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ABSTRACT

An important class of square binary matrices oterdimplest finite or Galois Field GF(2) is thesslaf
involutory or self-inverse (SI) matrices. These meat are of significant utility in prominent engiring
applications such as the study of the Preparatastaemation or the analysis of synchronous Boolean
Networks. Therefore, it is essential to devise appate methods, not only for understanding theprtes

of these matrices, but also for characterizing emastructing them. We survey square binary matridfes
orders 1, 2 and 3 to identify primitive SI matri@@aong them. Larger S| matrices are constructdd)abe
direct sum, or (b) the Kronecker product, of smadlees. lllustrative examples are given to demaustihe
construction and properties of binary S| matriddse intersection of the sets of SI and permutabiory
matrices is studied. We also study higher-orddnidry matrices and describe them via recursivaticels

or Kronecker products. Our work culminates in apasition of the two most common representations of
Boolean functions via two types of Boolean S| ntatsi A better understanding of the properties and
methods of constructing Sl binary matrices over(&fs achieved. A clearer picture is attained atibe
utility of binary matrices in the representationBifolean functions.

Keywords:. Involutory or Self-Inverse Matrices, Galois Field=G2), Direct Sums, Kronecker Products,
Recursive Relations, Preparata or Reed-Miiller Toamation, Synchronous Boolean Networks

1. INTRODUCTION f.(X) =f (X ,X ,...,x,) Of n variables typically takes the

Binary matrices play an important role in system form Equation la and 1b:
modeling (Warfield, 1973). A prominent class of she
matrices over the simplest finite or Galois fiel& @) is M =[S,]Ln n 20 (1a)
the class of involutory or Self-Inverse (SI) mats¢
which are matrices for which an inverse exists &nd
equal to the original matrix. This class of matsiée of
intrinsic mathematical interest besides being afagr

utility in many important engineering applicatiofavo  \yhere, M, and L.are vectors of Relements each and
of the most notable such applications are. the square matrix [$has 2x2" elements. This matrix is
1.1. Preparata Transformation a self-inverse binary transformation matrix thatates

En :[Sn]Mn n=0 (1b)

The Preparata (Reed-Miiller) Transformation the vector M. (which is a basis of a truth-table

(Preparata, 1964; Saluja and Ong, 1979; Green,;1987representation for the function)fand the vectorLs,
1994; Stankoviet al., 1996; Kimet al., 1999; Quintana  (which is a basis for a linear (Reed-Miller)
and Avedillo, 2001; Sasao and Butler, 2007; Rusimdi representation for the function).f Here, we adopt the
Ghaleb, 2013) for a Boolean function notation (commonly employed in the literature) sfng
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a single subscript n to denote &%2' square matrix. In This study surveys existing methods and contributes
the conventional double-script notation, the mafBy new ones for understanding the properties of birglry
matrices and for characterizing and constructirgnth

) } ) i ] Subsequently, it analyzes the two most common
and the matrix [§ in Equation (1) are defined herein for representations of Boolean functions, namely, ththt

would be written agS,,]. The vectorsM. and L,

n = 3 as Equation 2-4: table representation and the linear or Reed-Miiller
— o representation. The analysis makes a clear distinct
Ms S[XX X3 XX X3 XXX XX X . @) between a representation and the basis for this
XXXy XXX XXX XXX T representation. Two different types of SI Boolean

matrices (that are transposes of one another) eedenl

in this analysis. This analysis is supported via a
) mathematical proof by mathematical induction and

further illustrated via a detailed example.

Ls=[1 x5 X, X X4 X,
T
X1X3 XlXZ XIXZXCJ

_ The remainder of this study is organized as follows

i1l First, we present preliminary definitions and fatist
0101010 are borrowed from real algebra, but still applyGB(2)
0011001 computations. These are needed herein to maketttig s
5.]= 0001000 4) self contained. Then, we list all square binaryrinas of
*looo0o0111 orders 1 and 2, characterize them and identify the
0000010 primitive SI ones among them. Later, we presemt an
0000001 prove two novel theorems for characterizing Sl bina
000000 0 matrices in terms of direct sums and Kronecker pectsd

- (tensor products). We also demonstrate these two
A formal definition of the general matrix [Sand the ~ theorems via illustrative examples and consequéistly

all S| binary matrices of order 3. Moreover, wedstand
obtain the cardinality of the set SP which is the
1.2. Synchronous Boolean Networks intersection of the sets of SI binary matrices and
permutation matrices. We also study higher-order SlI
binary matrices and describe them in terms of siear
relations and Kronecker products. Finally, we deth

the truth-table and linear representations of Bmole

general vectorsvi, and L, are given later.

The 2%x2" transition Matrix [T] of a Synchronous
Boolean Network is obtained (Cull, 1971; Rushdi and
Al-Otaibi, 2007) from its 2x2" Function Matrix [A] via
a double matrix multiplication of the following for

Equation 5a and 5b: functions and prove that both these representatimas
their bases are related via two sets of S| binaayrioes

[T] =[S,]71AllS ] (5a) that are transposes of one another.

=[S, AIIS (Sb) 2. PRELIMINARY DEFINITIONS

in which a state matrix [$is used. This state matrixis 2 1 A Self-Inverse (Involutory) Matrix
exactly the same as the transformation matrix )nafid

thanks to its self-inverse property, it was possitdl go A regular rxn matrix [A] is self inverse (SI) iff [A}
from (5a) to (5b). exists and equals [A], i.e., iff Equation 6:

The topic of self-inverse binary matrices over GJ (
is interrelated with other interesting topics in [A]™=A]: (6)

mathematics including those of binary matrices aeat

arithmetic (Harary and Minc, 1976) and nonnegative or equivalently iff Equation 7:

integer matrices (Plemmons and Cline, 1972; Berman,

1974; Borobia and Moro, 1977; Lewin, 1977; Berman [A]? =[l]. (7
and Plemmons, 1979; Haynsworth and Wall, 1979;

Hanson, 1985; Minc, 1988; Bellman, 1997; Laffey, where, [I] = [kxn] is the rn identity matrix and here we
1998; Siddhartha, 2010). stick to the common policy of subscripting a matoix
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its row dimension crossed by its column dimensitme
determinant of a self- inverse matrix equals 1 &ad
even and odd powers [A]and [AF“* are [I] and [A],
respectively.

2.2. A Periodic Matrix

A square matrix [A] is periodic iff Equation 8:
[A]“"* =[A] (8)

where, k is a positive integer. If k is the leageger for
which (8) in satisfied, [A] is said to be of peri&dIf k =
1, then [A] is idempotent.

2.3. A Nilpotent Matrix

A square matrix [A] is nilpotent iff Equation 9:

[A]® =[0] )

where, [0] = [Q«n] is the <n null matrix and the index p

is a positive integer. If p is the least integarvidich (9)
is satisfied, [A] is said to be nilpotent of indpx

2.4. Direct Sum of Two Square Matrices

The direct sum of the two square matrices.{4,
[Bnxn] is the square matrix Equation 10:

{[Amxm][o W]} (10)

[Cm+n><m+n]
e [0,m] [B e

This is a generalization of the concept of a diajjon

matrix and hence is labeled by diagonal([A], [Bdx,

simply diag([A], [B]). Similarly, the direct sum of

several square matrices [X], [Y], [Z], ..., [W] isvgin by
the form: diag([X], [Y], [Z], ..., [W]). The producbf
two direct sums of matrices of the same respectiders

is the direct sum of the products of the respective

matrices, i.e., Equation 11:

diag[ A, [8], .. &) diag] § [ ¥ .. [ W)
= diag ([ A X]. [8[Y]. ... [5][ W}

(11)

Here, the respective matrices [A], [X], [A][X] are
square matrices of the same order. In particulee, t

square of the direct sum of some matrices is thecti
sum of their squares, namely Equation 12:
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[diég ([AL[BL.[C]....[D]]? (12)
= diag (A% [B][C]3...[D])

2.5. Kronecker Product

Let [Amal = {&j}, (1 <i<m, 1<j < n) be a matrix of
m rows and n columns and Jg] be a matrix of p rows
and g columns. The Kronecker product (KP) of [AHan
[B], also called the tensor product, is denoted by the
operator 1" and is defined as Equation 13 (Brewer, 1978):

([A] OIBD) mpeng =

a,[B] ay,[B] a,,[B]
a,[B]  ay[B] a,,[B] (13)
an[B] a,[B] ... a,[B]

2.6. Permutation Matrix

The square matrix [R,] is a permutation matrix if it
results from interchanging (swapping) some rows (or
columns) of the identity matrix [JI]. Alternatively, in

the linear transformatiovina =[P,, X 1, ONe has y= x

(i =1,2,..,n) where 4jis,..,I, is a permutation of 1,2,..,n.
Hence, all the elements of J& are 0's and 1's, with
exactly a single 1 in each row and in each column,
namely Equation 14:
[P,..]=[3F 82.80] (14)
where, 3! is a column vector of dimension n, whose
elements are all 0’s except the element at fomhich is

1. The inverse [P} of a permutation matrix is its

transpose [P] There are (n)! permutation matrices.JP
of order n.

2.7. TheFiniteor GaloisField GF (2)

Let F be a set of objects on which two operations:
addition (+) and multiplication (represented by ¢4
juxtapositioning) are defined. F is said to be &diif
and only if:

« F forms a commutative group under addition. The
additive identity element is labeled "0"

«  F-{0} (the set F with the additive identity removyed
forms a commutative group under multiplication.
The multiplicative identity element is labeled "1"

Multiplication is distributed by addition Equatidr:

JMSS
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a*(b+c) = (a*b) + (ac) (A8)  £,(X) =FaMa=f KX, X, +

(18)
A field can also be defined as a commutative ring f1XXz Xyt +f 0 X X 00X,

with identity in which every element has a muliigliive o ] ) o )
inverse. Well known examples of fields include tkal The expansion in Equation (18) is a disjoint sum in
field (field of real numbers) and the complex figfield ~ WWhich the mod-2 or XOR operator (+) might be reptac
of complex numbers) and fields of a finite ordesrfioer b]}’ thedOR operator (V)fto produce a conventionah-su
of elements) q, called the Galois fields GF(q). The of-products expression fdy(X) .

simplest finite field GF(2), also called the bindisid or

the mod-2 field, has only two elements: the additiv 3. SQUARE BINARY MATRICES OF
identity (0) and the multiplicative identity (1)h& field ORDERS1AND 2

operations of GF(2) are defined by the followingoaxs

Equation 16a-16d: There are only two binary matrices of order 1 (1-

square matrices), namely (a) the matrix][N [0], the

0+0 = 1+1= 0O (16a) null matrix and the additive identity, which is paitent
and idempotent and (b) the matrix jJU= [1], the
1+0=0+1=1 (16b) multiplicative identity, which is idempotent and
involutory (self-inverse).
K0 = (%1 = 150 = Figure 1 illustrates all 16 binary matrices of order 2
00 =01=10=0 (16¢) (2-square matrices), i.e., matrices of the forr} {@here
1*1=1 (16d) 1<i j=<2and a0 B, = {0,1}. Among these 16

matrices, there are four Self-Inverse (Sl) matrittbat
Note that the addition (+) operation is a modulo-2 W& Name [, [R4], [U4] and [Vi]), six matrices that are

operation that resembles the exclusive-OR opergfign idempotent, five matrices that are ””PF’teF‘t Ofequ
in switching algebra or bigger Boolean algebrasy An and two matrices [ and [Q] that are periodic of period

. = . . . 4. Note that the null matrix [jlis both idempotent and
function f(X) of n variables over GF(2) is a polynomial nilpotent of index 2. In addition to the four SI tmees,

of 2" terms (called a Taylor or a positive polarity Reed the two matrices [f] and [Q] are also invertible and are
Mdller  polynomial) ~which involves only un- i, erses of one another. The determinant of eathecsix
complemented literals, namely Equation 17: invertible matrices is 1. Out of the four SI matsc we
label [§], [R4y and [Vi] as primitive ones, while the
matrix [U] (the 2-square identity matrix) is non-primitive
since it is expressible as a direct sum Equation 19

fn()z):fn(xlvxz""xn)ZETnE n:e0_'—enxr1(:“(lf\‘ 1)X(ﬂ 1

+ e(n—1)n

(17)

X(n—l)xn+“' + elZ"'nxlxé" Xn

and hencef (X) can be expressed by a vectBs of [V, =diag ([Uo}{U d) (19)

length 2 called the Reed-Miiller spectrum (Sasao andiy terms of the 1-square S| matrix U which is

Butler, 2007), which is referenced in the basiswec, . considered primitive by default. We use the ablatumn
It is also possible to express similar fixed-pdiari PSI to denote the set of primitive 1-square anduaee

Reed-Miiller polynomials in which each variabjehas a S| matrices, i.e. Equation 20:

fixed polrity (i.e., it appears only as an unconnpémted

literal x or a complemented ofe). PSI={[U,LIV, LIS )[R } (20)
The functionf, (X) might also be viewed as a logic or

switching function over switching algebra (the two-
valued Boolean algebra),B= {0,1} and could be
expressed by another” Zector, namely its truth or periodic of period 4, i.e., [J* = [T4]. This matrix is self-
minterm vectorF, = [f, f,--f , ] " referenced in the basis inverse in disguise, in the sense that it becomesif-
. inverse matrix if we interchange its two rows, foen it
Mn which is used in the XOR sum-of-products becomes [g, or if we interchange its two columns as
expansion: this changes it into [ff

. . 0 1 .
In Fig. 1, we note that the matriXT, ] =L J is
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an
[0 0 0 0 Lo 10
l= 1 {]} 0 1}’ [Ui]_[o 1]’ 0 n]’
Idempotent and Idempotent Self-inverse and Nilpotent of index 2
nilpotent of index 2 permutation
0 0 00 _ 1 0 1 0
[1 0 [1 1 [Ry] = [1 1 [1 0
Nilpotent ofindex 2 Idempotent Self-inverse Idempotent
a1
0 1 01 11 11
[Vi]‘[1 0} [Tal= 14 1] [1 1] [e]= [1 o]
Self-inverse Periodic of period 4 | Nilpotent ofindex2 | Periodic of period 4
312 and invertible and invertible
0 1 0 1 1 1 1
b o o 1 1=y 1 o o
Nilpotent of index 2 Idempotent Self-inverse Idempotent

Fig. 1. All 2x2 matrices of the form {3, where 1<i, j< 2 and a0 B, = {0,1}. The six invertible matrices are highligitin bold.

. 1 1] . . i , primitive SI matrix and could be replaced in a dirsum
Similarly[Q, ] :L 0} is periodic of period 4, i.e., [ matrix by two [U] matrices thanks to (19).

= [Q4] and again it is self-inverse in disguise. Itatated Inspired by the Harary-Minc result for real opesat
to [T, as [T = [Q4], [Q1] = [T1]2 ' on binary matrices, we set out to obtain an analego

result for GF(2) operations on binary matrices. ikinl
the Harary-Minc result, which is a bi-conditionat o
4. SELF-INVERSE BINARY MATRICES equivalence (IFF) statement, our result is only a

Assuming real addition, Harary and Minc (1976) conditional (IF) statement. Also, while the Hardnc
state that a square binary matrix [A] is self-ieeif and ~ result utilizes only two primitive SI matrices {Jand
only if there exists a permutation matrix [P] suttlat [V4], our result involves not only these two matridest
[P][A] [P]" is a direct sum of 1-square matriceg][and it uses all the four elements of the PSI set in).(Bdth
2-square matrices [J. The result remains valid if we results rely on the introduction of the similarity
use 2-square matrices {JLalso. However, [ is nota  transformation Equation 21:
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P [PD] = [P®] = [P] = [P®] = [P®)] = [PO] =
100_001:100201020102001

N R R R IR A I R I TR
4]

1 0 0] [a] [4%] [4®] [4®] [4®] [4®]
=lo 1 1

0 0 1
[a®)

1 1 0 [4@] [4®] [a®)] [4®)] [4©)] [4D]
=lo 1 0 i 0 1

o o 1l =Io 1 o]
(A0 0 0 1

1 0 0 [4®] [a®] [4] [a®)] [4®] [4®)]
=lo 1 o0

0 1 1
[a®)] [a®)]

1 0 0] [a] [a®] 1 0 0 [4®] [45)] [4®)]
=11 1 0 = Io 1 0]

0 0 1 1 0 1

Fig. 2. Products of the form [ [AD] [PP]T, 1<i <4, 1<j< 6. The ten Sl 3-square binary matrices are higtgigyin bold.

[B] =[P]J[A]IP] " (22) Now, if we assume that the matrix [B] is self-insey
i.e., it satisfies (7), then the matrix [A] is alself-

where [P] is a permutation matrix of the same aiz¢he  inverse, as shown below Equation 24:
two nxn matrices [A] and [B]. Let row i of [P] have a
single 1 at (i, ), then [C] = [P] [A], which is a row-  [A]? Z[A][A]
permutation of [A], is such that row i of [C] iswgj; of — (P -
[A]. Similarly, row i of [D] = [PI[C]' is row j of [C], ) PIPD(PTEEIPD
which is column jof [C]. Hence, [B] = [C] [P] = [D]",  [PT'IBI(PIPI)IBIP] (24)
which is a column-permutation of [C], is such that =[P]*[B]IP]
column i of [B] is column;jof [C]. This means that [B] =[PP =[1]
defined by (21) is obtained from [A] by permutingth
its rows and columns according to the permutation
dictated by the matrix [P], i. e., the one fromZ1.,.., n)
to (ju, j2r -+, Jn)-

The similarity transformation in Equation (21
preserves the matrix property of being self inveite Theorem 1:
make use of the fact that the transpose of a petiont

Similarly, if we assume that the matrix [A] is self
inverse, then the matrix [B] is also self-inverSew, we
) present our result formally as Theorem 1 below.

matrix equals its inverse ([P¥ [PTY), to rewrite (21) as A square binary matrix [A] is self inverse in GF

Equation 22 and 23: (2) if there exists a permutation matrix [P] sutlatt
[A] has a similar matrix [B], defined by (21) whidh

[B] =[P][A][P] (22) a direct sum of the form Equation 25:

[A =[P][B][P] (23) [B] =diag([B”L.[B],-[B ™) (25)
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where, [B']0 PSI for 1< i < m and the set P9k
defined in (20).

Proof of Theorem 1:

First, we prove that [B] defined in (25) is a self-
inverse matrix. We prove that [B] satisfies (7)rogking
use of (12) and the fact that the"]Bs are SI matrices as
follows Equation 26:

[B]* =[diag([B“],[B “), --+[B )] *

= diag([BY I2,[B®]2-.[B™] ) (26)
=diag ({1111, --~[1) =1
Since [B] is SI, then thanks to (24), [A] is alSb.

QED.

Now, we argue that the converse of Theorem 1 does

not hold by finding a counter-example self-invefsg
for which not even a single [B] can be cast in fitvan
(25). One such counter-example is [A] ][@iven in
(4). This [A] has a row of all 1's. Any [B] prodwtérom
it via (21) is obtained through certain permutasiarf
rows and columns. Hence, this [B] will still haveawv
of all 1's and consequently cannot be written a#rect
sum of 1-square and 2-square matrices.
Now, we move another step further in

Kronecker products, in the following theorem.

Theorem 2:

If the two matrices [A] and [B] are binary SI
matrices, then their Kronecker product [C] = ([4B]) is
also a binary SI matrix. Conversely, if the squarenatrix
[C] could be written as the Kronecker product ofotw
matrices [Awm] and [B.] then both [A] and [B] are SI.

Proof of Theorem 2;

The fact that ([A[N[B]) is binary when [A] and [B]
are binary results immediately from (13). The irpeeof

a Kronecker product is the Kronecker product of the

inverses given in the same order (Brewer, 1978h&ius
and Ghaleb, 2013), i.e., Equation 27:
([A] O[B]) ™ HA] "0B] (27)

Since [A] and [B] are S| matrices, then by virtue o
(6), we have [A]= [A] and [B]* =[B] and hence (27)
becomes ([A[B]) ™ = [A] * O [B]™ =[A] O [B], which
means that ([AT [B]) is also SI.

////4 Science Publications
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To prove the converse part of the theorem, letShe
matrix be equal to ([AJ[B]). The fact [C] = [C]' yields
Equation 28:

[A] i OIB] s =(A] BT ), (28)
So by virtue of (28), one obtains:
[A] mxm D[B] nxn :[A] _rr];< m El[B] _I'i n

Which means that [A] = [A} and [B] = [B]* and
hence both [A] and [B] are SI. QED.
Example 1:

According to Theorem 1, the two matrices:

[P®]=diag(U,,V, )=

[P¥]=diag(V, ,U,)=

OBk oO O o r
P o O Ok O

O o, P o O

are both SlI. Their Kronecker product:

[Cl=[P®10[P“]=

O O OO0 o o o+ o
O O OO O o o o
O O OO o o r OO0
O r OO O O O O o
O O r OO O O O O
P O O O O O o o o
O O O o Pr OO o o

O O O o or O o o
0O 0O O B O O O O O

is also Sl by virtue of Theorem 2.
Example 2:

Among the six 3-square permutation matrice&][R
< i < 6 shown inFig. 2, there are four SP matrices]JP
1<i<4. The two permutation matricesJPand [P%]
are not S, as can be easily verified by findin§’[P=
[P®] 2[1] and [P®)? = [P®] # [I].

We now utilize Theorem 1 to find binary 3-square
matrices which are not permutation matrices. Th&-SlI
square matrices of the form (22) are given by {[&],
(D)1, where [C] = [W] and [DJH[V 1].[S4.[T 4], [U4]} or
[DITK[V 1.[S1.[T4].[U4]} and [D] = [Uo].
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Out of these 3-square matrices, there are onlym no
permutation matrices, namely:

[A®] =diag ([U,L.[S,])
[A®] =diag ([S, ].[U,))
[A®] =diag ([U,].[R,])
[A“] =diag ([R,].[U )

So we add the 4 matricesJA 1 <i < 4 to the set of
Sl 3-square matrices. To check whether there drer ot
S| square matrices, we form matrix produetshe form
PO (A0 [PO]T, 1<i< 4, 1<j < 6,as shown irFig. 2. We
obtain only two more S| 3-square matrices, namafy][
and [A®], shown inFig. 2. Therefore, there are exactly
ten Sl 3-square binary matrices.

5. INTERSECTION OF SI AND
PERMUTATION BINARY MATRICES

We digress a little bit to study binary matricestth
belong to the set SP of matrices that are bothir&rp
matrices and permutation matrices. The identityrisnfl]
and the three matrices in Example 1 are exampldsesé
matrices. If exactly two rows (or two columns) inet
identity matrix [I] are swapped, then the resultimgtrix
still belongs to SP. If two more rows (columns)tthee
distinct from the earlier ones are swapped, thenngw
matrix still belongs to SP and so on. Thereforee th
cardinality of the set SP as a function of n, deddby
NsH(n) is given by:

=103 "2 )"
s
L0

where,n-2(m- 1) 20( me 2} .

(29)

Table 1. Cardinalities N(n), Ng(n), Ne(n) and Nyg(n) versus n

for small n
Ng(n) =2%  Ng(n) Np (n) =n! Negn) Eq. (29)
1 2 1 1 1
2 16 4 2 2
3 512 10 6 4
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Table 1 lists, for small n, the numberss(#), Ng(n),
Np(n) and Ngn) of elements in the set B of binary n-
order matrices, its subsets Sl and P of self-irevensd
permutation matrices and the intersection SP ofethe
two latter subsets.

6. LARGER Sl BINARY MATRICES

The Z-square S| binary matrices JSand [R] are
defined recursively by Equation 30a-31b (Preparata,
1964; Saluja and Ong. 1979; Green, 1987; 1994;
Stankovic et al., 1996; Quintana and Avedillo, 2001;
Kim et al., 1999; Sasao and Butler, 2007; Rushdi and
Fares, 2013; Rushdi and Al-Otaibi, 2007):

[Sel=[1 (30a)
(Sy1] [Sp-d]

S, 1=/ " 30b

S |:[0] [Sn-ll:l (300

[Ro] =[] (31a)
[R,-] [0]

R.J=l_" 31b

[R.] {[Rn_d[Rn_J (31b)

where [0] is the 22" null matrix. These definitions
include the 2-square Sl binary matriceg] [&d [R] in
Fig. 1 as special cases. Mathematical induction can be
used (Rushdi and Al-Otaibi, 2007) to prove thals
[RJ?=[1] and to show that [R=[S.]".

Alternatively, the higher-order Sl binary matriazm
be defined recursively via Kronecker products diefes
Equation 32a-33b:

11
s1=)5 3] (322)
[S,1=[8,]0[S, =[S, JO[S] (32b)
10
COR M (332)
[RJ=[RJOR, J=[R,]OR] (33b)

It is interesting to note that while Kronecker puots
are generally not commutative (Rushdi and Ghaleb,
2013; Brewer, 1978), the Kronecker product gf]%nd
[S4] is commutative and its transpose, the Kronecker
product of [R.4] and [R] is also commutative. Equations
(32b) can be restated to say thaf] [ the Kronecker
product of [§] with itself (n-1) times, i.e., [$ is
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obtained through the Kronecker multiplication af
copies of [§]. The transpose of (32b) is (33b) which
says that [R is the Kronecker product of [Rwith itself
(n-1) times.

Beside the 2square Sl binary matrices J%nd [R],
which are particularly useful, as we will see irct&an 7,

Note that our expressions (2) and (3) fs and Ls
fit into these formal definitions. Again, we strebat the
definitions (35) and (36) are not unique, sinceeoth
definitions are possible with different ordering pmiarity
of the variables (Sasao and Butler, 2007; Rushdi an
other higher-order Sl binary matrices can be coogtd Ghaleb, 2013; Rudeanu, 1.974.’ Chengl., 2010). W.e call
from various combinations of all four types of 2iace the Preparata Tr_ansformatlon |n_(1a)_ {T(naQ]nand gvea
S binary matrices. The 2-square binary matrix] [T NOVel proof for it by mathematical induction by pig
(respectively, [@), which is self-inverse in disguise, can theé boundary and inductive cases as follows. The
also be Kronecker-multiplied with itself (n-1) timeo  boundary case T(0) states Equation 37:
produce the 2square binary matrix [J (respectively,
[Qn), which is again self-inverse in disguise. Thetrira [M=[4[4 (37)
[T is used frequently in the semi-tensor product _ i . ) )
representation of Boolean functions (Rushdi andleBha and is obviously and trivially true. In the indueticase
2013; Chengt al., 2010). T(k) -T(k+1), k 2 0, we assume the truth of T(k),
namely Equation 38:

7. BOOLEAN FUNCTION o .
REPRESENTATIONS Mi =[S,k k 20 (38)

We recall from (17) and (18) that a function ovét @)  and utilize this assumption in proving T(k+1), vies
or a two-valued Boolean function(X) can be written as ~ Eguation 39:
Equation 34: Wi =[S, Lo k 20 (39)
- T — T —
f,(X) =FaMn=EnLn (34) We can reduce (39) by virtue of (35b), (32b) and
(36b) to Equation 40:
Here, each of the four vectors,, Mn, En and Liis a

— — . 'Vl X +
vector of 2 elements. The vectond, andL, are variable (Mk D{ X 1D =([S]10[s,)

basis vectors for the truth-table and linear regmeions -
of the function. Typically, different fixed versienof L. D{ 1 } k>0
these vectors are used implicitly by various awthdhe Xyat

(40)

two vectors F.and E.are constant binary vectors K ‘ « q
representing the truth table and the Reed-Miiller BA Welg7g°WnE protpertill.o Kronecker products
spectrum of the function. We stress here that these (Brewer, ) is Equation 41:

vectors are meaningless unless clearly and explicit
referenced to their baség. and L.. Now, we formally
define our basis vectoré, and L. recursively as ascertains the truth of (40) thanks to (38) and féue

([A] O[B]) ([D] OG]) #AlD] [B]G] (41)

Equation 35a-36b: that Equation 42:
. X 1 1 1| 1
Mo =[1 35a = :{ H } 42

W (352) L} [SI]LJ o 1lx.. (42)
M =Mn-1m{ } (35b)

X, which is true sincex,,, =1+ x,,, . Substitution of (1) into
B (34) produces Equation 43:
Lo =[1] (36a) g .
Fo[S, JLn =EnLn (43)
Co=C .0 { l} (36b) )
Xn which is an identity for alL. requiring:
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FrlS,]1= En,

or equivalently Equation 44a and 44b:

En =[S, Fn=[R, ]Fn

I—:n = [Rn]En

binary SI matrices in relating the two most common
representations of Boolean functions is also ingestd.
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the SI matrix [§], the value vectorsF,and E.are

related by its transpose S| matrix,]JR

Example 3:

Consider the 3-variable Boolean function Equation

45a-45d:

f3(X1’X2’X3) :XlXZDX;ZSD X 2(3

:X1X2X3+X1X2X3+X1X¥3+X¥ 2( 3+X 1( X

=1+ >(2)(3+X].+ >(1X3+X1X2+ xlx 2+X].X 2( i

The truth table and Reed-Miuller Spectrum of this Bre

function are Equation 46a and 46b:

F:=[11100110]

Ea=[10011111]

and can be used together with (2), (3) and (34) tocy p.
produce its algebraic expressions (45c) and (4Bdse | '

two vectors also satisfy (44).

8. CONCLUSION

during the preparation of this manuscript.
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