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Abstract: Problem statement: This study is concerned with the problem of delay-dependent stability 

analysis for discrete-time systems with interval-like time-varying delays. 

Conclusion/Recommendations: The problem is solved by applying a novel Lyapunov functional and 

an improved delay-dependent stability criterion is obtained in terms of a linear matrix inequality. 
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INTRODUCTION 

 

 Recently, the problem of delay-dependent stability 

analysis for time-delay systems has received 

considerable attention and lots of significant results 

have been reported; see, for example, Chen et al. 

(2003), Bellomo and Bellouquid, 2006; Brezzi et al., 

2007; El-Said and EL-Sherbeny, 2005; Lekhmissi, 

2006) and the references therein. Among these 

references, we note that the delay-dependent stability 

problem for discrete-time systems with interval-like 

time-varying delays (i.e., the delay d (k) satisfies 

0<dm≤d(k) ≤dM) has been studied in (Alfaris et al., 

2008; Bezzarga and Bucur, 2005; Brezzi et al., 2006), 

where some LMI-based stability criteria have been 

presented by constructing appropriate Lyapunov 

functionals and introducing free-weighting matrices. It 

should be pointed out that the Lyapunov functionals 

considered in these references are more restrictive due 

to the ignorance of the term 
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∑  is also ignored in Gao and Chen 

(2007) and Gao et al. (2004). The ignorance of these 

terms may lead to considerable conservativeness. 
 On the other hand, in the study of stabilization for 
the discrete-time linear systems, traditional idea of the 
control schemes is to construct a control signal 
according to the current system state (Bay and Phat, 
2002; Callier and Desoer, 1991). However, as pointed 
out in (Waziri et al., 2010) in practice there is often a 
system that itself is not time-delayed but time-delayed 
may exist in a channel from system to controller. A 
typical example for the existence of such delays is the 
measurement and the network transmission of signals. 

In this case, a time-delayed controller is naturally taken 
into account. It is worth noting that the closed-loop 
system resulting from a delayed controller is actually 
a time-delay system. Therefore, stability results of 
time-delay systems could be applied to design time-
delayed controller. 
 The present study a new Lyapunov functional, an 
improved delay-dependent stability criterion for 
discrete-time systems with time-varying delays is 
presented in terms of LMIs. It is shown that the 
obtained result is less conservative than those in. 
Example is providing, respectively, to demonstrate the 
reduced conservatism of the proposed stability criterion 
and the effectiveness of the proposed design method.  
 
Preliminaries: Lemma 2.1 (Agarwal, 2000) the zero 
solution of difference system is asymptotic stability if 
there exists a positive definite function 

nV(x(k)) : +

→R R  such that: 
 

2

0 : V(x(k)) V(x(k 1)) V(x(k)) x(k)∃β > ∆ = + − ≤ −β  

 
along the solution of the system. In the case the above 
condition holds for all x (k)∈Vδ, we say that the zero 
solution is locally asymptotically stable. 

 

Improved stability criterion: In this section, we give a 
novel delay-dependent stability condition for discrete-
time systems with interval-like time-varying delays. 
Now, consider the following system: 
  
x(k 1) Ax(k) Bx(k h(k))+ = + −  (1) 

 
Where: 

n

x(k)∈R  = The state vector 

A and B = Known constant matrices 

h(k>0) = A time-varying delay satisfying 0<h (k)≤h 

h = A positive integer 
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Theorem 1: Give integer h> 0. Then, the discrete time-

delay system (1) is asymptotically stable for any time 

delay h (k) satisfying 0< (k)≤h, if there exist symmetric 
positive definite matrices P, G, W satisfying the 

following matrix inequalities: 
 

 
T T

T T

A PA hG P A PB
0

B PA B PB

 + −
ψ = < 

 
 (2) 

 
Proof: Consider the Lyapunov 

function
1 2 3

V(y(k)) V (y(k)) V (y(k)) V (y(k))= + + , where 
T

1
V (y(k)) x (k)Px(k)= : 
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where, P,G being symmetric positive definite solutions 

of (2).  

 Then difference of V(x(k)) along trajectory of 

solution of (1) is given by: 
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Then we have: 
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Where: 

[ ]y(k) x(k),x(k h)= −  

 

and: 
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 + −
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 On the above estimation we use: h (k)≤h and : 

 
T T

h(k)x (k)Gx(k) x (k)Gx(k)≤  

 

 By the condition (2), ∆V(y(k)) is negative definite, 

namely there is a number β>0 such that 
2

V(y(k)) y(k) ,∆ ≤ −β  and hence, the asymptotic 

stability of the system immediately follows from 

Lemma 2.1. This completes the proof.  

 

CONCLUSION 

 

 In this study, an improved delay-dependent 

stability condition for discrete-time linear systems with 

interval-like time-varying delays has been presented in 

terms of an LMI. 
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