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ABSTRACT 

An important class of square binary matrices over the simplest finite or Galois Field GF(2) is the class of 
involutory or self-inverse (SI) matrices. These matrices are of significant utility in prominent engineering 
applications such as the study of the Preparata Transformation or the analysis of synchronous Boolean 
Networks. Therefore, it is essential to devise appropriate methods, not only for understanding the properties 
of these matrices, but also for characterizing and constructing them. We survey square binary matrices of 
orders 1, 2 and 3 to identify primitive SI matrices among them. Larger SI matrices are constructed as (a) the 
direct sum, or (b) the Kronecker product, of smaller ones. Illustrative examples are given to demonstrate the 
construction and properties of binary SI matrices. The intersection of the sets of SI and permutation binary 
matrices is studied. We also study higher-order SI binary matrices and describe them via recursive relations 
or Kronecker products. Our work culminates in an exposition of the two most common representations of 
Boolean functions via two types of Boolean SI matrices. A better understanding of the properties and 
methods of constructing SI binary matrices over GF (2) is achieved. A clearer picture is attained about the 
utility of binary matrices in the representation of Boolean functions. 
 
Keywords: Involutory or Self-Inverse Matrices, Galois Field GF (2), Direct Sums, Kronecker Products, 

Recursive Relations, Preparata or Reed-Müller Transformation, Synchronous Boolean Networks 

1. INTRODUCTION 

Binary matrices play an important role in system 
modeling (Warfield, 1973). A prominent class of these 
matrices over the simplest finite or Galois field GF (2) is 
the class of involutory or Self-Inverse (SI) matrices, 
which are matrices for which an inverse exists and is 
equal to the original matrix. This class of matrices is of 
intrinsic mathematical interest besides being of great 
utility in many important engineering applications. Two 
of the most notable such applications are. 

1.1. Preparata Transformation  

The Preparata (Reed-Müller) Transformation 
(Preparata, 1964; Saluja and Ong, 1979; Green, 1987; 
1994; Stankovic et al., 1996; Kim et al., 1999; Quintana 
and Avedillo, 2001; Sasao and Butler, 2007; Rushdi and 
Ghaleb, 2013) for a Boolean function 

n n 1 2 nf (X) f (x ,x ,...,x )=
��

 of n variables typically takes the 

form Equation 1a and 1b: 
 

 n nnM [S ]L , n 0= ≥
��� ��

 (1a) 
 

n nnL [S ]M n 0= ≥
�� ���

 (1b) 
 

where, nM
���

 and nL
��

are vectors of 2n elements each and 
the square matrix [Sn] has 2n×2n elements. This matrix is 
a self-inverse binary transformation matrix that relates 

the vector nM
���

 (which is a basis of a truth-table 

representation for the function fn) and the vector nL
��

 
(which is a basis for a linear (Reed-Müller) 
representation for the function fn). Here, we adopt the 
notation (commonly employed in the literature) of using 
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a single subscript n to denote a 2n×2n  square matrix. In 
the conventional double-script notation, the matrix [Sn] 

would be written as n n2 2
[S ]× . The vectors nM

���
 and nL

��
 

and the matrix [Sn] in Equation (1) are defined herein for 
n = 3 as Equation 2-4: 
 

3 1 2 3 1 2 3 1 2 3 1 2 3

T
1 2 3 1 2 3 1 2 3 1 2 3

M [x x x x x x x x x x x x

x x x x x x x x x x x x ]

=
���

 (2) 

 

3 3 2 2 3 1

T
1 3 1 2 1 2 3

L [1 x x x x x

x x x x x x x ]

=
��

 (3) 

 

3

1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1

0 0 0 1 0 0 0 1
[S ]

0 0 0 0 1 1 1 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1

 
 
 
 
 
 =
 
 
 
 
 
  

 (4) 

 
A formal definition of the general matrix [Sn] and the 

general vectors nM
���

 and nL
��

are given later.  

1.2. Synchronous Boolean Networks  

The 2n×2n transition Matrix [T] of a Synchronous 
Boolean Network is obtained (Cull, 1971; Rushdi and 
Al-Otaibi, 2007) from its 2n×2n Function Matrix [A] via 
a double matrix multiplication of the following form 
Equation 5a and 5b: 
 

1
n n[T] [S ] [A][S ]−=  (5a) 

 

n n[S ][A][S ]=  (5b) 
 
in which a state matrix [Sn] is used. This state matrix is 
exactly the same as the transformation matrix in (1) and 
thanks to its self-inverse property, it was possible to go 
from (5a) to (5b). 

The topic of self-inverse binary matrices over GF (2) 
is interrelated with other interesting topics in 
mathematics including those of binary matrices over real 
arithmetic (Harary and Minc, 1976) and nonnegative 
integer matrices (Plemmons and Cline, 1972; Berman, 
1974; Borobia and Moro, 1977; Lewin, 1977; Berman 
and Plemmons, 1979; Haynsworth and Wall, 1979; 
Hanson, 1985; Minc, 1988; Bellman, 1997; Laffey, 
1998; Siddhartha, 2010). 

This study surveys existing methods and contributes 
new ones for understanding the properties of binary SI 
matrices and for characterizing and constructing them. 
Subsequently, it analyzes the two most common 
representations of Boolean functions, namely, the truth-
table representation and the linear or Reed-Müller 
representation. The analysis makes a clear distinction 
between a representation and the basis for this 
representation. Two different types of SI Boolean 
matrices (that are transposes of one another) are needed 
in this analysis. This analysis is supported via a 
mathematical proof by mathematical induction and 
further illustrated via a detailed example. 

The remainder of this study is organized as follows. 
First, we present preliminary definitions and facts that 
are borrowed from real algebra, but still apply to GF(2)  
computations. These are needed herein to make the study 
self contained. Then, we list all square binary matrices of 
orders 1 and 2, characterize them and identify the 
primitive SI ones among them. Later, we  present and 
prove two novel theorems for characterizing SI binary 
matrices in terms of direct sums and Kronecker products 
(tensor products). We also demonstrate these two 
theorems via illustrative examples and consequently list 
all SI binary matrices of order 3. Moreover, we study and 
obtain the cardinality of the set SP which is the 
intersection of the sets of SI binary matrices and 
permutation matrices. We also study higher-order SI 
binary matrices and describe them in terms of recursive 
relations and Kronecker products. Finally, we deal with 
the truth-table and linear representations of Boolean 
functions and prove that both these representations and 
their bases are related via two sets of SI binary matrices 
that are transposes of one another.  

2. PRELIMINARY DEFINITIONS 

2.1. A Self-Inverse (Involutory) Matrix 
 

A regular n×n matrix [A] is self inverse (SI) iff [A]-1 
exists and equals [A], i.e., iff Equation 6: 
 
[A] -1 = [A]:                                                (6) 
 
or equivalently iff Equation 7: 
 
[A] 2 =[I].                                                  (7) 
 
where, [I] = [In×n] is the n×n identity matrix and here we 
stick to the common policy of subscripting a matrix by 
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its row dimension crossed by its column dimension. The 
determinant of a self- inverse matrix equals 1 and its 
even and odd powers [A]2k and [A]2k+1 are [I] and [A], 
respectively. 

2.2. A Periodic Matrix 

A square matrix [A] is periodic iff Equation 8: 
  

k 1[A] [A]+ =  (8) 

 
where, k is a positive integer. If k is the least integer for 
which (8) in satisfied, [A] is said to be of period k. If k = 
1, then [A] is idempotent. 

2.3. A Nilpotent Matrix 

A square matrix [A] is nilpotent iff Equation 9: 
  

p[A] [0]=  (9) 

 
where, [0] = [0n×n] is the n×n null matrix and the index p 
is a positive integer. If p is the least integer for which (9) 
is satisfied, [A] is said to be nilpotent of index p. 

2.4. Direct Sum of Two Square Matrices 

The direct sum of the two square matrices [Am×m], 
[Bn×n] is the square matrix Equation 10: 

 

m m m n
(m n) (m n)

n m n n

[A ] [0 ]
[C ]

[0 ] [B ]
× ×

+ × +
× ×

 
=  
  

 (10) 

 
This is a generalization of the concept of a diagonal 

matrix and hence is labeled by diagonal([A], [B]), or 
simply diag([A], [B]). Similarly, the direct sum of 
several square matrices [X], [Y], [Z], …, [W] is given by 
the form: diag([X], [Y], [Z], …, [W]). The product of 
two direct sums of matrices of the same respective orders 
is the direct sum of the products of the respective 
matrices, i.e., Equation 11: 

 

[ ] [ ] [ ]( ) [ ] [ ] [ ]( )
[ ][ ] [ ][ ] [ ][ ]( )

diag A ,  B ,  ,  D  diag X ,  Y ,  ,  W  

 diag A X ,  B Y ,  ,  D W

… …

= …
 (11) 

 
Here, the respective matrices [A], [X], [A][X] are 

square matrices of the same order. In particular, the 
square of the direct sum of some matrices is the direct 
sum of their squares, namely Equation 12: 

2

2 2 2 2

[diag([A],[B],[C],..,[D])]

diag([A] ,[B] ,[C] ,..,[D] )=
 (12) 

 
2.5. Kronecker Product  

Let [Am×n] = {aij}, (1 ≤ i ≤ m, 1 ≤ j ≤ n) be a matrix of 
m rows and n columns and [Bp×q] be a matrix of p rows 
and q columns. The Kronecker product (KP) of [A] and 
[B], also called the tensor product, is denoted by the 
operator “⊗” and is defined as Equation 13 (Brewer, 1978):  
 

11 12 1n

21 22 2n

m1 m2 mn

mp nq([A] [B])

a [B] a [B] a [B]

a [B] a [B] a [B]

a [B] a [B] a [B]

×⊗ =

 
 
 
 
 
  

…

…

⋮ ⋮ ⋮ ⋮

…

 (13) 

 
2.6. Permutation Matrix 

The square matrix [Pn×n] is a permutation matrix if it 
results from interchanging (swapping) some rows (or 
columns) of the identity matrix [In×n]. Alternatively, in 

the linear transformationn 1 n 1n nY [P ]X× ××=
�� ��

, one has yij = xj 

(j =1,2,..,n) where i1,i2,..,in is a permutation of 1,2,..,n. 
Hence, all the elements of [Pn×n] are 0’s and 1’s, with 
exactly a single 1 in each row and in each column, 
namely Equation 14: 
 

n n nn n

i i i n1 2[P ] [ ... ]× = δ δ δ
� � �

 (14) 
 

where, n
i jδ
�

 is a column vector of dimension n, whose 
elements are all 0’s except the element at row ij which is 
1. The inverse [P]-1 of a permutation matrix is its 
transpose [P]T. There are (n)! permutation matrices [Pn×n] 
of order n. 

2.7. The Finite or Galois Field GF (2) 

Let F be a set of objects on which two operations: 
addition (+) and multiplication (represented by (*) or 
juxtapositioning) are defined. F is said to be a field if 
and only if: 

• F forms a commutative group under addition. The 
additive identity element is labeled "0" 

• F-{0} (the set F with the additive identity removed) 
forms a commutative group under multiplication. 
The multiplicative identity element is labeled "1" 

 
Multiplication is distributed by addition Equation 15:  
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a*(b+c) = (a*b) + (a*c) (15) 
 

A field can also be defined as a commutative ring 
with identity in which every element has a multiplicative 
inverse. Well known examples of fields include the real 
field (field of real numbers) and the complex field (field 
of complex numbers) and fields of a finite order (number 
of elements) q, called the Galois fields GF(q). The 
simplest finite field GF(2), also called the binary field or 
the mod-2 field, has only two elements: the additive 
identity (0) and the multiplicative identity (1). The field 
operations of GF(2) are defined by the following axioms 
Equation 16a-16d: 
 
0+0 = 1 +1 = 0 (16a) 
 
1 + 0 = 0 +1 = 1 (16b) 
 
0*0 = 0*1 = 1*0 = 0  (16c) 
 
1*1 = 1 (16d) 
 

Note that the addition (+) operation is a modulo-2 
operation that resembles the exclusive-OR operation (⊕) 
in switching algebra or bigger Boolean algebras. Any 
function f(X)

��
of n variables over GF(2) is a polynomial 

of 2n terms (called a Taylor or a positive polarity Reed-
Müller polynomial) which involves only un-
complemented literals, namely Equation 17: 
  

( ) ( ) T
n n 1 2 n n n 0 n n (n 1) (n 1)

(n 1)n (n 1) n 12 n 1 2 n

f X f x ,x , ,x E L e e x e x

e x x e ... x x x

− −

− −

= = = +

+ + +

� � �
⋯

⋯ ⋯
 (17) 

 

and hence nf (X)
��

 can be expressed by a vector nE
��

 of 

length 2n called the Reed-Müller spectrum (Sasao and 

Butler, 2007), which is referenced in the basis vector nL
��

.  
It is also possible to express similar fixed-polarity 

Reed-Müller polynomials in which each variable xi has a 
fixed polrity (i.e., it appears only as an uncomplemented 
literal xi or a complemented oneix ).  

The function nf (X)
��

might also be viewed as a logic or 

switching function over switching algebra (the two-
valued Boolean algebra) B2 = {0,1} and could be 
expressed by another 2n vector, namely its truth or 

minterm vector T
n 0 1 n 12

F [f f f ]−=
�

⋯ referenced in the basis 

nM
���

 which is used in the XOR sum-of-products 
expansion: 

T
n nn 0 1 2 n

1 1 2 n 1 2 nn 12

f (X) F M f x x x

f x x x f x x x−

= = +

+ +

�� � ���
⋯

⋯ ⋯ ⋯
 (18) 

 
The expansion in Equation (18) is a disjoint sum in 

which the mod-2 or XOR operator (+) might be replaced 
by the OR operator (V) to produce a conventional sum-
of-products expression for nf (X)

��
. 

3. SQUARE BINARY MATRICES OF 
ORDERS 1 AND 2 

There are only two binary matrices of order 1 (1-
square matrices), namely (a) the matrix [N0] = [0], the 
null matrix and the additive identity, which is nilpotent 
and idempotent and (b) the matrix [U0] = [1], the 
multiplicative identity, which is idempotent and 
involutory (self-inverse). 

Figure 1 illustrates all 16 binary matrices of order 2 
(2-square matrices), i.e., matrices of the form {aij} where 
1 ≤ i, j ≤ 2 and aij ∈ B2 = {0,1}. Among these 16 
matrices, there are four Self-Inverse (SI) matrices (that 
we name [S1], [R1], [U1] and [V1]), six matrices that are 
idempotent, five matrices that are nilpotent of index 2 
and two matrices [T1] and [Q1] that are periodic of period 
4. Note that the null matrix [N1] is both idempotent and 
nilpotent of index 2. In addition to the four SI matrices, 
the two matrices [T1] and [Q1] are also invertible and are 
inverses of one another. The determinant of each of the six 
invertible matrices is 1. Out of the four SI matrices, we 
label [S1], [R1] and [V1] as primitive ones, while the 
matrix [U1] (the 2-square identity matrix) is non-primitive 
since it is expressible as a direct sum Equation 19: 
  

1 0 0[U ] diag([U ],[U ])=  (19) 
 
in terms of the 1-square SI matrix [U0], which is 
considered primitive by default. We use the abbreviation 
PSI to denote the set of primitive 1-square and 2-square 
SI matrices, i.e. Equation 20: 
 

0 1 1 1PSI {[U ],[V ],[S ],[R ]}=  (20) 
 

In Fig. 1, we note that the matrix 1

0 1
[T ]

1 1

 
=  
 

 is 

periodic of period 4, i.e., [T1]
4 = [T1]. This matrix is self-

inverse in disguise, in the sense  that it becomes a self-
inverse matrix if we interchange its two rows, for then it 
becomes [S1], or if we interchange its two columns as 
this changes it into [R1]. 
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Fig. 1. All 2×2 matrices of the form {aij}, where 1 ≤ i, j ≤ 2 and aij ∈ B2 = {0,1}. The six invertible matrices are highlighted in bold. 

 

Similarly 1

1 1
[Q ]

1 0

 
=  
 

 is periodic of period 4, i.e., [Q1]
4 

= [Q1] and again it is self-inverse in disguise. It is related 
to [T1] as [T1]

2 = [Q1], [Q1] = [T1]
2. 

4. SELF-INVERSE BINARY MATRICES 

Assuming real addition, Harary and Minc (1976) 
state that a square binary matrix [A] is self-inverse if and 
only if there exists a permutation matrix [P] such that 
[P][A] [P] T is a direct sum of 1-square matrices [U0] and 
2-square matrices [V1]. The result remains valid if we 
use 2-square matrices [U1] also. However, [U1]  is not a 

primitive SI matrix and could be replaced in a direct-sum 
matrix by two [U0] matrices thanks to (19). 

Inspired by the Harary-Minc result for real operations 
on binary matrices, we set out to obtain an analogous 
result for GF(2) operations on binary matrices. Unlike 
the Harary-Minc result, which is a bi-conditional or 
equivalence (IFF) statement, our result is only a 
conditional (IF) statement. Also, while the Harary-Minc 
result utilizes only two primitive SI matrices [U0] and 
[V 1], our result involves not only these two matrices, but 
it uses all the four elements of the PSI set in (20). Both 
results rely on the introduction of the similarity 
transformation Equation 21: 
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Fig. 2. Products of the form [P(j)] [A (i)] [P(j)]T, 1 ≤ i ≤ 4, 1 ≤ j ≤ 6. The ten SI 3-square binary matrices are highlighted in bold. 
 

T[B] [P][A][P]=  (21) 
 
where [P] is a permutation matrix of the same size as the 
two n×n matrices [A] and [B]. Let row i of [P] have a 
single 1 at (i, ji), then [C] = [P] [A], which is a row-
permutation of [A], is such that row i of [C] is row ji of 
[A]. Similarly, row i of [D] = [P][C]T is row ji of [C]T, 
which is column ji of [C]. Hence, [B] = [C] [P]T = [D]T, 
which is a column-permutation of [C], is such that  
column i of [B] is column ji of [C]. This means that [B] 
defined by (21) is obtained from [A] by permuting both 
its rows and columns according to the permutation 
dictated by the matrix [P], i. e., the one from (1, 2, …, n) 
to (j1, j2, …, jn). 

The similarity transformation in Equation (21) 
preserves the matrix property of being self inverse. We 
make use of the fact that the transpose of a permutation 
matrix equals its inverse  ([P]T = [P]-1), to rewrite (21) as 
Equation 22 and 23: 
 

1[B] [P][A][P] −=  (22) 
 

1[A [P] [B][P]−=  (23)   

Now, if we assume that the matrix [B] is self-inverse, 
i.e., it satisfies (7), then the matrix [A] is also self-
inverse, as shown below Equation 24: 
 

2

1 1

1 1

1 2

1

[A] [A][A]

([P] [B][P]) ([P] [B][P])

[P] [B]([P][P] )[B][P]

[P] [B] [P]

[P] [I][P] [I]

− −

− −

−

−

=
=

=
= =

 (24) 

 
Similarly, if we assume that the matrix [A] is self-

inverse, then the matrix [B] is also self-inverse. Now, we 
present our result formally as Theorem 1 below. 

Theorem 1: 

A square binary matrix [A] is self inverse in GF 
(2) if there exists a permutation matrix [P] such that 
[A] has a similar matrix [B], defined by (21) which is 
a direct sum of the form Equation 25: 
  

( )(1) (2) (m)[B] diag [B ],[B ], ,[B ]= ⋯  (25) 
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where,  [B(i)]∈ PSI for 1 ≤ i ≤ m and the set PSI is 
defined in (20).  

Proof of Theorem 1: 

First, we prove that [B] defined in (25) is a self-
inverse matrix. We prove that [B] satisfies (7) by making 
use of (12) and the fact that the [B(i)]’s are SI matrices as 
follows Equation 26: 
 

( )
2 (1) (2) (m) 2

(1) 2 (2) 2 (m) 2

[B] [diag([B ],[B ], ,[B ])]

diag [B ] ,[B ] , ,[B ]

diag([I],[I], ,[I]) [I]

=

=

= =

⋯

⋯

⋯

 (26) 

 
Since [B] is SI, then thanks to (24),  [A] is also SI. 

QED. 
Now, we argue that the converse of Theorem 1 does 

not hold by finding a counter-example self-inverse [A] 
for which not even a single [B] can be cast in the form 
(25). One such counter-example is [A] = [S3] given in 
(4). This [A] has a row of all 1's. Any [B] produced from 
it via (21) is obtained through certain permutations of 
rows and columns. Hence, this [B] will still have a row 
of all 1's and consequently cannot be written as a direct 
sum of 1-square and 2-square matrices. 

Now, we move another step further in the 
characterization of SI matrices using the concept of 
Kronecker products, in the following theorem.  

Theorem 2: 

 If the two matrices [A] and [B] are binary SI 
matrices, then their Kronecker product [C] = ([A]⊗[B]) is 
also a binary SI matrix. Conversely, if the square SI matrix 
[C] could be written as the Kronecker product of two 
matrices [Am×m] and [Bn×n] then both [A] and [B] are SI. 

Proof of Theorem 2: 

The fact that ([A]⊗[B]) is binary when [A] and [B] 
are binary results immediately from (13). The inverse of 
a Kronecker product is the Kronecker product of the 
inverses given in the same order (Brewer, 1978; Rushdi 
and Ghaleb, 2013), i.e., Equation 27: 
 
( 1 1 1[A] [B]) [A] [B]− − −⊗ = ⊗  (27) 

 
Since [A] and [B] are SI matrices, then by virtue of 

(6), we have [A]-1= [A] and [B]-1 =[B] and hence (27) 
becomes ([A]⊗[B]) -1 = [A]  -1 ⊗ [B] -1 =[A] ⊗ [B], which 
means that ([A]⊗ [B]) is also SI. 

To prove the converse part of the theorem, let the SI 
matrix be equal to ([A]⊗[B]). The fact [C] = [C]-1 yields 
Equation 28: 
 
 1

m m n n m m n n[A] [B] ([A] [B] ) −
× × × ×⊗ = ⊗  (28) 

 
So by virtue of (28), one obtains: 

 
1 1

m m n n m m n n[A] [B] [A] [B]− −
× × × ×⊗ = ⊗  

 
Which means that [A] = [A]-1 and [B] = [B]-1 and 

hence both [A] and [B] are SI. QED. 

Example 1: 

According to Theorem 1, the two matrices: 
 

(3)
0 1

1 0 0

[P ] diag(U ,V ) 0 0 1

0 1 0

 
 = =  
  

 

(4)
1 0

0 1 0

[P ] diag(V ,U ) 1 0 0

0 0 1

 
 = =  
  

 

 
are both SI. Their Kronecker product: 
  

(3) (4)

0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0

[C] [P ] [P ] 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0

 
 
 
 
 
 
 = ⊗ =
 
 
 
 
 
 
 

 

 
is also SI by virtue of Theorem 2.  

Example 2: 

Among the six 3-square permutation matrices [P(i)], 1 
≤ i ≤ 6 shown in Fig. 2, there are four SP matrices [P(i)], 
1 ≤ i ≤ 4.  The two permutation matrices [P(5)] and [P(6)] 
are not SI, as can be easily verified by finding [P(5)]2 = 
[P(6)] ≠[I] and [P(6)]2 = [P(5)] ≠ [I].  

We now utilize Theorem 1 to find binary 3-square 
matrices which are not permutation matrices. The SI 3-
square matrices of the form (22) are given by diag ([C), 
(D)], where [C] = [U0] and [D]∈{[V 1],[S1],[T1], [U1]} or 
[D]∈{[V 1],[S1],[T1],[U1]} and [D] = [U0]. 
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Out of these 3-square matrices, there are only 4 non-
permutation matrices, namely: 
 

(1)
0 1

(2)
1 0

(3)
0 1

(4)
1 0

[A ] diag([U ],[S ])

[A ] diag([S ],[U ])

[A ] diag ([U ],[R ])

[A ] diag([R ],[U ])

=

=

=

=

 

 
So we add the 4 matrices [A(i)], 1 ≤ i ≤ 4 to the set of 

SI 3-square matrices. To check whether there are other 
SI square matrices, we form matrix products of the form 
[P(j)] [A (i)] [P(j)]T, 1 ≤ i ≤ 4, 1 ≤ j ≤ 6, as shown in Fig.  2. We 
obtain only two more SI 3-square matrices, namely [A(5)] 
and [A(6)], shown in Fig. 2. Therefore, there are exactly 
ten SI 3-square binary matrices. 

5. INTERSECTION OF SI AND 
PERMUTATION BINARY MATRICES 

We digress a little bit to study binary matrices that 
belong to the set SP of matrices that are both SI binary 
matrices and permutation matrices. The identity matrix [I] 
and the three matrices in Example 1 are examples of these 
matrices. If exactly two rows (or two columns) in the 
identity matrix [I] are swapped, then the resulting matrix 
still belongs to SP. If two more rows (columns) that are 
distinct from the earlier ones are swapped, then the new 
matrix still belongs to SP and so on. Therefore, the 
cardinality of the set SP as a function of n, denoted by 
NSP(n) is given by:  
 

SP

n n n 21 1
N (n) 1

2 2 21! 2!

n n 2 n 41

2 2 23!

n n 2 n 2(m 1)1

2 2 2m!

−    
= + + +    

    

− −   
+ +   

   

− − −    
    
    

⋯

⋯

 (29) 

 

where, 
n

n 2(m 1) 2or m
2

 − − ≥ ≤ 
 

. 

 
Table 1. Cardinalities NB(n), NSI(n), NP(n) and NSP(n) versus n 

for small n 
 NB(n) = 2n2 NSI(n) NP (n) = n!  NPS(n) Eq. (29) 
1 2 1 1 1 
2 16 4 2 2 
3 512 10 6 4 

Table 1 lists, for small n, the numbers NB(n), NSI(n), 
NP(n) and NSP(n) of elements in the set B of binary n-
order matrices, its subsets SI and P of self-inverse and 
permutation matrices and the intersection SP of these 
two latter subsets. 

6. LARGER SI BINARY MATRICES 

The 2n-square SI binary matrices [Sn] and [Rn] are 
defined recursively by Equation 30a-31b (Preparata, 
1964; Saluja and Ong. 1979; Green, 1987; 1994; 
Stankovic et al., 1996; Quintana and Avedillo, 2001; 
Kim et al., 1999; Sasao and Butler, 2007; Rushdi and 
Fares, 2013; Rushdi and Al-Otaibi, 2007): 
 

0[S ] [1]=  (30a) 
 

n 1 n 1
n

n 1

[S ] [S ]
[S ]

[0] [S ]
− −

−

 
=  
  

 (30b) 

 

0[R ] [1]=  (31a) 
 

n 1
n

n 1 n 1

[R ] [0]
[R ]

[R ] [R ]
−

− −

 
=  
  

 (31b) 

 
where [0] is the 2n-1×2n-1 null matrix. These definitions 
include the 2-square SI binary matrices [S1] and [R1] in 
Fig. 1 as special cases. Mathematical induction can be 
used (Rushdi and Al-Otaibi, 2007)  to prove that [Sn]

2 = 
[Rn]

2 = [I]  and to show that [Rn] = [Sn]
T. 

Alternatively, the higher-order SI binary matrices can 
be defined recursively via Kronecker products as follows 
Equation 32a-33b: 
 

1

1 1
[S ]

0 1

 
=  
 

 (32a) 

 
n 1 n 1 n 1 1[S ] [S ] [S ] [S ] [S ]− −= ⊗ = ⊗  (32b) 

 

1

1 0
[R ]

1 1

 
=  
 

 (33a) 

n 1 n 1 n 1 1[R ] [R ] [R ] [R ] [R ]− −= ⊗ = ⊗  (33b) 
 

It is interesting to note that while Kronecker products 
are generally not commutative (Rushdi and Ghaleb, 
2013; Brewer, 1978), the Kronecker product of [Sn-1] and 
[S1] is commutative and its transpose, the Kronecker 
product of [Rn-1] and [R1] is also commutative. Equations 
(32b) can be restated to say that [Sn] is the Kronecker 
product of [S1] with itself (n-1) times, i.e., [Sn] is 
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obtained through the Kronecker multiplication of n 
copies of [S1]. The transpose of (32b) is (33b) which 
says that [Rn] is the Kronecker product of [R1] with itself 
(n-1) times. 

Beside the 2n-square SI binary matrices [Sn] and [Rn], 
which are particularly useful, as we will see in Section 7, 
other higher-order SI binary matrices can be constructed 
from various combinations of all four types of 2-square 
SI binary matrices. The 2-square binary matrix [T1] 
(respectively, [Q1]), which is self-inverse in disguise, can 
also be Kronecker-multiplied with itself (n-1) times to 
produce the 2n-square binary matrix [Tn] (respectively, 
[Qn]), which is again self-inverse in disguise. The matrix 
[Tn] is used frequently in the semi-tensor product 
representation of Boolean functions (Rushdi and Ghaleb, 
2013; Cheng et al., 2010). 

7. BOOLEAN FUNCTION 
REPRESENTATIONS 

We recall from (17) and (18) that a function over GF (2) 
or a two-valued Boolean function nf (X)

��
 can be written as 

Equation 34: 
  

 
T T
n n n nnf (x) F M E L= =

� � ��� �� ��
 (34) 

 

Here, each of the four vectors n n n nF , M , E and L
� ��� �� ��

is a 

vector of 2n elements. The vectors n nM andL
��� ��

are variable 

basis vectors for the truth-table and linear representations 
of the function. Typically, different fixed versions of 
these vectors are used implicitly by various authors. The 

two vectors nF
�

and nE
��

are constant binary vectors 
representing the truth table and the Reed-Müller 
spectrum of the function. We stress here that these two 
vectors are meaningless unless clearly and explicitly 

referenced to their bases nM
���

 and nL
��

. Now, we formally 

define our basis vectors nM
���

 and nL
��

 recursively as 
Equation 35a-36b: 
  

0M [1]=
���

 (35a) 

n
n n 1

n

x
M M

x
−

 
= ⊗  

  

��� ���
 (35b) 

 

0L [1]=
��

 (36a) 
 

n n 1
n

1
L L

x−
 

= ⊗  
 

��
 (36b) 

Note that our expressions (2) and (3) for 3M
���

 and 3L
��

 
fit into these formal definitions. Again, we stress that the 
definitions (35) and (36) are not unique, since other 
definitions are possible with different ordering or polarity 
of the variables (Sasao and Butler, 2007; Rushdi and 
Ghaleb, 2013; Rudeanu, 1974; Cheng et al., 2010). We call 
the Preparata Transformation in (1a) {T(n), n≥0} and give a 
novel proof for it by mathematical induction by proving 
the boundary and inductive cases as follows. The 
boundary case T(0) states Equation 37: 
 
[ ] [ ] [ ]1 1  1=  (37) 
 
and is obviously and trivially true. In the inductive case 
T(k) →T(k+1), k ≥ 0, we assume the truth of T(k), 
namely Equation 38: 
 

 k kkM [S ]L , k 0= ≥
��� ��

 (38) 
 
and utilize this assumption in proving T(k+1), which is 
Equation 39: 
  

k 1 k 1k 1M [S ]L , k 0+ ++= ≥
��� ��

 (39) 
 

We can reduce (39) by virtue of (35b), (32b) and 
(36b) to Equation 40: 
 

k 1
k k 1

k 1

k

k 1

x
M ([S ] [S ])

x

1
L ,k 0

x

+

+

+

  
⊗ = ⊗   
  

  
⊗ ≥   
  

���

��
 (40) 

 
A well known property of Kronecker products 

(Brewer, 1978) is Equation 41: 
  
([A] [B]) ([D] [G]) [A][D] [B][G]⊗ ⊗ = ⊗  (41) 
 
ascertains the truth of (40) thanks to (38) and the fact 
that Equation 42: 
  

k 1
1

k 1k 1k 1

1x 11 1
[S ]

x0 1xx
+

+++

      
= =      

       
 (42) 

 
which is true since k 1 k 1x 1 x+ += + . Substitution of (1) into 

(34) produces Equation 43: 
  

T T
n n n nnF [S ]L E L=
� �� �� ��

 (43) 
 

which is an identity for all nL
��

 requiring: 
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T T
n nnF [S ] E ,=
� ��

 

 

or equivalently Equation 44a and 44b: 
 

T
n n nn nE [S ] F [R ]F= =
�� � �

 (44a) 

  

n nnF [R ]E=
� ��

 (44b) 

 

While the basis vectors nM
���

 and nL
��

 are related via 

the SI matrix [Sn],  the value vectors nF
�

and nE
��

are 
related by its transpose SI matrix [Rn]. 

Example 3: 

Consider the 3-variable Boolean function Equation 
45a-45d: 
  

3 1 2 3 1 2 2 3 2 3f (x ,x ,x ) x x x x x x= ∨ ∨  (45a) 

 

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3

x x x x x x x x x x x x

x x x

= ∨ ∨ ∨ ∨
 (45b) 

 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3x x x x x x x x x x x x x x x= + + + +  (45c) 

 

2 3 1 1 3 1 2 1 2 1 2 31 x x x x x x x x x x x x= + + + + + +  (45d) 

 
The truth table and Reed-Müller Spectrum of this 

function are Equation 46a and 46b: 
  

T
3F [1 1 1 0 0 1 1 0]=
�

 (46a) 
 

T
3E [1 0 0 1 1 1 1 1]=
��

   (46b) 
 
and can be used together with (2), (3) and (34) to 
produce its algebraic expressions (45c) and (45d). These 
two vectors also satisfy (44). 

8. CONCLUSION 

This study compiled many pieces of information 
about binary self-inverse matrices over GF(2). The study 
added also some novel contributions about the 
characterization and construction of these matrices via 
the concepts of direct sums and Kronecker products. 
Self-inverse binary matrices of order 1, 2 and 3 are 
listed, while those of order 2n are described in terms of 
recursive relations and Kronecker products. The utility of 

binary SI matrices in relating the two most common 
representations of Boolean functions is also investigated. 
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