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Abstract: Problem statement: In this study linear stability of a class of thmezuron cellular network
with transmission delay had been studiggproach: The model for the problem was first presented.
The problem is then formulated analytically and eugal simulations pertaining to the model are
carried outResults: A necessary and sufficient condition for asymtstability of trivial steady state
in the absence of delay is derived. Then a delgendent sufficient condition for local asymptotic
stability of trivial, steady state and sufficier@ndition for no stability switching of trivial stdg for
such a network are derived. Numerical simulatiorsults of the model were presented.
Conclusion/Recommendations. From numerical simulation, it appears that theeg/ toe a possibility
of multiple steady states of the model. It may bsgible to investigate the condition for the existe

of periodic solutions of the non-linear model atiablly.

Key words: Cellular neural network, asymptotic stability, @gdependent stability, delay independent
stability switching

INDRODUCTION the results obtained analytically, is also preskenkenally a
conclusion has been drawn.
The notion of Cellular Neural Network (CNNs) was

introduced by Chua and Yang (1998) and since to@H\ MATERIALSAND METHODS
models have been used in many engineering apjplitsti
e.g., in signal processing and especially in statiage
treatment (Chua, 1988). CNN is used in various tgpe
motion related applications such as processing @¥img
images, speed detection of moving objects, patter
classification. In order to achieve these tasks edayd
parameter was introduced into the CNN system eogjsti
Arik and Tavsanoglu (1998) studied the global astip *atanhx (O B, tanhix (£ 7))
stability and exponential stability of Delayed Naiur + by, tanh(x, (t-1)] + b fanh[x, (t-1)]
Network (DCNN). Periodic solutions and exponential dx, _
stability in delayed cellular network and suffidienditions E-—kxz(t)+a21tanh[>g (] +a, tanhl (8
for global asymptotic stability of cellular neuratwork with +aytanhfx, (] + b, tanh[x (£ 1)] (1)
delay are discussed by Cao (2000); Zhaeigal. (2007) and +D,,tanh[x, (t-1)]+ b,tanh[x, (t- 7]
others (Gyori and Hartung, 2004) respectively. 22 =

Model description: In this study we have considered here a
three neuron cellular network with discrete delagatibed
by following system of delay differential equations

n% = —kx,(t) + &, tanh(x (t)]+a, tanh[x ()]

In this study we have considered a class of threaron % = —kx,(t) + a,, tanh[x (t)]+a, tanh[x (t)
delayed cellular neural network and have studied Itital
stability phenomenon of its trivial equilibrium.r&i the model +agtanh(x, (0] + by tanhfx (¢ )]
is represented and linear analysis is done. Thessaty and +by,tanh[x, (t-1)] + b fanh(x, (t-1)]
sufficient condition of local asymptotic stabiliof the trivial
steady state (0,0,0) in absence of time delay bas Herived. Here x(t) (i = 1, 2, 3) corresponds to the activation

Then length of time delay has been estimated, belbigh  state of the neuron ‘i’ at time ‘t’. k>0 is the dscrate of
trivial steady state remains asymptotically stablet is delay neurons, that is, it represents the rate with wkiahmeuron
dependent condition of local asymptotic stabilif(@0,0) is  will reset to its potential to the resisting stateisolation
derived. Next sufficient condition for no stabilgyitching of ~ when disconnected from networkand k are the weights
(0,0,0) has been derived considering that themoiself -  of synaptic connections from neuron ' to neurdrat time
connection. Numerical simulation of the model, tatfirms  ‘t and (t-t) respectively. ©™0 corresponds to the
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transmission delay along the axon. It is assumatisystem
(1) is provided with initial conditions:

xi(s) =@(s)(i = 1,2,3) &[-1;,0]

where,q: [-1;,0] - R is assumed to be continued.

Due to the complexity of system (1), a specialkecak
general model has been considered to make thelatdcu
tractable. For time ‘t" and ()} the synaptic weights due to
self-connections are taken asand 3 respectively. Other
synaptic weights areas follows:

a=v,bi =P
ap=a3= & =a, hy=h=0b=Db;
1= &= az=-a; 1 =bp=bz=-b;

Now (1) takes the form:

% = —kx, (t) + ytanh[x, (t)] + atanh[x ()} atanh[x (t)]
+Btanh[x, (t— t)] + btanh[x, (t- t)] —btanh[x, (t—1)]

dx

th = —kx,(t) — atanh[x_(t)] +ytanh[x, (t)] + atanh[x (t)] (2)
- btanh[x (t-7)] + ptanh[x, (t— )] + btanh[x, (t- )]
dx, _

pm —kx,(t) + atanh[x (t)]- atanh[x (t)]tanh[x, (t)]

+ btanh[x (t—1)] —btanh[x, (t— )] + Btanh[x, (t— 1)]

Linear analysis: Evidently (0,0,0) is the trivial steady state
of (2). To investigate the local stability of stgadtate
(0,0,0), the system (2) has been linearized equatare
obtained:

du, _

M = (047000 + 2w, 0 +au ) P,
(t-1)+bu, (t- 1) + bu, (t-1)
B = k9 +ay O+10,00 +au, 0 +by

3)
(t=0) +Bu, (= 7) + buy (t-1)

s — kw0 +ay (6 +ay (1) Hu,® +bu,

(t=1) +bu, (t-1) +Pu,(t—1)

dt

Substituting ift) = g€ (i = 1,2,3), where ccis a
constant, the characteristic equation correspondiag

system (3) is obtained as follows:

(-k-A+y+pe™) a+be" a+be'
a+he™ (k X_M a+be'|= |
+y+pe™) (4)
a+be™ a+bg" (k=
y+pe™)

=22+ 3%k, —Be™) + I[P - Ae + Ce™ ]
+[Q- Re?t + EE® + D&M 1=0
37

Where:
k,=k-y

Q = k(Kk? +3&)
P=(+d)

R = 3(BP- 2abk )
A = 2(Bk, - ab)

E = 3(k,C- 2alp)
C=@*+b%)

D =p(p*+3b%)

Now in the absence of delay, that is wherr O,
characteristic Eq. 4 becomes:

A +3)\ 2k, -B)+3P-A+C]+[Q-R+E+D]=0
= 2%+ 3%k, —B) + 3k, —B)*+ (a + by’]

+[(k, —B)* +3a" (k -p)]=0

=27 +3 %k —y-B)+3M(k -y -p)*+(a+Dby]

+[(k —y-B)* +3a (k-vy-p)]=0

®)

By Routh-Hurwitz criteria all the roots of (5) hav
negative real parts iff the following conditionsldo

() k>y+B
(i) 4(ki-B)*+3(a+bf>0
(i) 4(k-B)*+3(a+bf>0

(6)

Here conditions (ii) and (iii) are obvious. Theref we
can state the following theorem:

Theorem 1. For the system (2) if the decay rate of neurons
is greater than the sum of synaptic weights comadimg to
self connections for a neuron (that is H¥ykp), then trivial
steady state (0, 0, 0) of system (2) is locallynastptically
stable in absence of delay.

Delay dependent local stability criteria: Now we try to
find out the delay dependent criteria of local iigbof
trivial steady state (0, 0, 0) of system (2).

We are to estimate the range of delay using Nyquis
criteria for which the trivial steady state (0,0d),of system
(2) remains locally asymptotically stable.

To do this first it has been assumed that conutim
(6) holds throughout the following discussion. Byntinuity
for sufficiently small t>0 all eigen values of (3) have
negative real parts provided that no eigen valu¢h wi
positive real part bifurcates fros ast increases from zero.
It is then possible to use a criterion of Nyquisiscribed
below, to estimate the rangewfor which the trivial steady
state (0, 0, 0) remains asymptotically stable. dahds the
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system (3) and a space of real valued continuonstitn  F(s) = (s+k-Be™)*+3(s+k-pe™)(a+bé")? (10)
defined on [z, =] satisfying initial conditions p(t) = W, (t)
= 1z (t) = O for k0 have been derived. The inverse Laplace transform of ($) will have terms

Let T, (s),5, (s);y (sdenote the Laplace transform of which exponentially increases with time i (s)has poles
ui(t), Ww(t), us(t) respectively. Taking Laplace transform of with positive real parts. In order for the trivisteady state

(3) we get: (0, 0, 0) to be locally asymptotically stable itriscessary
o - o B and sufficient that all the poles af (s)have negative real
su(s;-y @ =kuy(s)+ap (s) au(s parts.

- S o5t Now Nyquist plot technique will be used which stat
+B{%(S) +81(S)} © H{ e (S)JSZ(S)} © that ifs is the arc length along a curve circlihg tight half
—b{ U, (S) +63(s)} e~ of the plane, then a curve, (s) will encircle the origin a
e — - - number of times equal to the difference betweenbarmof

0) =

St (f)— L O)=ky (Si al (s au (s poles and number of zeros @f(s) in the right half of the
~b{u,(9) 5,5} €™ 4p{u(9) +3.(5) € () plane.
+b{U3(s) +63(s)} & Hence the conditions of local asymptotic stabitifythe

e o . o trivial steady state (0, O, 0) is given by:
su; (- u (0)= k y (sr au (9ay,(s)

+o{u (95,5} €= - { U (5) #,(5} € 'm Fliyo)>0 (D
~p{us(s) +54(s) €™ Re F(iy) =0 (12)
Where:
Where: F(s) = Given by (10)
. iyo = The smallest positive root of (12)
k, =k-y 3,(5) :j evy (Hhdt (=123 (8)

Now substituting s = fyin F(s) and then separating real
and imaginary parts Eq. 12 and 11 becomes respéctiv

Rearranging the terms in (7) and then eliminatigg)

and u,(s) we get:

f(s)u, (5) =AU (0)+A b, (0)+A U (O
+AB8,(S) +AD () + A {5)

Where:
F(s)= R +3RA

A, ={AR+A)b+B)+b(R-A)A+R)} €~

9)

3y,’k, — k(38 +k?) = By S~ k) -3aP + 6abk}
cosy;t — 6y, (ab—pk,)sinyt (13)
M.cos2y,t+ M.y sin2y s + M £os3yg

and:

—yoky + 3y, (@ +k?) > By, ~k,) -3aP + 6abk}
cosyt — 6y, (ab—Bk,)siny,t (14)
M cos2y,t+ M,y sin2yg + M £os3yg

A, =R*+A?

As = ~(Rb+AB)R-A)e™ Where:

A, =AR+A) I

A, = -AR -A) M, = 3k(p? + b%) - 6alp

A

Where R and A are given by:

R=(s+k-B &)
A=(a+bd)

That is, F(s) becomes:

. ={AR +A)(B-Db) +(R- AR -Ab)} e~

38

M, = 3(B* + b%)
M, = ~B(5* + 36°)

Now to get the estimate of length of delay we (is®
and (14) which when satisfied simultaneously give t
guarantee for local asymptotic stability of trivedkady state
(0, 0, 0) of system (2). Our technique will be todf an
upper bound yof y, independent of using (13) and then to
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estimatet such that, below that estimated valuer ¢fL4)

holds for all values of #[0,y,] and hence in particular y =

Yo.
From (13):

3By, — k)

-3a’B + 6abk
M|+ My o+ M 4

= 3(k, = [B[)y,” - (6]ab—Bk | +|M )y,

k.’ +3p|k,*

+@ +Gab + 3|+ M+ <0

33’02k1 - k1(3a2 + k12 )< - 636‘ ab—Bkl‘

(15)

Above relation holds for all values of, y1[0, v.),
where y is the root of:

3(k1 _‘B‘)yoz - (6‘ab_ Bkl‘ +‘M 2‘)YO_[k 13+ 3“3‘ kl2
+@3a" +qab)k +34p[+[M[+[MJ]=0

:B+\/BZ+4AC

2A

(16)

that is A

Where:
A =3k, ~[B])
B= (6\ ab- Bkl\ +\M2\) = G\ab— Bkl\ +3(B% +b%)
C=k’+3p|k,’+(3a" +Gab)k +34p[+[M[+|M]=
k. + 38| k.2 +3{(Ja] +|H)? +B 3k .+ [B{3((a) +|b])2 +B 3

At t = 0 from (14) it can be written as:

y02(3k1 -3p) = k1(3a2 + k12 )- Pk 12 -3aP
+6abk +M +M,= (kl_B)3
+6ab(k —B) + 30" (k, - )
+34 (k —B)

:é(kl—s)2+(a+b)2

17)

=Y
At t = 0 from (15) it can be written as:
_YO3 +3y0(a2 + k12)> Gyo (ab_B K )— szo

= Yo <3(a + k*)- 6(ab-PB k ) B+ B
=3{(k,~B)* + (a+ b}

(18)

As %(k1-8)2+(a+b)2<f{(Ig—B)2+(a+b)2}, it can be

conclude that at = O, (14) is valid at y =¢mgiven by (17).
So by continuity it will continue to hold for sidfently
smallt>0 aty = y.
Now (14) can be written as:

39

y2 +3(a +k?) < 6(ab-Bk,)cosyz + M £os2yg
{3B(y,? - k,?) ~3a® + 6abk}
Yo

(19)

siny,t — &sinZyor - &sin?,yor
o Yo

Now for small enough>0 at y = y, substituting )
from (13) and (19) we have:

[{3p(y,” -5k, — a?)- 12abl} cosy +{M,-3k M }

COS2yt + {M Yot 3I(1'\/|1}sin2yor
y

0
3k,{ 3B(y,’ -k’ -a”) + 6abk}
Yo

+6y0 (ab_ ﬁkl) +

siny,t + M cos3y,t + Msin3yor] <k (6a’ +8K)
Yo (20)
= [{3B(y,’ -5k* - &%)~ 12abl} (cosy 1)

+{M, =3k,M} (cos2yt —1) + M,(cos3yz 1)
3k,{3B(y,’ ~k,* -a*) + 6abk} }

+ {6)’0 (ab_ Bkl) +
Yo

siny,t + {M Yot 3klMl}sinZyor 4+ 3KM 2sin3ygl<n
Yy y

0 0
Where:

n= k1(6a2 +Bk12) _SB(yoz _5k12_ az) 21
+12abk - M, +3k M,— M, (21)

Let us denote LHS of (20) iz, y).

Using the estimate simy<ty and 1-cos & = 2sirf
Ty<21%y>.

We getg(r,y)sW(t,yo).

Where:

(T.¥o) = Pr® +Qu (22)
P and Q are given by:

P= [%\ 3Py, -5k, -a’) +12abl
+2\3KM2-M1\+2\M3\]V§ (23)

Q =[|6y, (ab-Bk,) + 3k{ B(y —k’ ~a®) + Gabk|
+2|M,y5 ~3K,M,| +9K,[M ]
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It is to be noted that for<g,<y. we haveq(t,y)<y
(t,Yo)=W( t+,Y+) Wheret, is the upper limit oft, below
which trivial steady state (0, 0, 0) of system iR)ocally
asymptotically stable.

Now if wy(z,,y,)<n, then o(z,y,)<n.

Thereforer, is the positive root ofy(z,,y,) =7 .
or, T, is the positive root of:

Pr’+Qr-n=0 (24)

where, P, Q are given by (23).
As P, Q both are positive, (24) has at least agative

root, so to make it possible that (24) has a pasitoot,n
should be less than zero. That.iss given by:

Q[T +am

:n<0 25
. 2P n< (25)

where P, Q are given by (23).

From the discussion above, following theorem can b

stated:

Theorem 2: If k>y+p andn< O then trivial steady state of

system (2) is locally asymptotically stable foegyt OO0,
1,) wWherert, is given by (25) P, @y are given by (23),y0
[0, y.) where y is given by (16).

Condition of no stability switching: Now we are to
determine the sufficient conditions for which theéseno

possibility of stability switching for trivial stely state (0, O,

0) of system (2) in absence of self connection.
Substituting = 0 in characteristic Eqg. 4, it becomes:

A +3k\Z+ 3P -Ae™ +Ce? ]

, . (26)
HQ-Re? +E€” ]=0
Where:
k,=k-vy
Q =k(K* +3a)
P = (kf +d)
R =-6abk
A'= —2ab
E =3k’
C =p

SubstitutingA =p +iew in (26) and then separating real

and imaginary parts, we get:

40

(n+Kk,)?=3u +k)o® +3a% @ + k,) = 6abe*
{~(u +k;)cosot — wsinwt}
=37 { {1 +k,)cos2ot + wsinot}

and:

3of(n +k,)? +a°]- o® = 6abe™
{—0)0031)17 +p+ kl)u)sinwr}
-3b* e {wcosot — (u + k,)sinot}

Letatt=1,u(¥) =0,0(7)=a . Thatis:

k, — 3k’ +3a’k, = 6abf k cos gt - asin {o1]

-31° [k,cosdt + asin {®1]

and:

30[(k , + a™)]- &° = 6abpcos {ot + k,sin {®1]

-3b*[®cos Dt - k,sin {®7]

(27)

(28)

(29)

(30)

Squaring and adding both sides of (29) and (3@, w
e:

@° +3(k? - 22 ' +3(k,* +3a* Po 2+ k, ik, *+3a%)?=9

[4a’° k> +b'k? +4& B >+ b & >+ 4ab% Tos
T-4ald k® cosat + 4ab’ ksin
{ &1 + 8ald kasinZnt + 4ald’ kdsindi]

(31)

Let us denote the right hand side of (31) fgy) .

Therefore:

f(o) <42 B k> +Bk> +4af | +pab k]+
[4a°b’ +b4+4aﬂ b2
gsa 'k +4al ko

=0’ +3(k>—-2a Yo’ +3(k,* +3a°- 12& B- 38
-12t7 | ath p* - 3607 4| k| (b +4 o

[k,2(k 2 +3a%)? - 368 F k- 9H k-

361" k?|ah— 368 db k 1<0

= o°+3(k*-2a& P*+30,0°-360.,0+a,<0

Where:

(32)

(33)



OnLine J. Bial. ci., 10 (1): 36-43, 2010

a, = (k—y)* +3a" - 31 (L4 ap)
o, = b?|d[ k=v|(b{ - 44)

o, = (k-7 (k -7)?+3a%) - oFF
(2|d +{4¥ 1- 368 afp kvl

(34)

A sufficient condition for there to be no stalyilit

switches is that the inequality (33) not be sa$ffor any

real @ . This is equivalent to the condition that:
@°+3(k, — 2& o' +30,0°~ 3600 +0a;>0 (35)

for all real o .
Now (36) can be written as:

2
60,

"6 _ 2 _ 2| ~4 (e 2
&) +3{(k Y) 2a}oo +3xl[w 01] +
2
{%_10812 ]>0
ag

for all realo .
From the above discussion it can be stated:

(36)

Theorem 3: If:
(i) (ky)>2d

(i) o;>0and
(iii) a;0,>1080,°

Then the ftrivial steady state (0, 0, 0) of sys{@nhas

the same stability character for all values of deglarameter

in the absence of self-connection, whetgo,, asare given

by (34).
RESULTS

Numerical simulation: To simulate the above described

model Numerically, Eq. 2 has been solved by fooriher
Runga-Kutta method prescribing some patrticular eslto

synaptic weights, b,y, B and decay rate k.

0.8 4
0.6 J

0.4

30 40

In order to do this a program has been developed i

Turbo ‘C’ and then using the results obtained gsapave

been plotted in Microsoft Excel and Axum. In Fig7 lime
(t) has been taken as independent variable ang x (t), z
(t) as dependent variable, that is these give vaameplots.
In Fig. 8 corresponding phase portrait of Fig. drgwn.

20 25 30

Fig.3: Here k=1.5,a=2,b =05~ 0,y = -0.7 origin is
locally asymptotically stable far= 0

0.6 1

0.4 1

Fig. 1: Here k> origin is locally asymptotically stable in Fig-4: Here k= 1.5,a =2, b= 0= 0,y = -0.7 origin is

absence of delay

41

locally asymptotically stable far= 1.8
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a0 P 5 10 15 20 2 30

=20
-30
-40
-30
-60

Fig. 5: Here k=0.5,a= 2,b= 0.8= @= 2. origin is
unstable stable far=0

T T
i 10 20 30

-40 1
-60
-850 4

-100 4

Fig. 6: Here k=0.5,a= 2,b= 0.8= = 2. origin is
unstable fort=1.8

Fig. 7: Here a periodic solution exists about arigi

First it has been considered thatk =1, a =104 b = 2,

B = 0.5, = 0 [that is ky+f] and in corresponding Fig. 1

has been shown that origin is locally asymptotycathble.
Now keeping all the values exceptaken in Fig. 1

it

[and

o800

a»

- = o
Fig. 8: Phase portrait of Fig. 7

Now taking the values k = 0.5, a =y25 2.7, b = 0.5,
=0, Fig 5and 6 are drawn for = 0 andt = 1.8
respectively and in both cases origin is unstable.

Now taking the values k = 0.5, a =y25 2.7, b = 0. 5,
B =0, Fig. 5 and 6 are drawn far = 0 andt =1.2
respectively and in both cases origin is unstable.

That is Theorem 1 is verified by Fig. 1 and 2.

That is Theorem 3 is verified by Fig. 3-6.

At last keeping all the values exceptaken in Fig. 1,
unchanged onlyt has been increased to = 0.8 and
existence of periodic solution for system (2) isfomned by
Fig. 7.

Also from Fig. 2 it is clear that the system has a
possibility to have multiple steady states.

DISCUSSION

In this study we analyzed a CNN system composed of
three neurons, with discrete delay. To best ofkmawledge
local stability analysis of such type of cellulaeunal
network model having all the self-connections anter-
connections has not been done. We have deriveds dela
independent sufficient conditions of local asymigtot
stability of trivial steady state (0, 0, 0) usinguRh-Hurwitz
method. In presence of delay, as the characteasfi@ation
(4) is of transcendental type having infinite numkod
solutions, the local analysis of model (2) is difii. Here
we have used the method of Laplace transformatmn t
determine the delay dependent sufficient conditioiniecal
asymptotic stability. In the delay independentetia of
local asymptotic stability inter-connecting synaptieights
(‘a’, 'b’) have no role, whereas in delay dependeriteria

unchanged only has been increased from 0.4-0.6 [that isthey have a vital rolen( contains parameters ‘a’ and ‘b’).
k<y+p] and corresponding Fig. 2 show that origin issyfficient conditions of no stability-switching fsuch a

unstable then.
Then it has beentakenk=1.5,a%2,-0.7,b=0.5

B = 0, such that sufficient conditions of no stdbili

switching (stated in Theorem 3) are preserved. these
values it has been shown that origin is stableder 0 and

if we increase rarbitrarily (in Fig. 4, 1 =1.8), then also

origin remains locally asymptotically stable.

42

network without self connection has been obtairfedm
Fig. 7 and 8 it is obvious that, for some specifidues of
parameters, a periodic solution exists about frivia
equilibrium. In our further research work we shall
investigate the condition for existence of periosidutions
of this model analytically. From numerical simudati
results (shown in Fig. 2), it appears that therey rha a
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possibility of multiple steady states. This paaalill be
taken in account in our future research.

CONCLUSION

From numerical simulation, it appears that therg be
a possibility of multiple steady states of the modtemay
be possible to investigate the condition for thestexce of
periodic solutions of the non-linear model anabfiiz.
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