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ABSTRACT

We provide simulation evidence that shed light evesal size and power issues in relation to lagcsiein

of the augmented (nonlinear) KSS test. Two lagcsiele approaches are considered-the Modified AIC
(MAIC) approach and a sequential General to Spe(BiS) testing approach Either one of these appesac
can be used to select the optimal lag based omreitte augmented linear Dickey Fuller test or the
augmented nonlinear KSS test, resulting in foursiids selection methods, namely, MAIC, GS, NMAIC
and NGS. The evidence suggests that the asymtttiital values of the KSS test tends to resulbver-
sizing if the (N) GS method is used and under-gizinthe (N) MAIC method is utilised. Thus, we
recommend that the critical values should be géeériom finite samples. We also find evidence that
(N) MAIC method has less size distortion than tN¢ GS method, suggesting that the MAIC-based KSS
test is preferred. Interestingly, the MAIC-basedX&st with lag selection based on the linear ADF
regression is generally more powerful than thewétst lag selection based on the nonlinear version.

Keywords. (Nonlinear) Unit Root Test, Augmentation Lag, Moaedf AIC, General-To-Specific
Sequential T-Test, Monte Carlo Simulation

1. INTRODUCTION citation count that is close to that of the mosavig
cited Journal of Econometrics paper of the pase fiv
There has been growing concern that the Augmentedsears”. In addition, the KSS paper has been citedem
Dickey-Fuller (ADF) test, which is derived under a than 200 times according to the ISI Web of Sciemge
linear setting, may not possess good power whelieabp the end of March 2012). Kapetanigisal. (2003) propose
to non-linear but stationary time series that area unit-root test using an auxiliary regression nhdtat
appropriate to characterize some economic and/ofapproximates the Exponential Smooth Transition
financial time series (Michaet al., 1997; Taylor, 2001;  Autoregressive (ESTAR) process by Taylor (2001)
and Sollis, 2009). To respond to this concern,ngeaof series. The nonlinedSS test is shown, in general, to be
unit-root tests have been developed under a vadéty more powerful than the linear DF test under the
nonlinear frameworks (Enders and Granger (1998);alternative of a globally stationary ESTAR process.
Kapetaniost al. (2003) (hereafter called KSS), Betcal. In the case of the linear DF test, serial corretain
(2004); Sollis (2009) and Kilic (2011)). Among tlees innovations is, as suggested by Said and Dicke§4)L9
Kapetanioset al. (2003) is probably the most widely approximated by an augmented autoregression with a
recognized and applied (According to Hanck (20X} a truncated lag k. An important issue is the choit¢he
Kapetaniost al. (2003) “as evidenced by e.g., a Scopus truncated lag (k) which has vital size and power
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implications. Choosing an unnecessarily large k may
reduce the power of the test while if k is inapght too
small, considerable size distortion arises. Sch{l&€89)
found that in order to reduce size distortion, vahis
often due to a large negative Moving Average (Mégtr

in the innovations of the examined series, one toas
choose a large autoregression lag. However, a lerge
can result in a nontrivial loss of power (DeJan@l.,
1992). Using such popular Information Criteria (KZich

as the Akaike Information Criterion (AIC) and the
Schwartz or Bayesian Information Criterion (BIC)

empirical works applying the KSS test tend to favine
MAIC over other lag selection criteria).

This study provides simulation evidence to shelitlig
on several unanswered issues regarding the lagtisele
in the augmented KSS test. First, while it is dalesto
expect that under the common null (unit root) hixgsts
the statistical properties of the lag selection hods
should be much alike across linear and nonlinedr un
root testing schemes (Kapetanigsal., 2003), it is less
clear if the statistical properties would remaimitar
under the alternatives (as the ADF test assumawmarl

may not work out satisfactory size and power alternative but the KSS test assumes a nonlinegj. on
properties (Ng and Perron, 1995; 2001) as theseS€cond, for practitioners, it is imperative to knivthe

criteria are not appropriate for modelling highly
persistent (integrated) processes.

Ng and Perron (1995) suggested an improved data
driven lag selection procedure using a General-to-
Specific (GS) approach based on sequential te$ting
the significance of coefficients on the highest ocaut
regression lag. The GS approach yields a test with
better control in size but it tends to be over-
parameterized in some occasions, leading to undante
power loss. Ng and Perron (2001), on the other hand
developed a class of modified information critenidh
an additional data-driven penalty factor that ipagite
for integrated time series. In particular, Ng aretrBn
(2001) demonstrated via simulations that the Medifi
AIC (MAIC) is superior to the conventional AIC and
BIC and the modified BIC, in controlling size whistA
errors are present. Besides, unlike the GS proeede
MAIC is shown to exhibit better power propertiesitas
less inclined to over-parameterization.

Like the DF-type test, in practice, the KSS test tma
handle serial correlation in innovations. Kapetamioal.
(2003) assumes the serial correlation to be inneali
fashion and suggested an augmented test that iisim
to the augmented DF test. Kapetanigisal. (2003)
alleged that “standard model selection criteria or
significance testing procedure (can) be used fis th
purpose because under the null of a linear motiel, t
properties of these criteria are well understoobh”
applied works, different lag selection methods @sed.
They include the AIC and BIC (Pesaretral., 2009), the
BIC (Ghoshray, 2010), the AIC (Cuestas and Garratt,
2011), the Modified AIC (MAIC) (Yau and Nieh, 2009)
and a sequential-testing GS procedure proposedNgy (
and Perron, 1995; Kapetanies al., 2003; Chortareas
and Kapetanios, 2004; Bahmani-Oskoateal., 2007;
2008; Baharumshahet al., 2009) (It appears that
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MAIC, as implemented in the ADF test, is also the
preferred lag selection method when the KSS test is
applied. Specifically, would the MAIC outperformeth
seemingly more popular GS procedure for the KS®& tes
Third, though it is natural to construct the lagesgon
criteria based on the non-linear auxiliary KSS esgion
when the KSS is applied (as the majority of pramiirs
do), there is no priori ground ruling out other eggrhes
that may produce better results. For example, it is
possible that a “hybrid” approach-namely, estaliigh
the optimal lag first within the linear ADF scheraad
then applying the selected lag to the KSS test, may
achieve better size and power properties than lags
associated with the nonlinear KSS regression (Aridyb
approach is considered in Perron and Qu (2007)inbat
different context; To the best of our knowledge,
Gustavsson and Osterholm (2007) is the only pdpsr t
takes this approach)? Fourth, there is a concetthén
literature that the critical values from the asyotm
DF distribution might be distant from the critical
values based on small samples and the issue can be
exacerbated when the unit root tests are lag-
augmented. In particular, using the asymptoticigait
values may distort size and power (Cheung and Lai,
1995; Cook and Manning, 2002; Wu, 2010). The same
issue arises in the case of the KSS test as wedravh
there is a need to get lag-based finite-samplécatit
values; however, these critical values are notlahia in
the literature. This study therefore sets out tanexe
and resolve these four issues by Monte Carlo sioula
The study proceeds as follows. Materials and
Methods gives a brief review on the augmented lag
selection in unit root tests. Results reports thenid
Carlo results comparing the MAIC and the GS
procedure in the KSS test. Discussion summarizes th
findings and gives an application example, followed
by conclusion.
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2. MATERIALSAND METHODS

2.1.Unit Root Tests and Augmentation Lag
Selection

Lety,t=1, 2, ..., T, be an observed time series. Our

aim is to distinguish if yis a unit root or a stationary
process. The ADF test due to Dickey and Fuller )97
and Said and Dickey (1984) is a t-test for the null
hypothesis3 = 0 (unit root) against the alternatiff&0
(stationary) in the autoregression Equation 1:

k
Ay, = By?—l + z(ijyt—j tE (1)
=

wherey! is the detrended (demeaned) serigls: y, —d,

with d, =3"" A t. Throughout the study, we consider

two cases of the trend function €ase A (level): p=0
and Case B (trend): p = 1. A two-step approacltsexiu
the trend function dis first estimated by OLS and then
the detrended seriegg' is used for the unit root testing

satisfactory results (Ng and Perron, 1995). Ng and
Perron (1995) instead suggested using a data-driven
procedure, where the highest lag is sequentialijete
Specifically, the most general model with a maximum
lag, knax iS chosen and the coefficient of the highest lag
(Pkmay) IS tested. Ifgknax is significantly different from
zero, the optimal lag is set ag.k otherwise, a model
with knaxl is considered and the significance of the
coefficient of its highest lagpkmax1 iS tested. The
procedure continues until a significant highest lag
found (and hence the optimal lag is establishetjceS
this procedure searches for the optimal lag wighrtiost
general setting (with J, lags) and winds down to a
more specific one (with less lags), it is ofteneredéd to
as a General-to-Specific (GS) procedure. The sdiglien
testing GS procedure yields a unit root test with
improved size (comparing with the tests based @n th
AIC and BIC) but it tends to over-parameterize rétogy
resulting in a loss of power.

Ng and Perron (2001), on the other hand, develaped
information criterion that is adequate for highlgrgistent
(integrated) series called Modified AIC (MAIC) (A

(Strictly speaking, the ADF test is based on the modified form of the BIC (MBIC) is considered in Nagd

regressiondy, =d, +By,_, + Z‘”_k:l(ijyl_j +¢, instead of the

2-step approach considered in this study. The tW%l\/IBIC will not be considered in this study). The aggech

approaches share the same asymptotic results, thou
there are minor differences in finite samples. 2hstep

Perron (2001) as well. However, since the MAIC
outperforms the MBIC as far as size is concernbd, t

estimates the lag as follows Equation 2:

approach is considered because it allows the trend

function to be handled by both the ADF and the K&$

in the same way; in this study, we focus only am thit
root tests that are based on the OLS detrendings It
well-known that the power of the DF test can be Imuc
improved when the GLS-detrending is used, if thiain
value is set zero (Elliotet al., 1996). However, with
large initial deviations, the GLS-based test susffer
dramatic power loss and is dominated by the OL®&¢as
test. Harveyet al. (2009; 2012) propose a “Union of
Rejection (UR)” testing strategy that is able toqarce a
power that traces the higher of the DF tests based
different way of detrending. This is certainly awne

Kyac := argmin MAIC(K)

0<k<kmax

MAIC(K) =In(8? ) +2(T,(k) +k)/(T -k

)

max)

where, 62, = (T = Kyp) ™D &2

t=kmax+1l~ Kit?

g, Is the residual
from (1) and TT(k)=6giﬁ223=kmax+1(ytd—1)2With B being

the OLS estimate off (For the purpose of meaningful
comparison, following Ng and Perron (2001), MAIC(K)
is computed using the same number {Lgkof residuals
over different k. See also the discussion in Ng and

avenue of for the nonlinear unit root tests. Su andPerron (2005) but in a different context). Notet ttiee

Nguyen (2012) suggest a modified KSS test basdtieon

MAIC is the same as the AIC except that it includes

UR strategy but they assume zero lag. A researchadditional penalty termi; (k) which can better capture

combining the issues with different methods of
detrending and lag augmentation for the KSS rekearc
currently pursued by the authors).

the relevant cost among different lag selectionfinite
sample. Ng and Perron (2001) demonstrated via
simulations that the MAIC vyields considerable size

In practice, one may choose the lag k based onimprovements over the standard criteria for theppse

standard information criteria such as the AIC ah@ Bs
earlier studies have done, but neither achievesstand
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of unit root testing, especially in the presenceadarge
negative moving-average component (Note that, as a
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matter of fact, Ng and Perron (2001) examined ffect PR
of the GLS-detrended ADF test only. Our simulation &Yt =3 +Z:l:njAy‘_j+vt (4)
results, however, demonstrate that the good priegest J
the MAIC still hold when the test is OLS-detrending where,8 = -y8 with the null hypothesi$ = 0 against
based. Perron and Qu (2007) for a similar discassip  the alternative:d.,. Lag order h, as suggested by
this issue). Besides, since the MAIC is less irdino ~ Kapetanioset al. (2003), can be chosen by the standard
over-parameterize, it is expected to produce morelC or the GS procedure of Ng and Perron (1995). As
powerful testing results than when the GS procedwure Pointed out in the Introduction, applied works witte
implemented (Ng and Perron (2001) did not inclute t KSS test seem to favour the GS procedure. Given tha
GS procedure in their simulations. Besides, redutsn e standard IC is not suitable for integratedesednd
Ng and Perron (1995; 2001) are not directly coniperas the GC procedure tends to over-parameterize assfar
different detrending methods are used (OLS in Nd an ;Ehe ADF test is concerned, the same issues arectexpe

. or the KSS test as well. In addition, an often laetpd
Perron (1995) versus GLS in Ng and Perron (2001))'issue is, whenever the GS procedure is used, trere
However, our simulation results show, in genetst the . '

; , two possible lag selection approaches. The firal an
power of the MAIC-based tests is superior to thizsed on  hatural one is to base the lag selection on thdlianyx

the GS approach). KSS regression (4), while the second one is toaulse
The nonlinear unit root test of Kapetanésl. (2003) chosen in the linear ADF setting (1) for the KS& (@0

is motivated by the observation that many timessegfsuch ~ the best of our knowledge, no applied works (ushng

as real exchange rates) exhibit local nonstatigngminit ~ GS procedure for the KSS test) set the lag baseitien

root) but are stationary globally (Michatlal., 1997)) and  ADF regression). It is an open question whetheséhe

: - two approaches will generate similar results or. kot
nonlinear models, such as the Exponential SmOOttharity, we shall denote GS as the GS procedurechas

Transition Auto Regression (ESTAR) model, coulddpice (1) and N-GS as that based on (4).

a better fit of these series than the linear moddglor On the other hand, the augmentation lag selection
(2001) shows with Monte Carlo evidence that thedDF  can be determined by the MAIC (the preferred

test does not have good power against a stati@BiAR criterion for the ADF test) when the KSS test iedis
process. Kapetaniog al. (2003) consider the following The issue, once again (like in the case of the GS

ESTAR model Equation 3: procedure), is that we do not have a clue as talhene
the MAIC should be constructed based on the linear
Ay, =py‘_1+Wt_1{1—eXF{—9 ()g_l)z}} +y 3) ADF setting or the nonlinear KSS setting and whethe

they would produce different results. If the formsr
the preferred one, one can simply apply the lag

wher_e, dis a statlonar_y mnova;[]lon. x\/hqu %: O_iﬂ;éls obtained from the ADF test to the KSS test. However
a unit root procesAy, = u. On the other hand, wi#>0, it it is the latter, then we need to build a noetm

y: follows a nonlinear but globally stationary proges yersion of MAIC. To this end, we suggest, along the
provided that -2g+y<0. Using first-order Taylor series line of the construction of the MAIC based on thE D
approximation (imposing that= 0), KSS propose a unit regression (1), to construct a nonlinear MAIC (N-
root test based on the following auxiliary equatiwith ~ MAIC) on the basis of the KSS regression (4) as
lag-augmentation Equation 4: follows Equation 5:

Table 1. Finite sample critical values of the augmented K&$s

T =100 T =200 T =500

MAIC GS N-MAIC N-GS MAIC GS N-MAIC N-GS MAIC GS AMAIC N-GS
A leve
10% -3.185 -3.698 -3.328 -3.716  -3.247 -3.600 8.34 -3.616 -3.346 -3.523 -3.384 -3.486
5% -2.698 -3.058 -2.768 -3.082 -2.765 -3.004 -2.812-3.016 -2.792 -2.920 -2.816 -2.908
1% -2.456 -2.751 -2.499 -2.768 -2.518 -2.712 -2.543-2.723 -2.511 -2.611 -2.523 -2.603
B Trend
10% -3.675 -4.217 -3.760 -4.234 -3.683 -4.082 B.77 -4.087 -3.768 -4.021 -3.822 -4.027
5% -3.138 -3.578 -3.194 -3.583 -3.194 -3.506 -3.242-3.506 -3.273 -3.454 -3.290 -3.459
1% -2.884 -3.256 -2.919 -3.257 -2.942 -3.209 -2.971-3.210 -3.017 -3.170 -3.026 -3.170
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F]N—MAIC = argmin N- MAIC(h) replications). By comparing the_ criti.callvalgesﬂd_)le 1 .
Oshshmax (5) with those of the asymptotic distribution given in
N-MAIC(h) =In(82,)) +2(t3(h)+ h)(T- h,,,) Kapetaniost al. (2003,Table 1), it can be seen that the

finite-sample critical values are distant from the
s o T w2 o : asymptotic one, especially when the sample sizeiqT)
where, &, = (T~ M) Zt=hmax+1v“*‘v"" Is the residual small, despite the fact that there is a tendencyttie
from (4) and T"T(h)zakaZZLh LO)° with 5 the KSS test to converge under different lag selection
i maeee procedures. Taking T = 100 and Case A (level) as an
OLS estimate of5 (!\lote that (5) is the same as (4) gxample, the finite-sample critical values at 5%elare
except for the termc’ (h). It is trivial to prove that N- -2.698, -3.058, -2.768 and -3.082 for the KSS teated
MAIC or Equation (5) holds for the approximate ESYA  on the MAIC, GS, N-MAIC and N-GS, respectively,
model (i.e., Equation (4)). The proof is availalilem while the corresponding asymptotic critical valse-2.93.
the autho_rs upon request). _ _ _ This means that using the asymptotic value may rtzde
In this study, we are particularly interested et test to have a tendency to be over-sized with (S)&@d
performance of the augmented KSS test when theynder-sized with (N) MAIC.
augmentation lag selection is based on one of the
following four different ways: MAIC, N-MAIC, GS and
N-GS. While lag selection strategies will not afféice 3.RESULTS
asymptotic distribution of the KSS statistic, thmite-
sample distribution may be rather different across 3.1 Monte Carlo Results
different lag-selection rules and far apart frome th  we report the results of Monte Carlo simulations
asymptotic distribution. As a consequence, usiritical designed to investigate the size and power perfocena
values from the asymptotic distribution in smalingde  of the KSS test incorporated with the four differen
simulations may lead to erroneous conclusions ee 5 gmentation lag selection strategies, namely, MAIC
similar issue in the ADF context discussed in Caokl MAIC, GS, N-GS. For the purpose of comparison, we
vl\\//lgnunsl,ggtrggoc(:)rizt)icgln(\j/a%:s(zgct)elnoe)r)étlg ][reosrzl\]/cie}“ﬁi(é)ssue also report the results from the ADF test (but dirigar
: lag selection criteria, MAIC and GS, are considgred
samples and the results are showmable 1. (Note that the critical values for the ADF test are

v ahljr; ST g?ltﬁ el,K\gg f’ér;tuéaa“s%rés’oxvg at;? l:)'? :ﬁ etTe (t:;;:lcal obtained in a way similar to those of the KSS tést.
&y save space, they are not reported in this study but

strategies in finite samples (The critical value® a ;
obtained from simulation using GAUSS with 100,000 available upon request).

Table?2. Size (I): AR errors

KSS ADF

(p.n) MAIC GS N-MAIC N-GS MAIC GS

A leve

T=100 (0.5,0) 0.051 0.054 0.053 0.053 0.051 0.051
(0.8,0) 0.051 0.062 0.054 0.062 0.058 0.059
(-0.5,0) 0.045 0.043 0.043 0.042 0.046 0.049
(-0.8,0) 0.037 0.032 0.034 0.031 0.043 0.049

T =200 (0.5,0) 0.049 0.051 0.049 0.051 0.046 0.048
(0.8,0) 0.048 0.051 0.050 0.052 0.054 0.052
(-0.5,0) 0.047 0.045 0.045 0.045 0.047 0.048
(-0.8,0) 0.039 0.037 0.037 0.036 0.044 0.050

B Trend

T=100 (0.5,0) 0.057 0.057 0.055 0.058 0.050 0.050
(0.8,0) 0.061 0.063 0.062 0.066 0.053 0.056
(-0.5,0) 0.041 0.037 0.037 0.037 0.044 0.049
(-0.8,0) 0.030 0.025 0.025 0.025 0.041 0.047

T =200 (0.5,0) 0.053 0.054 0.051 0.055 0.049 0.047
(0.8,0) 0.056 0.061 0.056 0.061 0.054 0.053
(-0.5,0) 0.043 0.040 0.041 0.038 0.048 0.048
(-0.8,0) 0.030 0.026 0.029 0.025 0.044 0.046
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Table 3. Size (ll): MA errors

KSS ADF

(o.n) MAIC GS N-MAIC N-GS MAIC GS
Aleve

(0,0.5) 0.047 0.060 0.049 0.061 0.042 0.055
0,0.8) 0.042 0.059 0.043 0.058 0.034 0.057
0,-0.5; 0.057 0.079 0.054 0.071 0.064 0.101
0,-0.8 0.063 0.222 0.038 0.096 0.112 0.323
E0,0.S; 0.045 0.052 0.045 0.051 0.044 0.051
0,0.8 0.043 0.055 0.041 0.055 0.038 0.051
50,-0.5; 0.051 0.064 0.051 0.063 0.056 0.079
B0.-0.8d 0.041 0.107 0.036 0.069 0.082 0.208

ren

E0,0.S; 0.050 0.066 0.045 0.068 0.038 0.062
0,0.8 0.043 0.063 0.036 0.062 0.022 0.058
50,-0.5; 0.056 0.110 0.045 0.080 0.079 0.150
0,-0.8 0.098 0.377 0.024 0.095 0.202 0.499
0,0.5 0.045 0.054 0.043 0.055 0.039 0.053
0,0.8 0.042 0.053 0.037 0.053 0.031 0.052
0,-0.5) 0.052 0.070 0.045 0.065 0.065 0.105
(0,-0.8) 0.036 0.167 0.026 0.062 0.111 0.337

Table 4. Power against stationary ESTAR processes

KSS ADF
% 0 MAIC GS N-MAIC N-GS MAIC GS
Case A leve
T =100 -0.1 0.01 0.097 0.084 0.087 0.083 0.087 8.0
0.05 0.155 0.125 0.133 0.123 0.126 0.121
0.10 0.191 0.154 0.167 0.147 0.156 0.148
-0.5 0.01 0.246 0.190 0.214 0.187 0.156 0.148
0.05 0.626 0.568 0.564 0.553 0.476 0.447
0.10 0.730 0.710 0.634 0.686 0.606 0.670
-1.0 0.01 0.435 0.354 0.393 0.343 0.268 0.233
0.05 0.815 0.811 0.725 0.783 0.634 0.722
0.10 0.873 0.882 0.767 0.843 0.685 0.789
T =200 -0.1 0.01 0.162 0.146 0.145 0.143 0.133 39.1
0.05 0.397 0.340 0.367 0.329 0.318 0.292
0.10 0.479 0.422 0.447 0.403 0.467 0.423
-0.5 0.01 0.629 0.566 0.597 0.558 0.459 0.415
0.05 0.905 0.903 0.854 0.880 0.788 0.835
0.10 0.931 0.936 0.870 0.911 0.824 0.884
-1.0 0.01 0.827 0.806 0.787 0.786 0.679 0.701
0.05 0.968 0.972 0.936 0.959 0.830 0.899
0.10 0.987 0.987 0.968 0.980 0.858 0.933
CaseB trend
T =100 -0.1 0.01 0.072 0.064 0.067 0.062 0.066 6®.0
0.05 0.098 0.076 0.089 0.077 0.094 0.077
0.10 0.115 0.091 0.101 0.088 0.110 0.087
-0.5 0.01 0.144 0.110 0.128 0.112 0.116 0.095
0.05 0.443 0.337 0.382 0.335 0.325 0.226
0.10 0.606 0.515 0.493 0.505 0.507 0.414
-1.0 0.01 0.255 0.191 0.230 0.189 0.170 0.136
0.05 0.717 0.661 0.597 0.647 0.547 0.521
0.10 0.826 0.790 0.660 0.756 0.661 0.715
T =200 -0.1 0.01 0.101 0.088 0.093 0.088 0.097 89.0
0.05 0.222 0.180 0.199 0.177 0.199 0.165
0.10 0.294 0.235 0.264 0.226 0.288 0.236
-0.5 0.01 0.398 0.316 0.362 0.311 0.281 0.228
0.05 0.818 0.789 0.728 0.760 0.706 0.725
0.10 0.880 0.860 0.753 0.821 0.779 0.811
-1.0 0.01 0.668 0.603 0.614 0.596 0.516 0.450
0.05 0.937 0.927 0.858 0.902 0.785 0.828
0.10 0.969 0.963 0.912 0.944 0.817 0.874
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Table5. Unit root tests for 17 OECS countries (1870-2008)

KSS ADF

MAIC GS N-MAIC N-GS MAIC GS
(a) Unit root tests (bold: significant at 5% level)
Austria -2.908 -2.908 -2.908 -3.690 -1.786 -1.786
Australia -2.716 -2.613 -2.381 -2.716 -1.439 -1.384
Belgium -2.766 -2.830 -2.394 -2.830 -2.267 -2.379
Canada -4.164 -4.164 -4.164 -4.164 -2.311 -2.311
Denmark -3.257 -3.830 -3.106 -3.830 -1.768 -2.019
Finland -4.156 -4.731 -2.688 -4.731 -2.676 -3.053
France -4.522 -4.449 -3.353 -4.522 -2.219 -2.095
Germany -5.5632 -5.989 -4.602 -5.950 -2.031 -2.347
Italy -2.576 -2.576 -2.576 -3.262 -2.005 -2.005
Japan -2.698 -2.367 -2.698 -2.367 -2.434 -2.414
Norway -1.081 -0.982 -1.081 -0.982 -1.019 -0.634
New Zealand -1.426 -1.931 -1.426 -1.931 -0.783 73.2
Spain -2.717 -2.636 -2.717 -2.636 -1.808 -1.990
Sweden -1.366 -1.366 -1.366 -1.366 -2.029 -2.029
Switzerland -1.413 -1.340 -1.472 -1.340 -1.998 42.2
UK -1.882 -1.049 -1.049 -1.049 -2.957 -2.702
USA -1.924 -1.924 -1.924 -1.924 -1.686 -1.686
(b) Lag Selection
Austria 0.000 0.000 0.000 1.000
Australia 3.000 1.000 2.000 3.000
Belgium 3.000 0.000 2.000 0.000
Canada 4.000 4.000 4.000 4.000
Denmark 6.000 13.000 2.000 13.000
Finland 2.000 1.000 0.000 1.000
France 1.000 11.000 0.000 1.000
Germany 2.000 1.000 0.000 3.000
Italy 0.000 0.000 0.000 3.000
Japan 0.000 9.000 0.000 9.000
Norway 4.000 11.000 4.000 11.000
New Zealand 1.000 5.000 1.000 5.000
Spain 3.000 13.000 3.000 13.000
Sweden 2.000 2.000 2.000 2.000
Switzerland 9.000 8.000 10.000 8.000
UK 0.000 9.000 9.000 9.000
USA 0.000 0.000 0.000 0.000

For each simulation, we compute the rejection used. All simulations are performed in GAUSS with
frequency of the null hypothesis at the 5% level #re 20,000 replications.
sample size is considered for T = 100, 200 undee@a We first examine the size based on two sets of
(level) and Case B (trend), respectively. In linghvthe integrated simulated paths ¥ .1 +u, t = 1,...,T, one
literature, we set the trend function in the sirtiatss with AR errors: U= pu.; + & and the other with MA
equal to zero since all the tests considered ariasi To errors y =g, +n¢&.y, assuming that, is i.i.d. N(0,1). We
alleviate the initial effects, additional 500 ohs#ions in report the results with AR errors irable 2. The results
each simulated path are generated first but theynat with MA errors are presented frable 3.
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We next turn to the power performance the KSS testunder-sizing. Comparing with the KSS test, in gaher

against the stationary ESTAR models Equation 6: the DF test is less size distorted whes0 but more
over-sized whemn<0.
Y, :y‘_l+yyt_1{1—exd—6y:'_1)} +e, (6) We comment on the results fble 4 as follows.

First, the KSS test gains power @Gigets larger (given
y) and asy| gets larger (give®) and as expected, the

where, &~N(0,1). Similar to Kapetaniost al. (2003), test is relatively more powerful in Case A (leveilh a
the values off andBconsidered in this study are (-0.1, - larger sample >s/ize (T E 200). Second, the(K;g?mﬁbt

0.5, -1.0) and (0.01, 0.05, 0.10), respectively. Mfeort 54" sejection based on the linear ADF regression is
the simulation results imable 4. generally more powerful than its nonlinear counietp
(GDP) the N-MAI(_: outperforms the GS procedure in terms of
power). Third, the MAIC appears to outperform th® G
Finally, we report inTable 5 an empirical example procedure. The MAIC-based KSS test achieves the
where the KSS tests with different augmented laghighest power in most cases in Case A (particularly
selection rules are applied on yearly GDP of 17 OEC when® is small) and all cases in Case B (As pointed in
countries. The data covers the period 1870 to 2068 Kapetanioset al. (2003), when8 grows larger, the
data are available from the Iwebsite: series becomes less persistent. This implies that t
http://www.ggdc.net/MADDISON/oriindex.htm. Panel A MAIC-based KSS test is more powerful than its GS-
of Table 5 shows the unit root test results while Panel B based counterpart but may not be so when the exainin

reports the results on optimal lag length selection series is less persistent). Fourth, the augment88 K
test, in general, has considerable power advantages
4. DISCUSSION over the ADF tests in testing against the statipnar

ESTAR alternatives.

As shown inTable 2, the augmented KSS test is Thus, the KSS test is more powerful than the DF tes
subject to moderate size distortion with AR errors against the stationary ESTAR models, not only ie th
(generally, over-sized with a positive AR coefficie ~ SPecial case that sets lag equal to zero (Kapetenab.,

(p) and under-sized with a negative one). Besides, si 2003) but also in the cases when the augmented lag
distortion is relatively larger in Case B (trentiph in  Selection is implemented. Interestingly, compa@dhe
Case A (level) and the distortion becomes lessSimulation results oTable 3 in Kapetaniost al. (2003),
noticeable as the sample size (T) increases. AmongVe notice that there is a power loss in both th& Kfd

the four different lag selection strategies, the KA ADF tests with lags. In particular, the ADF tespaprs

and N-MAIC tend to show a bit better control inesiz t0 suffer somewhat larger power loss than the K& t
(closer to the nominal size, 5%) than the GC and N-AS a consequence, there are cases where the ADI tes

GC procedures. The size distortion of the ADF test more powerful than the KSS test when the lag isaset
similar to that of the KSS test. zero; but once augmentation lags are consideresl, th
Table 3 can be summarized as follows. When the MA result turns opposite. For example, T = 100 witlseCB
parametem is positive, the KSS test is slightly under- and ¢6) = (-1,0.05), in which the rejection rates are

sized if the MAIC or N-MAIC is implemented and 0-910 (KSS) and 0.934 (DF) when the lag is setead z
slightly over-sized if the GS or N-GS proceduresased.  (Case 3 off able 3 in Kapetaniost al. (2003)), the rates
On the other hand, when the MA parameter is negativ Pecome 0.717 (KSS) and 0.547 (ADF) when the MAIC

size distortion becomes harder to control: sizéodisn is implemented. N

is more serious with a larger MA coefficient (in  As for the empirical example, Panel B Géble 5
magnitude) and/or with a trend (i.e., Case B) buess  reveals that the optimal lag length of GDP variesyv
so as T increases. considerably across different OECD countries. Hoal

Among the four lag selection rules, the GS procedur depends on what lag length selection method is. used
appears to be the worst (with= -0.8 and T = 100, the the MAIC-based KSS test is found to have good aim
size is as large as 0.222 and 0.377 in Case A asd B, power, we focus our discussion on its result. In
respectively), followed by the N-GS procedure. The particular, MAIC suggests that GDP is nonstationiary
MAIC and N-MAIC tend to work better in size control most of the countries. The exceptions are Canada,
and they are competitive with each other. Intengbyi Denmark, Finland, France and Germany where GDP is
with a negative MA parameter, the MAIC tends to consistent with a globally stationary ESTAR procéss
associate with over-sizing while the N-MAIC with the purpose of comparison, we also report the AEHE t
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