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Abstract: Problem statement: Land use planning may be defined as the process of allocating 
different activities or uses to specific units of area within a region. Multi sites Land Use Allocation 
Problems (MLUA) refer to the problem of allocating more than one land use type in an area.  MLUA 
problem is one of the truly NP Complete (combinatorial optimization) problems. Approach: To cope 
with this type of problems, intelligent techniques such as genetic algorithms and simulated annealing, 
have been used. In this study a new approach for solving MLUA problems was proposed by 
integrating Gene Expression Programming (GEP) and GIS. The feasibility of the proposed approach 
in solving MLUA problems was checked using a fictive case study. Results: The results indicated 
clearly that the proposed approach gives good and satisfactory results. 
Conclusion/Recommendation: Integrating GIS and GEP is a promising and efficient approach for 
solving MLUA problems. This research focused on minimizing the development costs and 
maximizing the compactness of the allocated land use. The optimization model can be extended in the 
future to maximize also the spatial contiguity of the allocated land use. 
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INTRODUCTION 

 
 Land use planning may be defined as the process of 
allocating different activities or uses such as 
agriculture, manufacturing industries, recreational 
activities or conservation to specific units of area within 
a region[14]. Land use planning is a special allocation 
problem, where the planner, by manipulating the 
proportions and locations of land uses, seeks to satisfy 
one or more goals. Land use planning is a potentially 
challenging search and optimization task, as the planner 
must frequently take into account complex non-linear 
interactions between parcels of land allocated to 
particular land uses[11]. In these circumstances, land use 
allocation must try to reconcile multiple conflicting 
interests as rationally and transparently as possible[4], 
which, among other things, involves evaluating land 
units not only with regard to their suitability for 
competing uses but also with regard to such factors as 
contiguity among units assigned to the same use and the 
compactness of the single-use land masses so 
created[3,5,12,13]. Multi sites Land Use Allocation 
Problems (MLUA) refer to the problem of allocating 
more than one land use type in an area. MLUA 
problems can be solved with optimization modeling, 
which uses the concept of dividing an area into cells, 

defining the potential land use types and searching the 
optimal distribution for these land uses across all cells 
subject to a set of criteria and constraints[1]. Depending 
on the size of the region and on the spatial resolution 
required, an enormous increase in the number of 
decision variables can easily result[14]. MLUA problem 
is one of the truly NP Complete (combinatorial 
optimization) problems. The computational burden on 
computer programs for land-use allocation, which 
makes exact optimization methods such as integer 
programming infeasible when there are more than 2000 
or 3000 land units to be allocated[3], is increased by 
simultaneous consideration of multiple possible uses. It 
is, therefore, necessary to turn to heuristic algorithms 
capable of achieving near-best solutions in a reasonable 
time[13]. Intelligent techniques such as genetic 
algorithms and simulated annealing, have been used; 
see for example[1,2,6,11,13-15]. Geographic Information 
Systems (GIS), which are computer-based information 
system that enable capture, modeling, storage, retrieval, 
sharing, manipulation, analysis and presentation of 
geographically referenced data[16], can provide the input 
for optimization algorithms and can be used to present 
the results generated by these algorithms[14]. This study 
demonstrates how Gene Expression Programming 
(GEP), a recently developed AI approach, can be 
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integrated with GIS for solving a modified version of 
the non-linear integer program land use allocation 
model developed by Aerts and Herwijnen[2]. A 
prototype GEP-based Spatial Decision Support System 
is developed for solving a fictive case study.  
 
Gene expression programming: Gene expression 
programming, an artificial problem solver inspired in 
natural genotype/phenotype system, was invented by 
Ferreira in 1999[7] and incorporates both the simple, 
linear chromosomes of fixed length similar to the ones 
used in genetic algorithms and the ramified structures 
of different sizes and shapes similar to the parse trees of 
genetic programming. Thus, the phenotype of GEP 
consists of the same kind of ramified structure used in 
genetic programming, but the ramified structures 
created by GEP (expression trees) are the expression of 
a totally autonomous genome[9]. 
 There are two main players in gene expression 
programming: the chromosomes and the Expression 
Trees (ETs) or programs. The expression of the genetic 
information's encoded in the chromosome. As in nature, 
the process of information decoding is called translation 
and this translation implies a code and a set of rules. 
The genetic code of gene expression programming is 
very simple: a one-to-one relationship between the 
symbols of the chromosome and the nodes they 
represent in the trees. The rules determine the spatial 
organization of nodes in the expression trees and the 
type of interaction between sub-ETs. Therefore, there 
are two languages in GEP; the language of the genes 
and the language of expression trees and, thanks to the 
simple rules that determine the structure of ETs and 
their interactions, it is possible to immediately infer the 
expression tree given the sequence of a gene and vice 
versa. This unequivocal bilingual notation is called 
Karva language.  Figure 1 shows an example of 
expression trees and Karva language[8]. 
 The fundamental steps of gene expression 
programming are schematically shown in Fig. 2. The 
process begins with the random generation of the 
chromosomes of a certain number of individuals (the 
initial population). Then these chromosomes are 
expressed and the fitness of each individual is evaluated 
against a set of fitness cases (also called selection 
environment). The individuals are then selected 
according to their fitness (their performance in that 
particular environment) to reproduce with modification, 
leaving progeny with new traits. These new individuals 
are, in their turn, subjected to the same developmental 
process: Expression of the genomes, confrontation of 
the selection environment, selection and reproduction 
with modification. The process is repeated for a certain 
number of generations or until a good solution has been 
found[9].  

 
 
Fig. 1: An example of expression trees and Karva 

language[8] 

 

 
 
Fig. 2: The flowchart of GEP[9] 
 
 The main difference between GA, GP and GEP 
resides in the nature of the individuals: GA individuals 
are symbolic strings of fixed length (chromosomes) 
whereas GP individuals are trees of different sizes and 
shapes. GEP individuals are also (expression) trees of 
different sizes and shapes, encoded as strings of fixed 
length (chromosomes) using Karva notation. Thus, GEP 
retains the benefits of GAs and GP, while it overcomes 
some of their limitations: GAs chromosomes are easy to 
manipulate genetically, but they lose in functional 
complexity, whereas GP trees exhibit functional 
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complexity, but are computational expensive. 
Moreover, in GEP there is no such thing as an invalid 
expression (by contrast to GP) and the structural 
organization of GEP chromosomes allows the 
unconstrained modification of the genome. GEP genetic 
operators always produce valid expression. Thus the 
basis for the novelty of GEP resides on the 
revolutionary structure of GEP genes[8].  
 

MATERIALS AND METHODS 
 
 A prototype spatial decision support system is 
developed by integrating GIS and GEP for solving the 
MLUA as shown in Fig. 3. The system is designed 
using ESRI's MapObjects®-Java Edition which is a 
powerful collection of client- and server side 
components that developers can use to build custom, 
cross-platform Geographic Information System (GIS) 
applications. 
 
Preparing spatial data from GIS: GIS provides the 
detailed spatial data for the optimization process. The 
development costs and the compactness values of the 
allocated land uses are used to evaluate the fitness of 
each candidate solution. GIS is used in calculating the 
development cost for each land use. This cost varies 
with locations depending on specific physical attributes 
of the area, such as soil type, elevation and slope.   
 
Encoding candidate solutions: An important step for 
implementing GEP is to design chromosomes according 
to the problem domain. In this study, the multi site land 
use allocation problem (MLUA) is to find out the 
optimal {x, y} coordinates for k different land uses 
within the spatial dimensions of N x M cells. Each 
chromosome is represented by a two-dimensional array 
representing the grid or the map of the area under study. 
 

 
 
Fig. 3: Integration of GEP and GIS for MLUA 
 
Each entry in this two dimensional array is filled with 
the ID of the land use supposed to occupy the 

corresponding location in the actual map. Figure 4 
shows a chromosome with three land uses distributed 
randomly (their percentages are 20, 40 and 40%). 
 
Creating initial population for the candidate 
solutions: An initial population is created using a 
random procedure. Each individual is a candidate 
solution. A trial and error-based algorithm is used to fill 
the chromosomes of the initial population with the 
available land uses randomly while meeting the 
specified percentage of each land use. The population 
size should be determined for creating the breeding 
pool. However, there is no agreement on the size of the 
population for optimization procedures[10]. If the size is 
set too small, there will not be enough individuals to 
find the best solution. If the size is too large, longer 
time is required for solving the problem.  
 
Defining fitness functions: The evolutionary process is 
mainly dependent on fitness functions. The fitness 
functions should be used to assess the performance of 
each solution or individual (chromosome). It is obvious 
that fitness functions are crucial to the determination of 
the final results. There is no unique way that defines the 
fitness functions which is related to a problem 
domain[10]. In this research, the objective functions of 
the multi site land used allocation problem (MLUA) is 
minimizing the development costs and maximizing the 
spatial compactness of the allocated land uses. The 
development costs are simply the sum of the costs of all 
the cells of the grid. These costs vary with location 
because they are depending on specific physical 
attributes of the area, such as soil type, elevation and 
slope. The development costs are inversely proportional 
to the fitness of the chromosome. Spatial compactness 
merely encourages cells of equal land use to be 
allocated next to one another, but this may result in 
divided patches[3]. Compactness is a value that 
represents the degree at which the cells of each land use 
are patched together.  Compactness   is directly 
proportional to the fitness of the chromosome. 
 

 
 
Fig. 4: An example of the used chromosome 
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 The calculations of the fitness functions are based 
on a modified version of the non-linear integer program 
land use allocation model developed by Aerts and 
Herwijnen[2].  
 According to Aerts and Herwijnen[2] the 
optimization model can be written as follows:   
Minimize: 
 

K N M K N M

ijk ijk1 ijk 2 ijk
k 1 i 1 j 1 k 1 i 1 j 1
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= = = = = =
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ijk
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Where: 
N and M = The number of rows and columns of the 

grid; k is the different land uses 
Xijk = A decision variable assigning land use k to 

cell (i, j) 
Tk = The fixed total number of cells to be 

allocated with land use k 
Cijk = The development costs which are involved 

with allocating land use type k at cell (i, j) 
bijk = The number of cells neighboring cell (i, j), 

that have the same land use k; w1 is the 
weight of the cost objective and, w2 is the 
weight of the compactness objective 

 
 The above model cannot be solved using GEP 
because of the following two reasons: 
 
• The model can result in negative values of the 

fitness function and the chromosome's fitness value 
has to be greater than or equal to Zero 

• The model doesn't take into consideration the 
difference between the magnitudes of the 
development costs and the compactness. In most 
cases values of the development costs are in order 
of thousands or even millions. On the other hand 
values of the compactness are usually in order of 
hundreds. Thus, the contribution of compactness to 
the final fitness value will be much smaller than 
that of the development costs. In this case it will be 
difficult to determine the typical values for w1 and 

w2 that will equate the contribution of the two 
parameters, the development costs and 
compactness 

 
 To solve the above two problems, the costs can be 
calculated on a reversed scale and can then be 
normalized. The final modified model can be written as 
follows: 
Maximize: 
 

K N M K N M

max ijk ijk ijk ijk min
K 1i 1 J 1 K 1i 1 J 1

1 2
max min max min

C C C b x comp
w wC C comp comp

= = = = = =
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⋅ − ⋅
− −

 

 
Where: 
Cmax = The maximum possible cost of a 

chromosome               
Cmin = The minimum possible cost of a 

chromosome 
Compmax = The maximum possible compactness of a 

chromosome and              
Compmin = The minimum possible compactness of a 

chromosome            
 
 The values of Cmin, Cmax, compmin and compmax  can 
be calculated approximately taking into consideration 
that  the compactness and the development costs values 
of all the chromosomes in one iteration are bounded in 
the ranges (compmin, compmax) and (Cmin, Cmax) 
respectively. This condition ensures the validity of the 
fitness calculation of each chromosome. Cmin and Cmax 
can be calculated using sorting techniques while 
compmin, compmax can be calculated by generating a 
large number of random chromosomes at the beginning 
of each iteration and then the smallest and the highest 
compactness are taken as compmin and compmax 
respectively. Since these four values (Cmin, Cmax, 
compmin and compmax) are calculated approximately as 
mentioned before, the proposed GEP algorithm must be 
adaptive. That is, if a new chromosome has a 
development cost or compactness value that lies outside 
the calculated boundaries then the relevant variable 
must be updated to reflect this new finding and the 
fitness value of the whole population is recalculated.  
 
Roulette wheel selection: In GEP, individuals are 
selected according to their fitness by roulette-wheel 
sampling. Each individual receives a slice of the 
roulette-wheel proportional to its fitness. Then the 
roulette is spun as many times as there are individuals 
in the population so that the population   size is 
maintained from generation to generation[8]. 



Am. J. Applied Sci., 6 (5): 1021-1027, 2009 
 

1025 

 
 
Fig. 5: Inversion process using pointers notation 
 
 Inversion operator: Inversion is the most 
powerful of the combinatorial-specific genetic 
operators, causing populations to evolve with great 
efficiency even if used as the only source of genetic 
modification. The inversion operator randomly selects 
the chromosome, the multigene family (MGF) to be 
modified, the inversion points in the MGF, then inverts 
the sequence between theses points. Each chromosome 
can only be modified once by this operator[8]. Inversion 
is the only used combinatorial-specific genetic operator 
in the proposed GEP algorithm and it is implemented 
using pointer notation. A pointer is just a marker that 
can move back and forth through the cells of a 
chromosome. Two pointers are placed in two random 
cells of the chromosome (the two dimensional matrix). 
The first pointer moves forward and the second moves 
backward until they meet. During their movement they 
exchange the values of the cells visited by both of them 
at each step. The pointer notion enables both the user 
and the programmer to view the two dimensional 
structure of the map as one dimensional cyclic 
structure. The major advantage of using this kind of 
pointers is that they give all the cells of the 
chromosome equal probabilities of being affected by 
the inversion operator, even those cells that are found at 
the beginning and at the end of the map, as shown in 
Fig. 5. Inversion is not directly applied to all the 
selected chromosomes but it is applied to a selected 
number of chromosomes according to a predefined 
inversion probability percentage. 
 
Elitism: Elitism is a mechanism which ensures that 
the Chromosomes of the most highly fit member(s) of 
the population are passed on to the next generation 
without being altered by genetic operators (inversion). 

 
 
Fig. 6: Map of development costs per land use type[2] 
 
Using elitism ensures that the minimum fitness of the 
population can never reduce from one generation to the 
next. Elitism has proved to have excellent effect in 
reaching good solutions faster without high risk of 
being trapped in local optima. 
 
Fixed number of iterations: Except generating the 
initial population, all the steps are repeated for a 
predefined number of iterations (generations). The elite 
member of the final population will be our final 
solution.  
 
Application of the proposed approach: In order to 
demonstrate how our proposed approach can be used in 
solving MLUA problems, the fictive case study 
developed by Aerts and Herwijnen[2] is used. Consider 
a study area measuring 10×10 cells (N = M = 10) with 
3 land use types Lu1, Lu2 and Lu3 (K = 3). The 
required spatial coverage of the three land use types is 
taken as 57% for Lu1, 29% for Lu2 and 14% for Lu3. 
The used study area with its fictitious development 
costs, which in a real case might be derived   from 
physical attributes, is shown in Fig. 6. 
 
Setting the GEP parameters: One of the major steps 
in preparing to use the proposed procedure is the setting 
of GEP parameters such as population size, generation 
number and inversion rate.  
 

RESULTS AND DISSUCION 
 
 Several experiments were carried out to determine 
the proper values of GEP parameters for solving the 
fictive case study. The results of these experiments can 
be summarized as follows: 
 
• Inversion rates between 10 and 30% produce good 

results as shown in Fig. 7 
• The population size between 200 and 300 

individuals  will  yield good results as shown in 
Fig. 8. A larger size of population may be required 
when the problem is extremely complicated 

• Generation numbers between 1300 and 1500 
produce good results, although better results can be 
obtained using higher generation numbers as 
shown in Fig. 9 
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7: Max. Fitness vs. inversion rate 
 

 
 
Fig. 8: Max Fitness vs. population size 
 

 
 
Fig. 9: Max. Fitness vs. generation number 
 

  
 (a) (b) 
 
Fig. 10: Comparison of LINGO and GEP solutions at 

w1 = w2 (a) LINGO Solution (development 
cost = $ 281574) (b) GEP Solution 
(development cost = $ 293400) 

 
 To check the validity of the proposed GEP 
algorithm, the optimal solution of the case study was first 
obtained using LINGO 8.0 (http://www.lindo.com). 
Exact optimization solver such as LINGO can easily 
solve  the  modest  size  problems  up   to  10×10   cells. 

 
 
Fig. 11: GEP  solution (w1 = 0, w2 = 1, Generation 

No. = 1400, Population size = 250, Inversion 
rate = 0.2, Development cost = $321900, 
Compactness = 288) 

 

 
 
Fig. 12: GEP solution  (w1 = 1, w 0 = 1, Generation 

No. = 1400, Population size = 250, Inversion 
rate = 0.2, Development cost = $289850, 
Compactness = 172) 

 
Then the LINGO results have been compared with the 
results obtained using the proposed GEP algorithm as 
shown in Fig. 10. This comparison indicated clearly 
that the proposed approach gives good and satisfactory 
results. Heuristic approaches such as GEP are robust, 
fast and capable of solving large combinatorial 
problems such as MLUA, but they do not guarantee the 
optimal solution. Comparison of LINGO and GEP 
solutions at w1 = w2. Figure 11 and 12 show the 
solution of the case study using different weights of the 
development costs (w1) and compactness (w2). 
 

CONCLUSION  
 
 MLUA problem is one of the truly NP Complete 
problems. To cope with this type of problems, 
intelligent techniques such as genetic algorithms and 
simulated annealing have been used. In this research, 
we proposed a new approach for solving MLUA 
problem by integrating GIS with GEP.  Land use 
allocation model proposed by Aerts and Herwijnen[2] 
was modified and solved using the proposed approach. 
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The feasibility of the proposed approach in solving 
MLUA problems was checked using a fictive case 
study. The results obtained indicate that integrating GIS 
and GEP is a promising and efficient approach for 
solving MLUA problems. This research focused on 
minimizing development costs and maximizing the 
compactness of the allocated land use. The optimization 
model can be extended in the future to maximize also 
the spatial contiguity of the allocated land use. This 
work is intended as a first step toward developing an 
ArcGIS extension for Land Use Allocation (ArcGIS LU 
Analyst). The proposed extension or tool box would 
greatly enhance the decision making capabilities of the 
ArcGIS. 
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