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Abstract: A phenomenon-inspired meta-heuristic algorithm, harmony search, imitating music 
improvisation process, is introduced and applied to vehicle routing problem, then compared with one of 
the popular evolutionary algorithms, genetic algorithm. The harmony search algorithm conceptualized a 
group of musicians together trying to search for better state of harmony. This algorithm was applied to a 
test traffic network composed of one bus depot, one school and ten bus stops with demand by 
commuting students. This school bus routing example is a multi-objective problem to minimize both the 
number of operating buses and the total travel time of all buses while satisfying bus capacity and time 
window constraints. Harmony search could find good solution within the reasonable amount of time and 
computation. 
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INTRODUCTION 

 
 Traffic researchers and engineers sometimes cope 
with situations where optimization is needed to find the 
optimal solution out of huge amount of combinatorial 
solutions. Traditionally efficient enumeration methods 
such as branch and bound (B&B) technique have been 
used for supporting these optimal decisions. However, 
their computational disadvantages such as requiring 
huge amount of computation and memory made people 
rely on another type of methodology, that is, 
evolutionary or meta-heuristic algorithms. 
 The basic ideas of existing evolutionary and meta-
heuristic algorithms are motivated by natural 
phenomena. For example, the evolutionary algorithms[1-

3] and the genetic algorithm (GA)[4,5] are inspired by 
biological evolutionary process; tabu search[6] and ant 
algorithm[7] from animal's behavior; and simulated 
annealing[8] from physical annealing process. 
 Harmony Search (HS) algorithm has been recently 
developed in an analogy with music improvisation 
process where musicians in an ensemble continue to 
polish their pitches in order to obtain better harmony[9]. 
The HS algorithm has been successfully applied to 
various real-world combinatorial optimization problems 
such as truss structure design, pipe network design, 
pump switching, and hydrologic parameter 
calibration[10-13]. Especially, for the pump switching 
problem which has 240 (� 1.1× 1012) different 
combinations, HS found the less energy consuming 
operation than GA or even than B&B methods which 
were implemented as an IBM subroutine or MS-Excel 
Solver. Consequently, the HS algorithm provides a 

possibility of success in a combinatorial optimization 
problem in traffic engineering field. 
 In order to demonstrate the searching ability of HS, 
it is applied to a school bus routing problem (SBRP) 
which is a practical optimization problem. From a 
school's perspective, the SBRP aims to provide students 
with an efficient and equitable transportation service[14].  
Many approaches have been developed to solve the 
SBRP[14-16]. This problem falls into a large class of 
problems called vehicle routing problem (VRP), in 
which a set of vehicles provides pickup, delivery or 
simply a service to customers dispersed in an area. 
 Generally, the wider the problem scope is, the 
harder the problem becomes in term of the solution 
technique such as B&B method. Because an exact 
method may take a very long time to obtain the optimal 
solution, people have turned to evolutionary or meta-
heuristic algorithms such as GA that do not necessarily 
find the optimal solution, but tend to find good 
solutions within a reasonable amount of time[17]. 
Pattnaik et al.[18] proposed an optimization model of 
minimizing overall cost (both the operator's cost and 
user's) while determining a route configuration with a 
set of urban bus transit routes and associated 
frequencies using GA. In their approach, a set of 
candidate routes is first generated, and then GA is 
employed to find the optimal one. Chien et al.[19] 
introduced a GA model to the optimization of bus route 
and the corresponding headway while minimizing total 
cost, subject to geography, capacity, and budget 
constraints. Their results were validated by comparing 
with those obtained from exhaustive search algorithms. 
Jung and Haghani[20] used GA to solve a multi-vehicle 
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pickup and delivery problem with time window. They 
formulated the problem as a mixed-integer linear 
program, with an objective function to minimize the 
total cost, consisting of the fixed cost of the vehicles, 
routing cost, and customer inconvenient cost. 
In this study, a recently-developed music phenomenon-
inspired HS algorithm is applied to the test network of 
SBRP for the first time and compared with one of the 
most popular algorithms, GA. 
 

HARMONY SEARCH ALGORITHM 
 
 From the idea that existing evolutionary or meta-
heuristic algorithms imitate natural, scientific, or 
behavioral phenomena around us, a new algorithm can 
be conceptualized from a music performance process 
(say, a jazz improvisation) involving searching for a 
better harmony. Just like music improvisation seeks a 
best state (fantastic harmony) determined by aesthetic 
estimation, optimization process seeks a best state 
(global optimum) determined by objective function 
evaluation; Just like aesthetic estimation is determined 
by the set of the pitches played by ensembled 
instruments, function evaluation is determined by the 
set of the values assigned for decision variables; Just 
like aesthetic sound quality can be improved practice 
after practice, objective function value can be improved 
iteration by iteration. 
 

 
Fig. 1: Analogy between improvisation and 

Optimization 
 
 The analogy between improvisation and 
optimization is shown in Fig. 1. Each music player 
(saxophonist, double bassist, and guitarist) can 
correspond to each decision variable ( 1x , 2x , and 3x ), 
and the range of each music instrument (saxophone = 
{Do, Re, Mi}; double bass = {Mi, Fa, Sol}; and guitar 
= {Sol, La, Si}) corresponds to the range of each 
variable value ( 1x  = {100, 200, 300}; 2x  = {300, 400, 
500}; and 3x  = {500, 600, 700}). If the saxophonist 
toots the note Do, the double bassist plucks Mi, and the 
guitarist plucks Sol, their notes together make a new 
harmony (Do, Mi, Sol). If this new harmony is better 

than existing harmony, the new harmony is kept. 
Likewise, the new solution vector (100mm, 300mm, 
500mm) generated in optimization process is kept if it 
is better than existing harmony in terms of objective 
function value. Just as the harmony quality is enhanced 
practice after practice, the solution quality is enhanced 
iteration by iteration. 
 According to the above algorithm concept, the HS 
algorithm consists of the following five steps: 
parameter initialization; harmony memory 
initialization; new harmony improvisation; harmony 
memory update; and termination criterion check. 
 
Parameter initialization: In the first step, the 
optimization problem is specified as follows: 
Minimize (or Maximize) )(xf  (1) 

Subject to Nix ii ,...,2,1, =∈ X  (2) 
where )(⋅f  is an objective function; x  is a solution 
vector composed of each decision variable ix ; iX  is 
the set of possible range of values for each decision 
variable, that is, { })(),...,2(),1( Kxxx iiii =X  for discrete 
decision variables (Generally, candidate values are 
sorted like )(...)2()1( Kxxx iii <<< . However, there is 
no sorting required in this vehicle routing problem 
because each variable value represents just node 
number rather than physical amount such as node 
demand); N  is the number of decision variables (= 
number of music instruments); and K  is the number of 
candidate values for the discrete decision variables (= 
number of pitches for each instrument). 
 The HS algorithm parameters are also specified in 
this step: HMS (harmony memory size; = number of 
simultaneous solution vectors in harmony memory), 
HMS (harmony memory considering rate), PAR (pitch 
adjusting rate), and number of improvisations (= 
number of objective function evaluations). These 
algorithm parameters are explained in the following 
steps. 
 
Harmony memory initialization: In Step 2, the 
Harmony Memory (HM) as shown in Equation 3, is 
crammed with as many randomly generated solution 
vectors as the size of the HM (i.e., HMS). 
 
 
 
 
  (3)  
 
 
 
 
New harmony improvisation: A new harmony vector, 

),...,,( 21 Nxxx ′′′=′x  is improvised by following three 
rules: (1)  random selection, (2) HM consideration, and 
(3) pitch adjustment. 
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Random selection: As a musician plays any pitch 
within the instrument range (for example, {Do, Re, Mi, 
Fa, Sol, La, Si} in Fig. 2), the value of decision variable 

ix′  is randomly chosen within the value range iX . 
 HM Consideration. As a musician plays any pitch 
out of the preferred pitches in his/her memory (for 
example, {Do, Mi, Do, Sol, Do} in Fig. 3), the value of 
decision variable ix′  is chosen from any pitches stored 

in HM ({ HMS
iii xxx ,,, 21

� }) with a probability of 
HMCR (0 � HMCR � 1) while it is randomly chosen 
with a probability of (1-HMCR) in random selection 
process as previously described. 

��

�
	



∈′
∈′

←′
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.}...,,,{ 21

HMCRw.p.x

HMCRw.pxxxx
x

ii

HMS
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(4) 

 
Pitch Adjustment. Once one pitch is obtained in HM 
consideration, a musician can further adjust the pitch to 
neighboring pitches (for example, the note Sol can be 
adjusted to Fa or La as shown in Fig. 4) with a 
probability of HMCR × PAR (0 � PAR � 1) while the 
original pitch obtained in HM consideration is just kept 
with a probability of HMCR × (1-PAR). 
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where ix′  obtained in HM consideration and )(kxi  (the 
kth element in iX ) are identical; m  
( ...},2,1,1,2{..., −−∈m ) is a neighboring index used 
for discrete decision variables ( m  has normally +1 or -
1). 
 
Violated harmony consideration: Once the new 
harmony ),...,,( 21 Nxxx ′′′=′x  is obtained using the 
above-mentioned three rules, it is then verified whether 
it violates problem constraints. Although the new 
harmony violates the constraints, it can be still kept in 
HM by taxing penalty, just as rule-violated harmony 
(for example, parallel fifth violation in Fig. 5) was still 
used in composition by the famous composers such as 
Ludwig van Beethoven. This technique is used for 
considering constraints in this study. 
 
Harmony memory update: If the new harmony vector, 

),...,,( 21 Nxxx ′′′=′x  is better than the worst harmony in 
the HM, judged by objective function value, the new 
harmony is included in the HM and the existing worst 
harmony is excluded from the HM. 
 
Termination criterion check: If the termination 
criterion (number of improvisations) is reached, 
computation is stopped. Otherwise, Steps 3 and 4 are 
repeated. 
 
 

 
Fig. 2: Range of music instrument 
 

 
Fig. 3: Preferred pitches stored in harmony memory 

 
Fig. 4: Pitch adjustment 
 

 
Fig. 5: Harmony violating parallel fifth 
 

SCHOOL BUS ROUTING PROBLEM 
 
 The music-inspired HS algorithm is applied to 
school bus routing problem which is a multi-objective 
problem to minimize both the number of operating 
buses and the travel time of all buses, with two major 
constraints (bus capacity and time window). The study 
network to be optimized consists of one bus depot, one 
school, and ten bus stops as shown in Fig. 6. Each bus 
stop is demanded by certain number of commuting 
students, and travel time (in minutes) between two 
stops is specified in the figure. 
 

 
 
Fig. 6: Diagram of school bus routing network 
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Decision variables: Decision variables and other 
variables used in this study are as follows: 

ix  = decision variable representing demand node (bus 
stop) i , which has bus k  as a variable value, DNi ∈ , 

VSk ∈ . In this study, there are ten nodes and four 
candidate buses. 
x  = set of decision variables ix , DNi ∈ . 

)(xnbus  = number of operating buses. The number is 
equal to or less than the number of candidate buses. 

k
ijlk  = 

�
	



otherwise0
nodeandnodetravelsbusif1 jik

, 

DNEDjSTDNiVSk ∈∈∈ ,, . 

kvcp  = 
�
	



otherwise0
 busin iolation capacity v bus1 k

, VSk ∈ . 

kvtm  = 
�
	



otherwise0
 busin   violation windowtime1 k

, VSk ∈ . 

 
Problem parameters: Problem parameters used in this 
study are as follows: 
fc  = fixed cost per school bus. 
rc  = routing cost (e.g., energy, labor, etc) per moving 
time. 

ijsp  = shortest path between node i and node j . In this 

study, the shortest path ijsp  (in minutes) between node 

i  and node j  is calculated by Floyd and Warshall's 
algorithm. 

1pc  = penalty cost for bus capacity violation. 
2pc  = penalty cost for time window violation. 

)(VSnset  = number of elements in set VS  (number of 
candidate buses). 

k
iDM  = number of boarding students on bus k  in node 

i , VSk ∈ , DNi ∈ . 
kBC  = bus capacity of bus k , VSk ∈ . 

bt  = boarding time per student. 
kTW  = time window of bus k , VSk ∈ . 

Sets: Sets used in this study are as follows: 
DN  = set of demand nodes (= bus stops). 
ST  = starting node (= bus depot). 
ED  = ending node (= school). 
STDN  = union set of starting node and demand nodes 
( DNST ∪ ). 
DNED  = union set of demand nodes and ending node 
( EDDN ∪ ). 
VS  = set of vehicles. 
 
Problem formulation: 
 

( ) ( )

1 2

Minimize k
ij ij

k i STDN j DNED

k k

k k

f fc nbus rc sp lk

pc vcp pc vtm

∈ ∈

= × + ×

+ × + ×
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� �

x x
 (6) 

Subject to )()( VSnsetnbus ≤x  (7) 

VSkBCDM k

i

k
i ∈≤� ,  (8) 

VSkTWbtDMlksp
STDNi DNEDj i

kk
i

k
ijij ∈≤+� � �

∈ ∈
, (9) 

 While each decision variable ix  stands for each 
bus stop (demand node) i , and has a value of the 
specific bus number k ( VSk ∈ ) that serves the bus stop 
i , the objective function of the problem is to minimize 
both the total number of operating buses and the 
moving time of the buses as described in the first and 
the second terms of Equation 6. The third and fourth 
terms represent penalty costs for the violation of bus 
capacity and time window, respectively. The fixed cost 
per each operating bus, fc  is assumed as $100,000/bus; 
routing cost per moving time, rc  is $105/min; shortest 
path ijsp  (in minutes) between node i  and node j  is 

calculated by Floyd and Warshall's algorithm; 
connection status between node i  and node j  for bus 

k , k
ijlk  has 1 when bus k  passes along from node i  

( STDNi ∈ ) to node j  ( DNEDj ∈ ); penalty cost for 
every bus capacity violation, 1pc  is $100,000 when 
any bus carries more than 45 students; and penalty cost 
for every time window violation, 2pc  is $100,000 
when any bus operates more than 32 minutes to convey 
students to the school. 
 Equation 7 represents the maximum number 
constraint for the operating buses, where the number of 
operating buses can be equal to or less than the number 
of candidate buses (= 4 buses in this study). Equation 8 
shows that the number of boarding students in a bus is 
less than or equal to the bus capacity (= 45 students for 
each bus). Equation 9 shows that the travel time of a 
bus is less than or equal to the time window (= 32 
minutes for each bus). Travel (in-vehicle) time in this 
study consists of both bus moving time and student 
boarding time, where each student's boarding time bt  
is 6 seconds. 
 

COMPUTATION AND RESULTS 
 
 In order to apply the HS algorithm to the school 
bus routing problem, problem and algorithm parameters 
are specified: number of musical instruments (number 
of demand nodes) = 10; pitch range of each instrument 
(value range of each decision variable) = {bus 1, bus 2, 
bus 3, bus 4}; HMS = 10 ~ 100; HMCR = 0.3 ~ 0.95; 
PAR = 0.01 ~ 0.05; and stopping criterion = 1,000 
improvisations. Next, harmonies (solution vectors) are 
randomly generated from the possible range as many as 
HMS. After that, a new harmony is improvised based 
on three rules (random selection, HM consideration, 
and pitch adjustment). The new harmony vector x′  is 
then  put  to  the  objective  function  to obtain total cost 
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Table 1: Results of school bus routing problem 
Routing Cost ($) Bus # Routes # of Students Travel Time (min) 
307,980 1 Depot → 8 → 9 → 10 → School 45 31.5 
 2 Depot → 4 → 5 → 6 → School 45 28.5 
 3 Depot → 1 → 2→ 3 → 7 → School 40 29.0 
 4 Do Nothing - - 
410,185 1 Depot → 2→ 6 → School 35 25.5 
 2 Depot → 1 → 3 → 7→ School 25 27.5 
 3 Depot→ 5 → 9 → 10 → School 45 27.5 
 4 Depot → 4→ 8→ School 25 29.5 

 
which consists of fixed bus cost, bus travel cost, and 
two penalty costs. If bus k  violates equation 8, the 
capacity violation variable, kvcp , becomes 1, and the 
penalty cost for the capacity violation is added the 
objective function. If bus k  violates equation 9, the 

time window violation variable, kvtm , becomes 1, and 
the penalty cost for the time window violation is added 
to the objective function. If the total cost for the new 
harmony is better than the cost of any harmony stored 
in the HM, the new harmony is included in the HM, and 
the existing harmony with the worst cost is excluded 
from the HM. The new harmony is continuously 
improvised until the stopping criterion is satisfied. 
 When applied to the school bus routing problem, 
HS algorithm could find the global optimum ($307,980) 
only after 1,000 improvisations (or function 
evaluations), which was examined by the total 
enumeration for this 410 (� 1.05 × 106) combinatorial 
problem. It took 6.6 seconds on Intel 233MHz CPU to 
search 0.1% of total solution space (= 103 / 1.05 · 106). 
Table 1 shows the optimal route, number of commuting 
students, and travel time for the global optimal solution 
and near-optimal solution. "Do Nothing" in 5th row of 
the table means that the bus 4 does not have to be 
operated because only three buses can serve all the 
students in the problem. 
 HS results were also examined by comparing with 
those of popular evolutionary technique, GA. In order 
to fairly compare HS with GA, the number of objective 
function evaluations and the number of computational 
runs are same in both algorithms: in HS, the number of 
function evaluations is 1,000 and the number of runs is 
20 with different HMS, HMCR, and PAR; and in GA, 
the number of function evaluations is 1,000 (= 
population size × number of generations) and the 
number of runs is 20 with different population size, 
crossover rate, and mutation rate, recommended by 
Koumousis and Georgiou[21]. 
 After being applied to the test routing problem, 
both algorithms could find the global optimum solution. 
However, HS reached it twice while GA did it once out 
of 20 different runs. The average costs are $399,870 in 
HS, and $409,597 in GA, respectively. In addition, HS 
performed each run slightly faster than GA on the same 
machine. 
 

CONCLUSION 
 
 A recently-developed music phenomenon-inspired 
algorithm, HS was introduced and modeled for solving 
the school bus routing problem. The objective of 
proposed HS model for the school bus routing is to 
minimize the total cost of multi-objective function 
which consists of bus operating cost, bus travel time, 
and penalties related with bus capacity and time 
window violations. HS model could find global 
optimum within far less function evaluations comparing 
with total enumeration. HS model also found better 
solution than GA in terms of number of reaching global 
optimum, average cost out of multiple runs, and 
computing time. 
 From these results, the HS algorithm appears to 
have a potential to be successfully applied to 
combinatorial problems in traffic engineering field. 
Especially, the presented bus routing model is expected 
to be applied to large-scale routing networks for the 
future study. 
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