
Journal of Mathematics and Statistics, 9 (2): 102-111, 2013 
ISSN 1549-3644 
© 2013 Science Publications 
doi:10.3844/jmssp.2013.102.111 Published Online 9 (2) 2013 (http://www.thescipub.com/jmss.toc) 

Corresponding Author: Jen-Je Su, Department of Accounting, Finance and Economics, Griffith University, Brisbane, Australia 
 

102 Science Publications

 
JMSS 

LAG SELECTION OF THE 
AUGMENTED KAPETANIOS-SHIN-SNELL 

NONLINEAR UNIT ROOT TEST 

1Jen-Je Su, 2Adrian Wai-Kong Cheung and 1Eduardo Roca 

 
1Department of Accounting, Finance and Economics, Griffith University, Brisbane, Australia 

2Department of Finance and Banking, School of Economics and Finance, Curtin University, Perth, Australia 
 

Received 2013-01-12, Revised 2013-04-08; Accepted 2013-05-04 

ABSTRACT 

We provide simulation evidence that shed light on several size and power issues in relation to lag selection 
of the augmented (nonlinear) KSS test. Two lag selection approaches are considered-the Modified AIC 
(MAIC) approach and a sequential General to Specific (GS) testing approach Either one of these approaches 
can be used to select the optimal lag based on either the augmented linear Dickey Fuller test or the 
augmented nonlinear KSS test, resulting in four possible selection methods, namely, MAIC, GS, NMAIC 
and NGS. The evidence suggests that the asymptotic critical values of the KSS test tends to result in over-
sizing if the (N) GS method is used and under-sizing if the (N) MAIC method is utilised. Thus, we 
recommend that the critical values should be generated from finite samples. We also find evidence that the 
(N) MAIC method has less size distortion than the (N) GS method, suggesting that the MAIC-based KSS 
test is preferred. Interestingly, the MAIC-based KSS test with lag selection based on the linear ADF 
regression is generally more powerful than the test with lag selection based on the nonlinear version. 
 
Keywords: (Nonlinear) Unit Root Test, Augmentation Lag, Modified AIC, General-To-Specific 

Sequential T-Test, Monte Carlo Simulation 

1. INTRODUCTION 

There has been growing concern that the Augmented 
Dickey-Fuller (ADF) test, which is derived under a 
linear setting, may not possess good power when applied 
to non-linear but stationary time series that are 
appropriate to characterize some economic and/or 
financial time series (Michael et al., 1997; Taylor, 2001; 
and Sollis, 2009). To respond to this concern, a range of 
unit-root tests have been developed under a variety of 
nonlinear frameworks (Enders and Granger (1998); 
Kapetanios et al. (2003) (hereafter called KSS), Bec et al. 
(2004); Sollis (2009) and Kilic (2011)). Among these, 
Kapetanios et al. (2003) is probably the most widely 
recognized and applied (According to Hanck (2012) and 
Kapetanios et al.  (2003) “as evidenced by e.g., a Scopus 

citation count that is close to that of the most heavily 
cited Journal of Econometrics paper of the past five 
years”. In addition, the KSS paper has been cited more 
than 200 times according to the ISI Web of Science by 
the end of March 2012). Kapetanios et al. (2003) propose 
a unit-root test using an auxiliary regression model that 
approximates the Exponential Smooth Transition 
Autoregressive (ESTAR) process by Taylor (2001) 
series. The nonlinear KSS test is shown, in general, to be 
more powerful than the linear DF test under the 
alternative of a globally stationary ESTAR process.  

In the case of the linear DF test, serial correlation in 
innovations is, as suggested by Said and Dickey (1984), 
approximated by an augmented autoregression with a 
truncated lag k. An important issue is the choice of the 
truncated lag (k) which has vital size and power 
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implications. Choosing an unnecessarily large k may 
reduce the power of the test while if k is inaptly set too 
small, considerable size distortion arises. Schwert (1989) 
found that in order to reduce size distortion, which is 
often due to a large negative Moving Average (MA) root 
in the innovations of the examined series, one has to 
choose a large autoregression lag. However, a large k 
can result in a nontrivial loss of power (DeJong et al., 
1992). Using such popular Information Criteria (IC) such 
as the Akaike Information Criterion (AIC) and the 
Schwartz or Bayesian Information Criterion (BIC) 
may not work out satisfactory size and power 
properties (Ng and Perron, 1995; 2001) as these 
criteria are not appropriate for modelling highly 
persistent (integrated) processes. 

Ng and Perron (1995) suggested an improved data-
driven lag selection procedure using a General-to-
Specific (GS) approach based on sequential testing for 
the significance of coefficients on the highest auto 
regression lag. The GS approach yields a test with a 
better control in size but it tends to be over-
parameterized in some occasions, leading to unwanted 
power loss. Ng and Perron (2001), on the other hand, 
developed a class of modified information criteria with 
an additional data-driven penalty factor that is apposite 
for integrated time series. In particular, Ng and Perron 
(2001) demonstrated via simulations that the Modified 
AIC (MAIC) is superior to the conventional AIC and 
BIC and the modified BIC, in controlling size when MA 
errors are present. Besides, unlike the GS procedure, the 
MAIC is shown to exhibit better power properties as it is 
less inclined to over-parameterization. 

Like the DF-type test, in practice, the KSS test has to 
handle serial correlation in innovations. Kapetanios et al. 
(2003) assumes the serial correlation to be in a linear 
fashion and suggested an augmented test that is similar 
to the augmented DF test. Kapetanios et al. (2003) 
alleged that “standard model selection criteria or 
significance testing procedure (can) be used for this 
purpose because under the null of a linear model, the 
properties of these criteria are well understood.” In 
applied works, different lag selection methods are used. 
They include the AIC and BIC (Pesaran et al., 2009), the 
BIC (Ghoshray, 2010), the AIC (Cuestas and Garratt, 
2011), the Modified AIC (MAIC) (Yau and Nieh, 2009) 
and a sequential-testing GS procedure proposed by (Ng 
and Perron, 1995; Kapetanios et al., 2003; Chortareas 
and Kapetanios, 2004; Bahmani-Oskooee et al., 2007; 
2008; Baharumshah et al., 2009) (It appears that 

empirical works applying the KSS test tend to favour the 
MAIC over other lag selection criteria). 

This study provides simulation evidence to shed light 
on several unanswered issues regarding the lag selection 
in the augmented KSS test. First, while it is sensible to 
expect that under the common null (unit root) hypothesis 
the statistical properties of the lag selection methods 
should be much alike across linear and nonlinear unit-
root testing schemes (Kapetanios et al., 2003), it is less 
clear if the statistical properties would remain similar 
under the alternatives (as the ADF test assumes a linear 
alternative but the KSS test assumes a nonlinear one). 
Second, for practitioners, it is imperative to know if the 
MAIC, as implemented in the ADF test, is also the 
preferred lag selection method when the KSS test is 
applied. Specifically, would the MAIC outperform the 
seemingly more popular GS procedure for the KSS test? 
Third, though it is natural to construct the lag selection 
criteria based on the non-linear auxiliary KSS regression 
when the KSS is applied (as the majority of practitioners 
do), there is no priori ground ruling out other approaches 
that may produce better results. For example, it is 
possible that a “hybrid” approach-namely, establishing 
the optimal lag first within the linear ADF scheme and 
then applying the selected lag to the KSS test, may 
achieve better size and power properties than lags 
associated with the nonlinear KSS regression (A hybrid 
approach is considered in Perron and Qu (2007), but in a 
different context; To the best of our knowledge, 
Gustavsson and Osterholm (2007) is the only paper that 
takes this approach)? Fourth, there is a concern in the 
literature that the critical values from the asymptotic 
DF distribution might be distant from the critical 
values based on small samples and the issue can be 
exacerbated when the unit root tests are lag-
augmented. In particular, using the asymptotic critical 
values may distort size and power (Cheung and Lai, 
1995; Cook and Manning, 2002; Wu, 2010). The same 
issue arises in the case of the KSS test as well where 
there is a need to get lag-based finite-sample critical 
values; however, these critical values are not available in 
the literature. This study therefore sets out to examine 
and resolve these four issues by Monte Carlo simulation. 
 The study proceeds as follows. Materials and 
Methods gives a brief review on the augmented lag 
selection in unit root tests. Results reports the Monte 
Carlo results comparing the MAIC and the GS 
procedure in the KSS test. Discussion summarizes the 
findings and gives an application example, followed 
by conclusion. 
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2. MATERIALS AND METHODS 

2.1. Unit Root Tests and Augmentation Lag 
Selection 

Let yt, t = 1, 2, …, T, be an observed time series. Our 
aim is to distinguish if yt is a unit root or a stationary 
process. The ADF test due to Dickey and Fuller (1979) 
and Said and Dickey (1984) is a t-test for the null 
hypothesis β = 0 (unit root) against the alternative β<0 
(stationary) in the autoregression Equation 1: 
 

k
d

t t 1 j t j t
j 1

y y y− −
=

∆ = β + φ ∆ + ε∑  (1) 

 
where, d

ty  is the detrended (demeaned) series: d
t t ty y d= −  

with 
p i

t ii 0
d t .

=
= λ∑  Throughout the study, we consider 

two cases of the trend function dt, Case A (level): p=0 
and Case B (trend): p = 1. A two-step approach is used: 
the trend function dt is first estimated by OLS and then 
the detrended series dty  is used for the unit root testing 

(Strictly speaking, the ADF test is based on the 

regression 
k

t t t 1 j t j tj 1
y d y y− −=

∆ = + β + φ ∆ + ε∑  instead of the 

2-step approach considered in this study. The two 
approaches share the same asymptotic results, though 
there are minor differences in finite samples. The 2-step 
approach is considered because it allows the trend 
function to be handled by both the ADF and the KSS test 
in the same way; in this study, we focus only on the unit 
root tests that are based on the OLS detrending. It is 
well-known that the power of the DF test can be much 
improved when the GLS-detrending is used, if the initial 
value is set zero (Elliott et al., 1996). However, with 
large initial deviations, the GLS-based test suffers 
dramatic power loss and is dominated by the OLS-based 
test. Harvey et al. (2009; 2012) propose a “Union of 
Rejection (UR)” testing strategy that is able to produce a 
power that traces the higher of the DF tests based on 
different way of detrending. This is certainly a new 
avenue of for the nonlinear unit root tests. Su and 
Nguyen (2012) suggest a modified KSS test based on the 
UR strategy but they assume zero lag. A research 
combining the issues with different methods of 
detrending and lag augmentation for the KSS research is 
currently pursued by the authors). 

In practice, one may choose the lag k based on 
standard information criteria such as the AIC and BIC as 
earlier studies have done, but neither achieves robust and 

satisfactory results (Ng and Perron, 1995). Ng and 
Perron (1995) instead suggested using a data-driven 
procedure, where the highest lag is sequentially tested. 
Specifically, the most general model with a maximum 
lag, kmax, is chosen and the coefficient of the highest lag 
(φkmax) is tested. If φkmax is significantly different from 
zero, the optimal lag is set as kmax; otherwise, a model 
with kmax-1 is considered and the significance of the 
coefficient of its highest lag φkmax-1 is tested. The 
procedure continues until a significant highest lag is 
found (and hence the optimal lag is established). Since 
this procedure searches for the optimal lag with the most 
general setting (with kmax lags) and winds down to a 
more specific one (with less lags), it is often referred to 
as a General-to-Specific (GS) procedure. The sequential-
testing GS procedure yields a unit root test with 
improved size (comparing with the tests based on the 
AIC and BIC) but it tends to over-parameterize, thereby 
resulting in a loss of power.  

Ng and Perron (2001), on the other hand, developed an 
information criterion that is adequate for highly persistent 
(integrated) series called Modified AIC (MAIC) (A 
modified form of the BIC (MBIC) is considered in Ng and 
Perron (2001) as well. However, since the MAIC 
outperforms the MBIC as far as size is concerned, the 
MBIC will not be considered in this study). The approach 
estimates the lag as follows Equation 2: 
 

( ) ( )

MAIC

2
T

0 k kmax

,k max

k̂ : argmin MAIC(k)

ˆMAIC(k) ln( ) 2 (k) k / T k

≤ ≤

ε

=

= σ + τ + −
 (2) 

 

where, 
T2 1 2

,k max k,tt k 1max
ˆˆ (T k )−

ε = +
σ = − ε∑ , k,tε̂  is the residual 

from (1) and 
T2 2 d 2

T ,k t 1t k 1max
ˆˆ(k) (y )−

ε −= +
τ = σ β ∑ with β̂  being 

the OLS estimate of β (For the purpose of meaningful 
comparison, following Ng and Perron (2001), MAIC(k) 
is computed using the same number (T-kmax) of residuals 
over different k. See also the discussion in Ng and 
Perron (2005) but in a different context). Note that the 
MAIC is the same as the AIC except that it includes an 
additional penalty term τT (k) which can better capture 
the relevant cost among different lag selections in finite 
sample. Ng and Perron (2001) demonstrated via 
simulations that the MAIC yields considerable size 
improvements over the standard criteria for the purpose 
of unit root testing, especially in the presence of a large 
negative moving-average component (Note that, as a 
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matter of fact, Ng and Perron (2001) examined the effect 
of the GLS-detrended ADF test only. Our simulation 
results, however, demonstrate that the good properties of 
the MAIC still hold when the test is OLS-detrending 
based. Perron and Qu (2007) for a similar discussion on 
this issue). Besides, since the MAIC is less inclined to 
over-parameterize, it is expected to produce more 
powerful testing results than when the GS procedure is 
implemented (Ng and Perron (2001) did not include the 
GS procedure in their simulations. Besides, results from 
Ng and Perron (1995; 2001) are not directly comparable as 
different detrending methods are used (OLS in Ng and 
Perron (1995) versus GLS in Ng and Perron (2001)). 
However, our simulation results show, in general, that the 
power of the MAIC-based tests is superior to those based on 
the GS approach). 
 The nonlinear unit root test of Kapetanios et al. (2003) 
is motivated by the observation that many time series (such 
as real exchange rates) exhibit local nonstationarity (unit 
root) but are stationary globally (Michael et al., 1997)) and 
nonlinear models, such as the Exponential Smooth 
Transition Auto Regression (ESTAR) model, could produce 
a better fit of these series than the linear models. Taylor 
(2001) shows with Monte Carlo evidence that the linear DF 
test does not have good power against a stationary ESTAR 
process. Kapetanios et al. (2003) consider the following 
ESTAR model Equation 3: 
 

{ }d 2
t t 1 t 1 t 1 ty y y 1 exp (y ) u− − − ∆ = ρ + γ − −θ +   (3) 

 
where, ut is a stationary innovation. When ρ = θ = 0, yt is 
a unit root process ∆yt = ut. On the other hand, with θ>0, 
yt follows a nonlinear but globally stationary process, 
provided that -2<ρ+γ<0. Using first-order Taylor series 
approximation (imposing that ρ = 0), KSS propose a unit 
root test based on the following auxiliary equation with 
lag-augmentation Equation 4:  

h
d 3

t t 1 j t j t
j 1

y (y ) y v− −
=

∆ = δ + η ∆ +∑  (4) 

 
where, δ = -γθ with the null hypothesis δ = 0 against 
the alternative: δ<0. Lag order h, as suggested by 
Kapetanios et al.  (2003), can be chosen by the standard 
IC or the GS procedure of Ng and Perron (1995). As 
pointed out in the Introduction, applied works with the 
KSS test seem to favour the GS procedure. Given that 
the standard IC is not suitable for integrated series and 
the GC procedure tends to over-parameterize as far as 
the ADF test is concerned, the same issues are expected 
for the KSS test as well. In addition, an often neglected 
issue is, whenever the GS procedure is used, there are 
two possible lag selection approaches. The first and 
natural one is to base the lag selection on the auxiliary 
KSS regression (4), while the second one is to use a lag 
chosen in the linear ADF setting (1) for the KSS test (To 
the best of our knowledge, no applied works (using the 
GS procedure for the KSS test) set the lag based on the 
ADF regression). It is an open question whether these 
two approaches will generate similar results or not. For 
clarity, we shall denote GS as the GS procedure based on 
(1) and N-GS as that based on (4). 
 On the other hand, the augmentation lag selection 
can be determined by the MAIC (the preferred 
criterion for the ADF test) when the KSS test is used. 
The issue, once again (like in the case of the GS 
procedure), is that we do not have a clue as to whether 
the MAIC should be constructed based on the linear 
ADF setting or the nonlinear KSS setting and whether 
they would produce different results. If the former is 
the preferred one, one can simply apply the lag 
obtained from the ADF test to the KSS test. However, 
if it is the latter, then we need to build a nonlinear 
version of MAIC. To this end, we suggest, along the 
line of the construction of the MAIC based on the DF 
regression (1), to construct a nonlinear MAIC (N-
MAIC) on the basis of the KSS regression (4) as 
follows Equation 5: 

 
Table 1. Finite sample critical values of the augmented KSS tests 
  T = 100       T = 200       T = 500 
 --------------------------------------------- ---------------------------------------------- --------------------------------------------- 
  MAIC GS N-MAIC N-GS MAIC GS N-MAIC N-GS MAIC GS N-MAIC N-GS 
A level 
10% -3.185 -3.698 -3.328 -3.716 -3.247 -3.600 -3.346 -3.616 -3.346 -3.523 -3.384 -3.486 
5% -2.698 -3.058 -2.768 -3.082 -2.765 -3.004 -2.812 -3.016 -2.792 -2.920 -2.816 -2.908 
1% -2.456 -2.751 -2.499 -2.768 -2.518 -2.712 -2.543 -2.723 -2.511 -2.611 -2.523 -2.603 
B Trend 
10% -3.675 -4.217 -3.760 -4.234 -3.683 -4.082 -3.775 -4.087 -3.768 -4.021 -3.822 -4.027 
5% -3.138 -3.578 -3.194 -3.583 -3.194 -3.506 -3.242 -3.506 -3.273 -3.454 -3.290 -3.459 
1% -2.884 -3.256 -2.919 -3.257 -2.942 -3.209 -2.971 -3.210 -3.017 -3.170 -3.026 -3.170 
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ˆN MAIC(h) ln( ) 2 (h) h / T h
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≤ ≤
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− = σ + τ + −
 (5) 

 
where, 

T2 1 2
v,h h,t h,tmax t h 1max

ˆ ˆ ˆ(T h ) v v−
= +

σ = − ∑  is the residual 

from (4) and 
T* 2 2 d 6

T v,k t 1t h 1max
ˆˆ(h) (y )−

−= +
τ = σ δ ∑  with δ̂  the 

OLS estimate of δ (Note that (5) is the same as (4) 
except for the term *T (h)τ . It is trivial to prove that N-

MAIC or Equation (5) holds for the approximate ESTAR 
model (i.e., Equation (4)). The proof is available from 
the authors upon request). 

 In this study, we are particularly interested in the 
performance of the augmented KSS test when the 
augmentation lag selection is based on one of the 
following four different ways: MAIC, N-MAIC, GS and 
N-GS. While lag selection strategies will not affect the 
asymptotic distribution of the KSS statistic, the finite-
sample distribution may be rather different across 
different lag-selection rules and far apart from the 
asymptotic distribution. As a consequence, using critical 
values from the asymptotic distribution in small sample 
simulations may lead to erroneous conclusions (see a 
similar issue in the ADF context discussed in Cook and 
Manning (2002) and Wu (2010)). To resolve the issue, 
we use the critical values generated from finite (small) 
samples and the results are shown in Table 1. 

In Table 1, via simulations, we tabulate the critical 
values of the KSS test based on each of the lag selection 
strategies in finite samples (The critical values are 
obtained from simulation using GAUSS with 100,000 

replications). By comparing the critical values in Table 1 
with those of the asymptotic distribution given in 
Kapetanios et al.  (2003, Table 1), it can be seen that the 
finite-sample critical values are distant from the 
asymptotic one, especially when the sample size (T) is 
small, despite the fact that there is a tendency for the 
KSS test to converge under different lag selection 
procedures. Taking T = 100 and Case A (level) as an 
example, the finite-sample critical values at 5% level are 
-2.698, -3.058, -2.768 and -3.082 for the KSS tests based 
on the MAIC, GS, N-MAIC and N-GS, respectively, 
while the corresponding asymptotic critical value is -2.93. 
This means that using the asymptotic value may make the 
test to have a tendency to be over-sized with (N) GS and 
under-sized with (N) MAIC. 

3. RESULTS 

3.1. Monte Carlo Results 

We report the results of Monte Carlo simulations 
designed to investigate the size and power performance 
of the KSS test incorporated with the four different 
augmentation lag selection strategies, namely, MAIC, N-
MAIC, GS, N-GS. For the purpose of comparison, we 
also report the results from the ADF test (but only linear 
lag selection criteria, MAIC and GS, are considered) 
(Note that the critical values for the ADF test are 
obtained in a way similar to those of the KSS test. To 
save space, they are not reported in this study but 
available upon request).  

 
Table 2. Size (I): AR errors 
    KSS       ADF 
  ------------------------------------------------------------------------ -------------------------- 
  (ρ,η)  MAIC GS N-MAIC N-GS MAIC GS 
A level 
T = 100 (0.5,0) 0.051 0.054 0.053 0.053 0.051 0.051 
  (0.8,0) 0.051 0.062 0.054 0.062 0.058 0.059 
  (-0.5,0) 0.045 0.043 0.043 0.042 0.046 0.049 
  (-0.8,0) 0.037 0.032 0.034 0.031 0.043 0.049 
T = 200 (0.5,0) 0.049 0.051 0.049 0.051 0.046 0.048 
  (0.8,0) 0.048 0.051 0.050 0.052 0.054 0.052 
  (-0.5,0) 0.047 0.045 0.045 0.045 0.047 0.048 
  (-0.8,0) 0.039 0.037 0.037 0.036 0.044 0.050 
B Trend 
T = 100 (0.5,0) 0.057 0.057 0.055 0.058 0.050 0.050 
  (0.8,0) 0.061 0.063 0.062 0.066 0.053 0.056 
  (-0.5,0) 0.041 0.037 0.037 0.037 0.044 0.049 
  (-0.8,0) 0.030 0.025 0.025 0.025 0.041 0.047 
T = 200 (0.5,0) 0.053 0.054 0.051 0.055 0.049 0.047 
  (0.8,0) 0.056 0.061 0.056 0.061 0.054 0.053 
  (-0.5,0) 0.043 0.040 0.041 0.038 0.048 0.048 
  (-0.8,0) 0.030 0.026 0.029 0.025 0.044 0.046 
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Table 3. Size (II): MA errors 
   KSS       ADF 
 ----------------------------------------------------------------------------------- -------------------------------- 
(ρ,η)  MAIC GS N-MAIC N-GS MAIC GS 
A level 
(0,0.5) 0.047 0.060 0.049 0.061 0.042 0.055 
(0,0.8) 0.042 0.059 0.043 0.058 0.034 0.057 
(0,-0.5) 0.057 0.079 0.054 0.071 0.064 0.101 
(0,-0.8) 0.063 0.222 0.038 0.096 0.112 0.323 
(0,0.5) 0.045 0.052 0.045 0.051 0.044 0.051 
(0,0.8) 0.043 0.055 0.041 0.055 0.038 0.051 
(0,-0.5) 0.051 0.064 0.051 0.063 0.056 0.079 
(0,-0.8) 0.041 0.107 0.036 0.069 0.082 0.208 
B Trend 
(0,0.5) 0.050 0.066 0.045 0.068 0.038 0.062 
(0,0.8) 0.043 0.063 0.036 0.062 0.022 0.058 
(0,-0.5) 0.056 0.110 0.045 0.080 0.079 0.150 
(0,-0.8) 0.098 0.377 0.024 0.095 0.202 0.499 
(0,0.5) 0.045 0.054 0.043 0.055 0.039 0.053 
(0,0.8) 0.042 0.053 0.037 0.053 0.031 0.052 
(0,-0.5) 0.052 0.070 0.045 0.065 0.065 0.105 
(0,-0.8) 0.036 0.167 0.026 0.062 0.111 0.337 
 
Table 4. Power against stationary ESTAR processes 
      KSS       ADF 
   --------------------------------------------------------------------- -------------------------- 
  γ θ MAIC GS N-MAIC N-GS MAIC GS 
Case A level  
T = 100 -0.1 0.01 0.097 0.084 0.087 0.083 0.087 0.083 
    0.05 0.155 0.125 0.133 0.123 0.126 0.121 
    0.10 0.191 0.154 0.167 0.147 0.156 0.148 
  -0.5 0.01 0.246 0.190 0.214 0.187 0.156 0.148 
    0.05 0.626 0.568 0.564 0.553 0.476 0.447 
    0.10 0.730 0.710 0.634 0.686 0.606 0.670 
  -1.0 0.01 0.435 0.354 0.393 0.343 0.268 0.233 
    0.05 0.815 0.811 0.725 0.783 0.634 0.722 
    0.10 0.873 0.882 0.767 0.843 0.685 0.789 
T = 200 -0.1 0.01 0.162 0.146 0.145 0.143 0.133 0.135 
    0.05 0.397 0.340 0.367 0.329 0.318 0.292 
    0.10 0.479 0.422 0.447 0.403 0.467 0.423 
  -0.5 0.01 0.629 0.566 0.597 0.558 0.459 0.415 
    0.05 0.905 0.903 0.854 0.880 0.788 0.835 
    0.10 0.931 0.936 0.870 0.911 0.824 0.884 
  -1.0 0.01 0.827 0.806 0.787 0.786 0.679 0.701 
    0.05 0.968 0.972 0.936 0.959 0.830 0.899 
    0.10 0.987 0.987 0.968 0.980 0.858 0.933 
Case B trend 
T = 100 -0.1 0.01 0.072 0.064 0.067 0.062 0.066 0.066 
    0.05 0.098 0.076 0.089 0.077 0.094 0.077 
    0.10 0.115 0.091 0.101 0.088 0.110 0.087 
  -0.5 0.01 0.144 0.110 0.128 0.112 0.116 0.095 
    0.05 0.443 0.337 0.382 0.335 0.325 0.226 
    0.10 0.606 0.515 0.493 0.505 0.507 0.414 
  -1.0 0.01 0.255 0.191 0.230 0.189 0.170 0.136 
    0.05 0.717 0.661 0.597 0.647 0.547 0.521 
    0.10 0.826 0.790 0.660 0.756 0.661 0.715 
T = 200 -0.1 0.01 0.101 0.088 0.093 0.088 0.097 0.089 
    0.05 0.222 0.180 0.199 0.177 0.199 0.165 
    0.10 0.294 0.235 0.264 0.226 0.288 0.236 
  -0.5 0.01 0.398 0.316 0.362 0.311 0.281 0.228 
    0.05 0.818 0.789 0.728 0.760 0.706 0.725 
    0.10 0.880 0.860 0.753 0.821 0.779 0.811 
  -1.0 0.01 0.668 0.603 0.614 0.596 0.516 0.450 
    0.05 0.937 0.927 0.858 0.902 0.785 0.828 
    0.10 0.969 0.963 0.912 0.944 0.817 0.874 
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Table 5. Unit root tests for 17 OECS countries (1870-2008) 
  KSS       ADF 
 ------------------------------------------------------------------------------ ------------------------------------ 
  MAIC GS N-MAIC N-GS MAIC GS 

(a) Unit root tests (bold: significant at 5% level) 
Austria -2.908 -2.908 -2.908 -3.690 -1.786 -1.786 
Australia -2.716 -2.613 -2.381 -2.716 -1.439 -1.384 
Belgium -2.766 -2.830 -2.394 -2.830 -2.267 -2.379 
Canada -4.164 -4.164 -4.164 -4.164 -2.311 -2.311 
Denmark -3.257 -3.830 -3.106 -3.830 -1.768 -2.019 
Finland -4.156 -4.731 -2.688 -4.731 -2.676 -3.053 
France -4.522 -4.449 -3.353 -4.522 -2.219 -2.095 
Germany -5.532 -5.989 -4.602 -5.950 -2.031 -2.347 
Italy -2.576 -2.576 -2.576 -3.262 -2.005 -2.005 
Japan -2.698 -2.367 -2.698 -2.367 -2.434 -2.414 
Norway -1.081 -0.982 -1.081 -0.982 -1.019 -0.634 
New Zealand -1.426 -1.931 -1.426 -1.931 -0.783 -1.273 
Spain -2.717 -2.636 -2.717 -2.636 -1.808 -1.990 
Sweden -1.366 -1.366 -1.366 -1.366 -2.029 -2.029 
Switzerland -1.413 -1.340 -1.472 -1.340 -1.998 -2.247 
UK -1.882 -1.049 -1.049 -1.049 -2.957 -2.702 
USA -1.924 -1.924 -1.924 -1.924 -1.686 -1.686 
(b) Lag Selection 
 Austria 0.000 0.000 0.000 1.000 
Australia 3.000 1.000 2.000 3.000 
Belgium 3.000 0.000 2.000 0.000 
Canada 4.000 4.000 4.000 4.000 
Denmark 6.000 13.000 2.000 13.000 
Finland 2.000 1.000 0.000 1.000 
France 1.000 11.000 0.000 1.000 
Germany 2.000 1.000 0.000 3.000 
Italy 0.000 0.000 0.000 3.000 
Japan 0.000 9.000 0.000 9.000 
Norway 4.000 11.000 4.000 11.000 
New Zealand 1.000 5.000 1.000 5.000 
Spain 3.000 13.000 3.000 13.000 
Sweden 2.000 2.000 2.000 2.000 
Switzerland 9.000 8.000 10.000 8.000 
UK 0.000 9.000 9.000 9.000 
USA 0.000 0.000 0.000 0.000 

 

For each simulation, we compute the rejection 
frequency of the null hypothesis at the 5% level and the 
sample size is considered for T = 100, 200 under Case A 
(level) and Case B (trend), respectively. In line with the 
literature, we set the trend function in the simulations 
equal to zero since all the tests considered are similar. To 
alleviate the initial effects, additional 500 observations in 
each simulated path are generated first but they are not 

used. All simulations are performed in GAUSS with 
20,000 replications.  

We first examine the size based on two sets of 
integrated simulated paths yt = yt-1 +ut, t = 1,...,T, one 
with AR errors: ut = ρut-1 + εt and the other with MA 
errors ut =εt +ηεt-1, assuming that εt is i.i.d. N(0,1). We 
report the results with AR errors in Table 2. The results 
with MA errors are presented in Table 3.  
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We next turn to the power performance the KSS test 
against the stationary ESTAR models Equation 6: 
 

( ){ }2
t t 1 t 1 t 1 ty y y 1 exp y− − −= + γ − −θ + ε  (6) 

 
where, εt~N(0,1). Similar to Kapetanios et al. (2003), 
the values of γ and θconsidered in this study are (-0.1, -
0.5, -1.0) and (0.01, 0.05, 0.10), respectively. We report 
the simulation results in Table 4.  

3.2. An Application to Gross Domestic Product 
(GDP) 

 Finally, we report in Table 5 an empirical example 
where the KSS tests with different augmented lag 
selection rules are applied on yearly GDP of 17 OECD 
countries. The data covers the period 1870 to 2008 (The 
data are available from the lwebsite: 
http://www.ggdc.net/MADDISON/oriindex.htm. Panel A 
of Table 5 shows the unit root test results while Panel B 
reports the results on optimal lag length selection. 

4. DISCUSSION 

As shown in Table 2, the augmented KSS test is 
subject to moderate size distortion with AR errors 
(generally, over-sized with a positive AR coefficient 
(ρ) and under-sized with a negative one). Besides, size 
distortion is relatively larger in Case B (trend) than in 
Case A (level) and the distortion becomes less 
noticeable as the sample size (T) increases. Among 
the four different lag selection strategies, the MAIC 
and N-MAIC tend to show a bit better control in size 
(closer to the nominal size, 5%) than the GC and N-
GC procedures. The size distortion of the ADF test is 
similar to that of the KSS test. 
     Table 3 can be summarized as follows. When the MA 
parameter η is positive, the KSS test is slightly under-
sized if the MAIC or N-MAIC is implemented and 
slightly over-sized if the GS or N-GS procedures are used. 
On the other hand, when the MA parameter is negative, 
size distortion becomes harder to control: size distortion 
is more serious with a larger MA coefficient (in 
magnitude) and/or with a trend (i.e., Case B) but is less 
so as T increases. 

Among the four lag selection rules, the GS procedure 
appears to be the worst (with η = -0.8 and T = 100, the 
size is as large as 0.222 and 0.377 in Case A and Case B, 
respectively), followed by the N-GS procedure. The 
MAIC and N-MAIC tend to work better in size control 
and they are competitive with each other. Interestingly, 
with a negative MA parameter, the MAIC tends to 
associate with over-sizing while the N-MAIC with 

under-sizing. Comparing with the KSS test, in general, 
the DF test is less size distorted when η>0 but more 
over-sized when η<0. 

We comment on the results of Table 4 as follows. 
First, the KSS test gains power as θ gets larger (given 
γ) and as |γ| gets larger (given θ) and as expected, the 
test is relatively more powerful in Case A (level) with a 
larger sample size (T = 200). Second, the KSS test with 
lag selection based on the linear ADF regression is 
generally more powerful than its nonlinear counterparts 
(MAIC Vs. N-MAIC and GS vs. N-GS) (Occasionally, 
the N-MAIC outperforms the GS procedure in terms of 
power). Third, the MAIC appears to outperform the GS 
procedure. The MAIC-based KSS test achieves the 
highest power in most cases in Case A (particularly, 
when θ is small) and all cases in Case B (As pointed in 
Kapetanios et al. (2003), when θ grows larger, the 
series becomes less persistent. This implies that the 
MAIC-based KSS test is more powerful than its GS-
based counterpart but may not be so when the examined 
series is less persistent). Fourth, the augmented KSS 
test, in general, has considerable power advantages 
over the ADF tests in testing against the stationary 
ESTAR alternatives. 

Thus, the KSS test is more powerful than the DF test 
against the stationary ESTAR models, not only in the 
special case that sets lag equal to zero (Kapetanios et al., 
2003) but also in the cases when the augmented lag 
selection is implemented. Interestingly, compared to the 
simulation results of Table 3 in Kapetanios et al. (2003), 
we notice that there is a power loss in both the KSS and 
ADF tests with lags. In particular, the ADF test appears 
to suffer somewhat larger power loss than the KSS test. 
As a consequence, there are cases where the ADF test is 
more powerful than the KSS test when the lag is set at 
zero; but once augmentation lags are considered, the 
result turns opposite. For example, T = 100 with Case B 
and (γ,θ) = (-1,0.05), in which the rejection rates are 
0.910 (KSS) and 0.934 (DF) when the lag is set at zero 
(Case 3 of Table 3 in Kapetanios et al. (2003)), the rates 
become 0.717 (KSS) and 0.547 (ADF) when the MAIC 
is implemented. 

As for the empirical example, Panel B of Table 5 
reveals that the optimal lag length of GDP varies very 
considerably across different OECD countries. It also 
depends on what lag length selection method is used. As 
the MAIC-based KSS test is found to have good size and 
power, we focus our discussion on its result. In 
particular, MAIC suggests that GDP is nonstationary in 
most of the countries. The exceptions are Canada, 
Denmark, Finland, France and Germany where GDP is 
consistent with a globally stationary ESTAR process. For 
the purpose of comparison, we also report the ADF test 
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results. In contrast, the ADF tests do not reject the unit 
root null hypothesis for any of the countries considered. 

5. CONCLUSION 

In this study, we provide simulation evidence that 
shed light on several size and power issues in relation to 
lag selection of the augmented (nonlinear) KSS test. Two 
lag selection approaches are considered-the Modified 
AIC (MAIC) approach and a sequential General to 
Specific (GS) testing approach. One may use either one 
of these approaches to select the optimal lag based on 
either the augmented linear ADF test or the augmented 
nonlinear KSS test, resulting in four selection methods, 
namely, MAIC, GS, NMAIC and NGS. The evidence 
suggests that the asymptotic critical values of the KSS 
test tends to be over-sized if (N-) GS method is used and 
under-sized if (N-)MAIC method is used. Thus, we 
recommend that the critical values should be generated 
from finite samples. We also find evidence that (N-) 
MAIC method has less size distortion than (N-)GS 
method, suggesting that the MAIC-based KSS test is 
preferred. Interestingly, we also find that the MAIC-
based KSS test with lag selection based on the linear 
ADF regression is generally more powerful than the test 
with lag selection based on the nonlinear version.  
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