy for the logarithmic lifetime 

distributions class is discussed. 

1.1. The Class 

 Given Z, let T1,…,Tz be independent and identically 

distributed (iid) random variables with probability 

density function (pdf) given by: 

 

i
T 1 kT

f (x; ) f (x; ); ( ,..., )for,k 1,x, +θ = θ θ = θ θ ≥ θ∈�  

 

 Here, Z is a zero truncated Logarithmic random 

variable with probability mass function given by  
 

z

Z

(1 p)
f (z;p) ,z ,0 p 1

zln p

−
= ∈ < <
−

�  

where, 

 

 Z and Ti, i = 1,…,z are independent. Let X = min 

(T1,…,Tz) then, the pdfof the random variable X is 

obtained as Equation 1: 

T
X

T

1 (1 p)f (x; )
f (x;p, )

ln p p (1 p)F (x; )

− θ
θ =

− + − θ
 (1) 

 
 And hence the cumulative distribution function (cdf) 

of X is Equation 2: 
 

T
X

In (p (1 p)F (x; ))
F (x;p, ) 1

ln p

+ − θ
θ = −  (2) 

 
 The proof of the results in (1) and (2) are presented 

in the following theorem. 
 
Theorem 1.1: Suppose that T1,…,Tz are independent 

random variables with 
i

T 1 kT
f (x, ) f (x, ), ( ,..., )θ = θ θ = θ θ for 

k 1,x, +≥ θ∈� and Z is a zero truncated 

Logarithmicrandom variable with probability mass 

function 

z

z

(1 p)
f (z;p) ,z ,0 p 1

zln p

−
= ∈ < <
−

�  where Z and 

Ti,i=,…,z are independent. If X = min (T1,…,Tz) then the 

pdf and cdf of X are 
 

T
X

T

1 (1 p)f (x; )
f (x;p, )

ln p p (1 p)F (x; )

− θ
θ =

− + − θ
 

 
And: 
 

T
X

In (p (1 p)F (x; ))
F (x;p, ) 1

ln p

+ − θ
θ = −  

 
Respectively. 
 
Proof: By definition, the pdf of X given X = z is: 
 

z 1

T TX Z
F (x; ) zf (x; ) 1 F (x; )

−
 θ = θ − θ   

 
  And hence the joint pdf of X and Z is obtained as: 
 

z
z 1

X,Z T T

(1 p)
F (x,z;p, ) zf (x; ) 1 F (x; )

z ln p

−−
 θ = θ − θ −

 

 
  The marginalpdf and cdfof X are given by: 
 

z 1

T
X T

z 1

T

T

T

T

(1 p)f (x; )
F (x;p, ) (1 p)(1 F (x; ))

ln p

1 (1 p)f (x; )

ln p 1 (1 p)(1 F (x; ))

1 (1 p)f (x; )

ln p ln p p (1 p)F (x; )

−∞

=

− − θ
 θ = − − θ 

− − θ
=

− − − θ

− θ
=

− + − θ

∑

 

  
 And:  
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x x

T
X X

T0 0

T

T

1 (1 p)f (x; )
F (x;p, ) f (x;p, )dx dx

ln p 1 (1 p) (1 F (x; ))

In(1 (1 p)(1 F (x; )))
1

ln p

In(p (1 p) F (x; ))
1

ln p

− − θ
θ = θ =

− − − θ

− − − θ
= −

+ − θ
= −

∫ ∫

 

 
 Respectively. 

 We denote a random variable X with pdf and cdf (1) 

and (2) by X∼LL (p, θ ). Thisnew class of distributions 

generalizes several distributions which have been 

introduced and studied in the literature. For instance 

using the probability density and its distribution function 

of exponential distribution in (1), we obtain the 

logarithmic exponential distribution Tahmasbi and 

Rezaei (2008) and using Wiebull probability density and 

its distribution function gives Wiebulllogarithmic 

distribution Morais and Barreto-Souza (2011). The 

model is obtained under the concept of population 

heterogeneity (through the process of compounding). An 

interpretation of the proposed model is as follows: a 

situation where failure (of a device for example) occurs 

due to the presence of an unknown number, Z, of initial 

defects of same kind (a number of semiconductors from 

a defective lot, for example). The Ts represent their 

lifetimes and each defect can be detected only after 

causing failure, in which case it is repaired perfectly 

(Adamidis and Loukas, 1998). Then the distributional 

assumptions given earlier lead to any of the L 

Ldistributions for modeling the time to the first failure X.  

 Table 1 shows the probability function and the 

distribution function for some lifetime distributions. 
 Some of the other lifetime distributions are excluded 
from this table such as Gamma and lognormal distributions. 
Those distributions do not have nice forms although they 
still can be applied in this class numerically. 
 The q th quantile xq of the LL distribution, the 

inverse of the distribution function FX (xq) = q is the 

same as the inverse of the distribution 

function
1 q

T q

p
F (x )

1 p

−

=
−

for any continuous lifetime with 

distribution function FT (.). 

1.2. Survival and Hazard Functions 

 Since the LL is not a part of the exponential family, 
there are no simple forms for moments see for instant 
(Kus, 2007) for the exponential case. Survival function 
(also known reliability function) (sf) and hazard function 
(known as failure rate function) (hf) for the LL class are 
given in the following theorem. 

 Theorem 1.2  Suppose that T1,…,Tz are independent 

random variables with fTi (x, θ ) = fT (x, θ ), θ  = 

(θ1,…,θk) for k 1, x,
+≥ θ∈� and Z is a zero truncated 

Logarithmicrandom variable with probability mass 

function 

z

Z

(1 p)
f (z;p) ,z ,0 p 1

zln p

−
= ∈ < <
−

� where Z and 

Ti,i=1,…,z are independent. If X = min (T1,…, TZ), then the 

sf and hf of X are Equation 3 and 4: 
 

T
X

T

In(p (1 p)F (x; ))
S (x;p, )

Inp

In(1 (1 p)s (x;p, ))

Inp

+ − θ
θ =

− − θ
=

 (3) 

 
 And: 
 

T
X

T T

T

T T

(1 p)f (x; )
h (x;p, )

(p (1 p)F (x; )) In (p (1 p) F (x; ))

(1 p)f (x; )

(1 ((1 p)S (x;p, ))) In (1 (1 p) S (x;p, ))

− − θ
θ =

+ − θ + − θ

− − θ
=

− − θ − − θ

  (4) 

 
 Respectively.                                                              

Proof: Using (1) and (2), survival function (also known 

reliability function) and hazard function (known as failure 

rate function) for the LL class are given respectively by: 
 

T
X X

T

T

In(p (1 p)F (x; ))
S (x;p, ) 1 F (x;p, ) 1 (1 )

lnp

In(p (1 p)F (x; ))
)

lnp

In(1 (1 p)S (x;p, ))
)

lnp

+ − θ
θ = − θ = − −

+ − θ
=

− − θ
=

 

 

 And:  

 

X
x

X

T

T T

T

T T

T

T T

f (x;p, )
h (x;p, )

s (x;p, )

(1 p)f (x; )

(1 (1 p(1 F (x; )))In( 1(1 p(1 F (x; )))

(1 p)F (x; )

(p (1 p)F (x; ))In(p (1 p)F (x; ))

(1 p)f (x; )

(1 (1 p)s (x;p, ))In(1 (1 p)s (x;p, ))

θ
θ =

θ

− − θ
=

− − − θ − − − θ

− − θ
=

+ − θ + − θ

− − θ
=

− − θ − − θ

 

 

where, (ST(z; θ )) is the survival function of any 

continuous lifetime distribution.
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Table 1. Probability and distribution functions 

 
x

f (x;p, )θ   
x

F (x;p, )θ  

Exponential  x

x

1 (1 p ) e

In p 1 (1 p ) e

− λ

− λ

− λ

− − −
 

xIn (1 (1 p )e )
1

Inp

− λ− −
−  

Weibull 
a 1 ( x ) a

( x ) a

1 (1 p )( x ) e

In p 1 (1 p )e

− − λ

− λ

λ − λ
− −

 
a( x )In (1 (1 p )e )

1
Inp

− λ− −
−  

Rayleigh 

2x

22

22

22

1 (1 p)xe

xInp
1 (1 p)e

θ

−

θ

−

−θ
− −

 

2

22

x
In (1 (1 p )e )

1
In p

θ
− −

−  

Pareto 
1

1 (1 p)

Inp (1 x ) (1 p)(1 x )γ +

− γ

− + − − +
 In (1 (1 p)(1 x ) )

1
Inp

− γ− − +
−  

 
Table 2. Survival and hazard functions 

 
x

s (x;p, )θ  
x

h (x;p, )θ  

Exponential 
xIn (1 (1 p )e )

In p

− λ− −  
x

x x

(1 p)e

(1 (1 p)e )In ((1 (1 p)e )

− λ

− λ − λ

− −

− − − −
 

Weibull 
a( x )In (1 (1 p ) e )

In p

− λ− −  
a( x )

a( x ) a ( x )

(1 p )e

(1 (1 p)e )In (1 (1 p )e )

− λ

− λ − λ

− −

− − − −
 

Rayleigh 

2x

2
21n(1 (1 p)e )

Inp

θ− −
 

2x

22

2x
2

22

2
2

(1 p )e

x
1 (1 p )e In 1 (1 p )e

θ

θ

θ

− −

 
   − − − −     

 

 

Pareto In (1 (1 p)(1 x ) )

Inp

− γ− − +  
1 1[(1 x ) (1 p) (1 x ) ]In (1 (1 p)(1 x ) )− γ + − γ

γ
+ − − + − − +

 

 
 Table 2 summarizes the survival functions and 

hazard rate functions for some distributions of the class. 

1.3. Estimation 

 In what follows, we discuss the estimation of the LL 
class parameters. Let x1,…,xn be a random sample with 
observed values x1,. . . , xn from a L Ldistribution with 
parameters p and θ . Let Θ = (p, θ ) be the parameters 
vector. The log log–likelihood function based on the observed 

random sample size of n, yobs = (x1,…,xn) is obtained by: 
 

n

obs T ii 1

n n

i T ii 1 i 1

(p, ; y ) n log (1 p) n log ( log p) log f (x ; )

log (x ; ) log (p (1 p)F (x ; ))

=

= =

θ = − − − + θ

+ θ + + − θ

∑
∑ ∑

l
 

 

 And the associated score function is given 

by T

n

1 k

U ( ) ( , ,..., )
p

∂ ∂ ∂
Θ =

∂ ∂θ ∂θ
l l l , where Equation 5 and 6: 

 

n T i

i 1
T i

(p, ; yobs)

p

n n F (x ; )

1 p p log p p (1 p)F (x ; )=

∂ θ
∂

θ
= − −

− + − θ∑

l

 (5) 

 And: 

 

n T i

i 1
T i i

n T i

i 1
T i i

( ; yobs) 1 f (x ; )

p f (x ; )

1 p f (x ; )
,i 1,...,k

p (1 p)F ((x ; )

=

=

∂ θ ∂ θ
=

∂ θ ∂θ

− ∂ θ
+ =

+ − θ ∂θ

∑

∑

l

  (6) 

 

 The Maximum Likelihood Estimates(MLE) of Θ, say 
�Θ , is obtained by solving the nonlinear system Un (Θ) = 
0The solution of this nonlinear system of equations has not 
a closed form, but can be found numerically by using 
software such as MATHEMATICA, MAPLE, Ox and R. 
 For interval estimation and hypothesis tests on the 

model parameters, we require the information matrix. 

The (k+1)×(k+1) information matrix is given by: 
  

i

i i i

pp p

n

p

l l
I ( )

l l

θ

θ θ θ

 
 Θ =
 
 

 

 

where, the elements of In (Θ) are the second partial 

derivatives of (5) and (6). Under the regular conditions 
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stated in Cox and Hinkley (1974), that are fulfilled for 

our model whenever the parameters are in the interior of 

the parameter space, we have that the asymptotic 

distribution of �n ( )Θ −Θ is multivariate 

normal 1

k 1
N (0,k ( ) )−

+ Θ , where 1

n n
k( ) lim n / ( )−

→∞Θ − Θ  is 

the unit information matrix. 

1.4.  EM algorithm 

 Based on the underlying distribution, the maximum 
likelihood estimation of the parameters can be found 
analytically using an EM algorithm. Newton–Raphson 
algorithm is one of the standard methods to determine the 
MLEs of the parameters. To employ the algorithm, second 
derivatives of the log-likelihood are required for all 
iteration. EM algorithm is a very powerful tool in handling 
the incomplete data problem (Dempster et al., 1977; 
McLachlan and Krishnan, 1997). It is an iterative method 
by repeatedly replacing the missing data with estimated 
values and updating the parameter estimates. It is especially 
useful if the complete data set is easy to analyze. As pointed 
out by Little and Rubin (1983), the EM algorithm will 
converge reliably but rather slowly (as compared to the 
Newton-Raphson method) when the amount of information 
in the missing data is relatively large. Recently, EM 
algorithm has been used by several authors such as 
Adamidis and Loukas (1998); Adamidis (1999); Ng et al. 
(2002); Karlis (2003); Adamidis et al. (2005). 
 To estimate Θ, EM algorithm is a recurrent method 
such that each step consists of an estimate of the 
expected value of a hypothetical random variable and 
later maximizes the log-likelihood of the complete data. 
Let the complete data be X1,…, Xn with observed values 
x1,…, xn and the hypothetical random variable Z1,…,Zn. 
The joint probability function is such that the marginal 
density of X1,…, Xn is the likelihood of interest. Then, 
we define a hypothetical complete-data distribution for 
each (Xi, Zi)

T
,i+1,…,n. 

 With a joint probability function in the form: 
 

z
z 1

X,Z T T

(1 p)
f (X,Z; ) zf (x; ) 1 F (x; )

z ln p

−−
 Θ = θ − θ −

 

 

 With x, ,0 p 1+θ∈ < <� and z∈� . Thus, it is 

straightforward to verify that the Estep of an EM cycle 

requires the computation of the conditional expectation 

of ( )(z x; )γΘ , where 
( )( ) ( )(P , )
γγ γΘ = θ is the current estimate 

(in the rth iteration) of Θ. The EM cycle is completed 

with M-step, which is complete data maximum 

likelihood over (Θ), with the missing Z’s replaced by 

their conditional expectations E(z x; )Θ (Adamidis and 

Loukas, 1998), where: 

 
z 1

T TZ X
f (z) (1 p)(1 F (x; )) [1 (1 p)(1 F (x; ))]

−
 = − − θ − − − θ   

 
 And its expected value is: 
 

T

T

(1 p)(1 F (x; ))
E(Z \ X)

1 (1 p)(1 F (x; ))

− − θ
=

− − − θ
 

1.5. Entropy for the Class 

 If X is a random  variable having an absolutely 

continuous cumulative distribution function FX (x) and 

probability distribution function fx (x) then the basic 

uncertainty measure for distribution F (called the entropy 

of F) is defined as Equation 7: 
  

X

T i T i

0
T T

1 p
H (X) E(log f (x)) log ( log p) log (1 p)

log p

f (x ; ) f (x ; )
log dx

1 (1 p) ) (1 F (x; )) 1 (1 p) ) (1 F (x; ))

∞

−
= − = − − − +

θ θ
− − − θ − − − θ∫

 (7)  

 
 Note that as p increases the HX (X) increases too 

which is very logical since the increase of probability of 

accidents increases the entropy 

 Statistical entropy is a probabilistic measure of 

uncertainty or ignorance about the outcome of a random 

experiment and is a measure of a reduction in that 

uncertainty. Since Shannon (1948) pioneering work on the 

mathematical theory of communication, entropy (7) has 

been used as a major tool in information theory and in 

almost every branch of science and engineering. 

Numerous entropy and information indices, among them 

the Renyi entropy, have been developed andused in 

various disciplines and contexts. Information theoretic 

principles and methods have become integral parts of 

probability and statistics and have been applied in various 

branches of statistics and related fields.  
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