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Abstract: Problem statement: The called the Sum of Squares Double Exponentidligighted
Moving Average (SS-DEWMA) chart which is effectiie detecting shifts in the mean and/or
variance is compared with the Max-DEWMA (called timaximum double exponentially weighted
moving average) chart. The comparison is basedh®m@ssumption that the distribution of the quality
characteristic of the process is normal or apprax@y normally distributed. In many real world
situations, this assumption may be violated. Thislys compares the effects of various forms of non-
normality on the Max-DEWMA and SS-DEWMA control et Approach: A Monte Carlo
simulation using the Statistical Analysis Softwé®&S) is conducted to compare the performances of
the two charts for the case of skewed distributisiuech as the Weibull, lognormal and gamma
distributions.Results: The overall results show that the Max-DEWMA chaas in-control Average
Run Lengths (ARLS) closer to the specified valuecampared to that of the SS-DEWMA chart, for
all levels of skewnesses consider&bnclusion/Recommendation: Practitioners are advised to use
the Max-DEWMA chart for a joint monitoring of thergtess mean and/or variance, when the
underlying distribution is non-normal.

Key words. Average Run Length (ARL), DEWMA chart, non-normatdbutions, single control chart,
industrial processes, standard deviation, conthalrts, assignable cause, control limits,
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INTRODUCTION fall within the (+30) limits if the process is free from
any assignable cause, i.e. when no action is neéted

An effective method of process monitoring is by other words, the false alarm rate or size of thgeTlyerror
means of using control charts (Oakland, 2003). Ais as low as 1 in every 370 (0.27%) random samples
control chart is the most powerful tool in Statati (Besterfield, 2009; Gupta and Walker, 2007).
Process Control (SPC) that is extensively used by Recently, the single Max-DEWMA (called the
practitioners to control a variety of industriabpesses. Maximum Double Exponentially Weighted Moving
The Exponentially Weighted Moving Average Average) chart proposed by Khet al (2010), which
(EWMA) chart, introduced by Roberts (1959), for simultaneously detects shifts in the process madrfoa
instance, is often used to monitor the location andsariability was shown to outperform the Max-EWMA
spread of a process. The EWMA-type control chaets a chart, proposed by Chest al (2001), for small and
formulated based on the properties of the normamoderate shifts. More recently, Tedt al (2010a)
distribution (Duncan, 1986). The normal distributis ~ proposed the single SS-DEWMA (called the Sum of
described by its parameters, mear @and standard Squares Double Exponentially Weighted Moving
deviation ¢). Since 1930, information gathered from Average) chart which outperforms the SS-EWMA chart
most industries indicates that control limits, mhs®  proposed by Xie, (1999), in detecting shifts of siles
the 3 standard deviations width provide an econamic in the mean and/or variance. Tedt al (2010b)
balance between the costs resulting from the Tyaedl conducted a comparative study of the performanges o
Type Il errors (Umble and Umble, 2000). Unless ¢her the SS-DEWMA and the Max-DEWMA charts, for
are strong practical reasons for using controlt8miith ~ monitoring the process mean and/or variance of a
wider or narrower widths, otherwise theo dimits  normally distributed process. Under the normality
should be applied for a normal distribution. Astsuc assumption, their findings indicated that the SS-
99.73% of the population points will fall in thetémval ~DEWMA chart is superior to the Max-DEWMA chart,
(u+30) i.e. within the lower and upper control limits. in terms of the out-of-control detection speed and
This means that almost all the population valuelf wi diagnostic abilities.
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A fundamental assumption that underlies the The remainder of this study is organized as fadlow
designs of the Max-DEWMA and SS-DEWMA charts first reviews the Max-DEWMA and SS-DEWMA
is that the quality characteristic is normally disited. ~ control charts. Some statistical properties andges
However, in many situations, the validity of this strategies are presented. A simulation study is

S —_ . conducted to compare the performances of the Max-
assumption is doubted, not easy to justify andfisno ne\yaia™ versus  SS-DEWMA  charts.  Finally,
inappropriate. In  many industrial processes, th

X ) ! o0ES econcluding remarks are summarized .
normality assumption of the underlying distribution
does not hold. Montgomery (2008) discussedThe Max-DEWMA and SS-DEWM A control charts:
difficulties in the application of statistical coot  Khoo et al (2010) developed a single EWMA-type
charting techniques to some real data in industfies  control chart, called the Max-DEWMA chart. Assume
example, for a semiconductor laser, the lifetimeaof that ~a  series of random  observations,
product that degrades over time is often modeled by X; ~ N(/u+a0', bzaz) yfori=1,2,3,...andj=1, 2, 3,
lognormal random variable. In reliability engineweyj
the lifetime and failure rate data for electricalda
mechanical components and system follow a Weibul
distribution. The failure rate of a product is digd into
three phases. The failure rate is high at the méggn  _ X+ X pt .+ X,
(early failure) and at the end (wear out period}iod X :T
product cycle. Random or spontaneous failures oiccur
between the product cycle and this forms a bathtulng
curve for the failure rate function. Therefore, the
Weibull distribution has been used in situations > (X.. ) >_§)2
involving electronic devices, such as memory elesien S’ = —

..., n, wherea andb are constants and > 1. The

rocess is in-control whea = 0 andb = 1; otherwise
he process has shifted. Let Eq. 1 and 2:

@)

@)

ij
mechanical components like bearings; and structural n-1
elements in aircrafts and automobiles. Be the mean and variance of sanipkespectively.

Hai-Yu and Ji-Chao, (2007) noted that theTpe following two independent statistics are define
consequence of applying EWMA charts when the
underlying population is skewed is that the Typa¥br X -u
or false alarm rate (the probability of signaliny @ut- Ui _W )
of-control when the process is actually in-contwill
increase as the skewness level increases. Thigeisod .
the inconsistency between the variability pattefram /= 1) (h-1)¢ n -1 4)
asymmetric distribution and the normality assumptio 2o
in constructing control charts. When this happens,
unnecessary process adjustments and loss of cooéide ) .
in the use of control charts as a monitoring todl w Note that in Eq. 3 and Eq. 47*( 1) denotes the
arise. Many studies have recently been made omatont inverse standard normal distribution function dhdw;
charts for skewed populations (Amhemad, 2009; Khow) the chi-square distribution function wittdegrees of
and Kassim, 2008; Hai-Yu and Ji-Chao, (2007). freedom. When the process is in-control, bdftandV,

In this study, the effect of departures fromin Eq. 3 and Eqg. 4, respectively, are independent
normality on both the Max-DEWMA and SS-DEWMA statistics having a common standard normal
charts is of interest. Here, the effect of skewrsdghe  distribution. The two EWMA statistics computed from
underlying distribution on the performances of theU; andV; are defined as follows:

Max-DEWMA and SS-DEWMA charts are compared.

Various types of data ranging from nearly symmetic Y, = (1-A)Y, +AU,, fori=1,2,... (5)
highly skewed, representing a wide variety of skape

are generated. This study uses the Weibull, logabrm d

and gamma distributions to assess the robustneée of an
Max-DEWMA and SS-DEWMA control charts. A
Monte Carlo simulation is performed herein to study 4 = (1-4)Z,+2V,, fori=1,2,.... (6)
the in-control Average Run Length (ARLproperties Here, 0 <1 <1 is the smoothing constant, whifg
of the charts for various non-normal distributions. = Z,= 0 are the starting values 4fandz;, respectively.
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From the two EWMA statistics of; and Z;, given in  Eq. 8. They introduced the following single statigor
Eq. 5-6, respectively, two corresponding DEWMA the proposed SS-DEWMA chart Eq. 9-11:
statistics can be computed as follows:

L =W +Q’ (11)
W= (-2, +2Y, for i=1,2,.. () Similar to the Max-DEWMA chart, the values of
L, will be large if the mean and/or variance haststif
And:

from their target values. Howevet, will be small if

Q=(1-2)Q,+/Z, fori=1,2,.. ®) both the mean and variance stay close to their
respective target values.
Since L is non-negative, the SS-DEWMA

Here, Wo and Qo (WO =Q= 0) are the starting chart only has an upper control limit, given by:

values of W andQ, respectively. Khoet al (2010)

uses the simple approach of setting the smoothin _
constants the same fi, z, W andQ, in Eq. 5, Eq. 6, %CLSD_ E(L‘)+KSDV;ar(Li) ’

Eq. 7 and Eq. 8, respectively. Then the two DEWMA:2(1+KSD)></1—4 x

statistics in Eq. 7 and EQ.8 are combined into the [1-(1-/1)2]3

following single statistic for the proposed Max- T e

DEWMA chart: Lr (-2 -2 +EAT + (12)
(2% +2 -1)(Q-AP*2 42@A P+

M, = max{|W| | Ql} ©) Fori=1, 2, ..., wherd&(L;) andVar (L;) are the in-

control mean and variance bf respectively. Note that
Because the proposed chart is baset¥ipme., the Ksp is @ constant controlling the width dfCLsp. Eq.

maximum of W/ and|Q, it is called the Max-DEWMA 12 enables a quick computation bfCLsp for the

chart. If the process mean has shifted away fram jtZero state SS-DEWMA chart, based on deskethd

. . lues.
target value and/or the variance has increased <§SDV3 S . .
decreased, the statisti;, will be large. If both the The derivation ofUCLsp is shown in Tehet al

rocess mean and variance stav close {o their cigee (2010b). As a rule of thumB, in the interval 0.0x A <
P varl y IreBsRe 5 30 jg usually considered for a quick detectiosrofll
target values, thelt; will be small. Note thaM; is the and moderate shifts in the mean and/or varianceeTe
maximum of the absolute values of the two DEWMA 3 " (2010a) show that the SS-DEWMA chart performs
statistics and it is non-negative. Therefore, thax_M_ better than the Max-DEWMA control chart in detegtin
DEWMA chart needs only an Upper Control Limit ghjfts of all sizes in the mean and/or variance e

(UCLp), which is given in Khoet al (2010). underlying distribution is normally distributed.
UCLyp = E(M; )+ Kyyp (M, ) Statistical properties and design srategies:
I Skewness is a measure of the degree of asymmetay fo
=(1.128379 +0.60281R,,, ) - distribution. A distribution (or a data set) is sywtric
[2-(2-2)"] if the median divides the left side and the rigtiesnto
(10) two identical regions. The sample skewness is
1+(1_/1)2_(i2+ 2 +) measured with the following Eq. 13 (Kenney and
X _ _ _ Keeping, 1956):
(1_1)2 +(22+ 2 -])(1-],)2”242(1-/1)2”4
_zin:l(xi - ;()3
Fori = 1, 2,..., whereE(M;) and V(M;) are the Skewness (n-1)S° (13)
mean and variance oM;, respectively, when the
process is in-control, while J& is a multiplier that wheren is the number of data points asithe
controls the width of UCp. sample standard deviation. The skewness for a

More recently, instead of taking the maximum ofsymmetric distribution has a value of zero. Negativ
W| and|Q|, Tehet al (2010a) also explored the idea values indicate data that are skewed to the left (il
of using the sum of squares 8f andQ; in Eq. 7 and is longer relative to the right tail) and positivalues
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indicate data that are skewed to the right (riglit is R =F(a) 19)
longer relative to the left tail).

The Weibull, lognormal and gamma distributions i
are considered in this study because these dittitsu Since u= «. Here, a denotes the shape parameter
are very flexible and by appropriate selection lné t of the gamma distribution. Similar to the Weibull
parameters, they can represent a wide varietyagesy  distribution, whena = 1, the gamma distribution
ranging from nearly symmetric to highly skewed. Forreduces to the exponential distribution with mean 1
convenience, a scale parameter of one is selected fFor the sake of comparison, besides the Weibull,
both the Weibull and gamma distributions while alognormal and gamma distributions, the normal
location parameter of zero is chosen for the lograr distribution is also considered. Note that the skess
distribution. This is because the skewness does naebefficient, y , is unique for a given value 8f o, or
depend on the parameters of these distributions. a. The shape parameterf3 for the Weibull

For a Weibull distribution, with a location paraere  distribution, o,, for the lognormal distribution and
zero and scale parameter one, its cumulative lligion ~ for the gamma distribution, are determined so that

function (cdf) is given as Eq. 14: skewness coefficient,y = 0.5(0.5)3. A skewness
coefficient of zero indicates that the distributiam
F(y)=1-“" for y= C (14)  Symmetry. The skewness coefficiegt= 0.5 and 1.0

represent low levels of skewnesg: 1.5 and 2.0
represent moderate levels of skewness;yand@.5 and
3.0 represent high levels of skewness. A shiftha t
mean is represented Qy, = u, o+ doy o, Whered > 0 is
the magnitude of a shift, in terms of the number of
standard deviation units, whilg, , and ¢, , represent
the in-control mean and in-control standard deorsti
respectively. Note that we only consider the intomn

1\ process, i.e., whe® = 0. For a random variabl,
P =l-expy{rI 1+E , fory=0 (15)

Where, w>0 is the scale parameter a0 the shape
parameter. Note that whe = 1, the Weibull
distribution reduces to the exponential distribatigith
meanw. Letting @ =1 andR, =Pr(Y < x) , wherep is
the target mean value ¥f we have:

from the Weibull, lognormal and gamma distributions
their in-control means are Eq. 20-22:

For a lognormal distribution, its cdf is given as

(Aitchison and Brown, 1969) Eq. 16: Ly o= F[“%} (20)
logy-6
F(y)= d{ J for y>0 16 via
ON (16) Uy o=€ 2 (22)

where 8 is the location parameter arg, the scale and

parameter. Letting? = 0 andPR, = Pr(Y < x), we have
Hyo=a (22)

R= (p[%j (47 Respectively, while their in-control standard
deviations are Eq. 23-25:

The values of and o, satisfying a given Pin Eq. 15

and Eq. 17, respectively, can be obtained uniquely _ \/F(“Zj -[1‘(1+1H2 (23)

using a numerical method. e B B

For a gamma distribution with a location parameter
zero and scale parameter one, its cdf is given as

(Johnsoret al, 1994) Eq. 18: PN CE (e’fN —1) (24)
F(y) =249 fory20, a2 0 (18)  and
I'(a)
Oyo= \/g (25)

where I, ()= J-oym”'le'm dm and I'(a)= j:m“'le'm dm.

Then for this case Eq. 19: Respectively (Khoet al., 2008).
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Table 1: In-control average run lengths for the NDEAWMA and SS-DEWMA charts wham= 5 and AR = 250

0.05 0.10 0.20
KMD KSD KMD KSD KMD KSD
1.655 1.677 2.082 2.348 2.528 3.113
Parameter Distribution vy M-D S-D M-D S-D M-D S-D
Normal 250.10 249.90 249.50 250.00 250.80 249.90
Weibull
B 3.6286 0.0 277.96 276.90 280.00 278.45 281.96 3p11.
2.2266 0.5 269.66 246.60 262.92 234.96 257.63 8768.
1.5688 1.0 166.20 141.62 167.07 130.87 158.58 392.6
1.2123 15 65.39 61.29 70.03 62.01 69.47 48.30
0.9987 2.0 30.55 30.31 32.67 32.16 32.49 26.87
0.8598 25 17.47 17.55 19.10 19.49 19.00 17.07
0.7637 3.0 11.67 11.79 12.70 13.05 12.81 11.88
Lognormal
O 0.001 0.0 263.24 244.85 380.80 190.17 251.75 249.78
0.1656 0.5 232.15 206.07 331.36 156.93 212.02 4287.
0.317 1.0 138.66 119.34 192.09 97.17 137.07 105.77
0.4484 15 67.26 61.41 90.73 54.14 71.96 59.56
0.5593 2.0 36.93 35.18 47.86 32.88 39.81 36.83
0.6525 25 23.08 22.10 29.28 21.87 24.99 24.36
0.7315 3.0 15.98 15.76 20.45 15.84 17.37 17.79
Gamma
a 38000 0.0 257.19 252.99 255.28 254.15 253.52 P49.8
15.4 0.5 234.58 217.16 227.50 209.39 225.31 192.83
3.913 1.0 148.18 129.16 149.25 124.91 145.58 810.1
1.788 15 67.38 62.72 71.38 64.44 71.87 58.54
0.983 2.0 30.86 30.21 32.31 31.86 32.18 30.46
0.648 25 16.60 16.86 18.16 18.25 18.00 18.01
0.442 3.0 9.90 9.98 10.77 11.10 10.84 11.18
Table 1: Countinuous
0.30 0.50 0.80 1.00
KMD KSD KMD KSD KMD KSD KMD KSD
2.799 3.585 3.090 4.188 3.246 4.492 3.250 4.528
Parameter Distribution M-D S-D M-D S-D M-D S-D M-D S-D
Normal 250.10 249.90 249.90 249.90 249.70 249.90 50.12 250.00
Weibull
B 3.6286 296.24 291.55 305.55320.12 339.29 344.62 6.494 354.03
2.2266 263.68 203.77 255.63 191.28 237.78 168.50 25.12 164.91
1.5688 156.48 100.42 138.95 85.52 105.97 67.39 5992. 61.26
1.2123 69.43 50.82 63.96 43.30 51.07 34.61 44.97 2.163
0.9987 32.09 28.22 30.29 24.86 28.37 21.58 27.66 1.342
0.8598 18.74 17.88 17.69 16.03 17.54 14.94 18.79 5.811
0.7637 12.40 12.49 11.70 11.36 11.82 10.97 13.42 2.321
Lognormal
Own 0.001 255.21 249.95 251.08 250.55 252.67 249.78 0.825 249.92
0.1656 211.75 175.21 194.31 159.11 160.66 125.65 47.7% 115.50
0.317 132.58 95.91 116.69 81.47 83.19 59.30 70.51 53.62
0.4484 72.13 55.65 67.95 49.21 50.78 37.23 44.10 3.853
0.5593 40.34 34.07 40.38 31.70 35.54 27.36 32.70 6.212
0.6525 2491 23.09 25.73 22.64 26.53 21.50 26.67 1.932
0.7315 17.34 17.18 17.88 16.86 20.43 17.62 22.71 9.331
Gamma
a 38000 258.45 250.78 253.41 254.86 253.69 254.92 9.8924 257.14
15.4 220.82 180.38 202.76 161.12 169.00 131.42 .3053 119.90
3.913 143.46 98.30 125.55 82.53 90.31 61.19 77.90 55.17
1.788 70.96 52.36 65.06 44.67 50.92 35.50 45.20 .8132
0.983 31.76 27.95 30.04 24.29 27.60 21.06 27.31 .0321
0.648 17.44 16.81 16.25 15.06 15.61 13.54 16.61 .1614
0.442 10.53 10.74 9.69 9.65 9.10 8.76 9.91 9.44
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A comparison of the performances of the max-dewmaliagnostic abilities, when the underlying distribatis
versus ss-dewma charts: The effectiveness of aatont normal; this conclusion is no longer true when the
chart in detecting a process change is measurgteby underlying distribution is skewed. This is indichtey
Average Run Length (ARL), which is the expectedthe results in the “A Comparison Of The Performance
number of samples plotted on a chart until the fg- ~ Of The Max-DEWMA Versus SS-DEWMA Charts”
of-control signal is given (Montgomery, 2008). Ilther ~ Section. Therefore, the SS-DEWMA chart can act as a
words, ARL is a measure of the speed of a contrattc ;avorab_letsubs_ttltu'ge to :‘htﬁ existing S'r(‘f/l'e EWMm/igb

; ; ; desn@  fOr @ joint monitoring of the mean and/or variarcgy
;\ngetgcr:]tér;g tkzuca)ooSc)(':u[F(ralgcepgl;fgrsrsnlggggée g?uthe Max-if the_ _distribution of _the data is normally distiiied.
DEWMA and SS-DEWMA charts are compared by Praciitioners are advised to employ the Max-DEWMA
designing charts with a common in-control ARL, ARL Chart for a joint monitoring of the mean and/oriace,

- 250 and a sample size nf= 5. As expected, other when the underlying distribution is non-normal:

ARL()S and Sample S|zes W|” a|SO g|Ve S|m||a.r reSlAtS. ° Among the potentia' future Works on th|5 topic that
chart with an ARk value closer or equal to 250 for are worth pursuing are as follows

most of the cases is considered as the best cffeet. « To compare the performances of the SS-DEWMA
normal, Weibull, lognormal and gamma distributions and Max-DEWMA charts for skewed populations,
are considered in the computation of the ARDf the in terms of the Median Run Length (MRL),
Max-DEWMA and SS-EDWMA charts. The smoothing Standard Deviation of the Run Length (SDRL) and
constant) O {0.05, 0.10, 0.20, 0.30, 0.50, 0.80, 1.00} percentage points of the run length distribution

is considered for both the Max-DEWMA and SS-* To investigate the performances of the SS-
DEWMA charts. The various combinations ¢f K,) DEWMA and Max-DEWMA charts for the steady

state mode process, as we only consider the zero
for the Max-DEWMA chart and(4,K,) for the SS- state mode p?ocess in thi;Nstudyy I z

DEWMA chart were obtained from Khoat al (2010) « To measure the performances of the SS-DEWMA
and Tehet al (2010b), respectively. Here, the exact and Max-DEWMA charts when their smoothing

limits of both charts are considered. constants)’s, have different weights

Table 1 gives the ARJs for the Max-DEWMA + To study the performances of the SS-DEWMA and
and SS-DEWMA charts whem = 5 and ARIlg = 250. Max-DEWMA charts, based on an autocorrelated
Overall, the Max-DEWMA chart gives ARLvalues process, i.e., when the independence assumption is

closer or equal to 250 compared to its SS-DEWMA  violated

counterpart in most of the cases, when the undeylyi « To evaluate the performances of the SS-DEWMA
population is skewed. For both the Max-DEWMA and and Max-DEWMA charts, based on heavy tailed
SS-DEWMA control charts, when the level of positive distributions, such as the Studénbr Cauchy

skewness, y, increases, the probability of a samgpilet distributions
exceeding the control limit increases, hence the AR
decreases (or the Type | error rate increases). ACKNOWLEDGMENT
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