
American Journal of Applied Sciences, 2012, 9 (11), 1876-1883

ISSN 1546-9239

©2012 Science Publication

doi:10.3844/ajassp.2012.1876.1883 Published Online 9 (11) 2012 (http://www.thescipub.com/ajas.toc)

Corresponding Author: Zina Houhamdi, Department of Software Engineering, College of Engineering and Information Technology,

 Al Ain University of Science and Technology, Al Ain, Abu Dhabi, UAE

1876 Science Publications

AJAS

A Petri Net Based Agent Behavioral Testing

1
Zina Houhamdi and

2
Belkacem Athamena

1Department of Software Engineering,

College of Engineering and Information Technology,
2Department of Management Information Systems,

College of Business Administration,

Al Ain University of Science and Technology, Al Ain, Abu Dhabi, UAE

Received 2012-06-13, Revised 2012-09-08; Accepted 2012-09-10

ABSTRACT

In Multi-Agent System (MAS), developers concentrate on creating design models and evolving them, from
higher level models to lower level models, in several steps. Considerable part of MAS implementations is
automatically produced from the design models. If a design model contains faults, they are passed to the
generated implementations. Practical model validation techniques are required to discover and delete faults
in abstract design models. We introduce a formal approach for agent design testing. It specifies a testing
process that complements Multi-agent Systems Engineering (MaSE) methodology and strengthens the
mutual relationship between UML and MAS. Besides, it defines a structured and comprehensive testing
process for engineering software agents at the design level by providing a systematic way of converting the
MAS design models to UML design diagram. Petri Net (PN) diagram is generated from the UML models to
simulate the behavior of an agent. Because Petri Nets (PNs) are formal models, their analysis techniques can
be applied to automatic agent behavioral testing.

Keywords: Multi-Agent System (MAS), Petri Net (PN), Software Testing, Multi-Agent Systems

Engineering (MaSE), Task Diagram, Activity Diagram, Petri Net

1. INTRODUCTION

The growing requests for Multi-Agent Systems
(MAS) in the software application have led to the
elaboration of various Agent Oriented Software
Engineering (AOSE) methodologies to support the
development of agent-based applications. The agent-
based applications are composed of autonomous and
intelligent software (agents) that can communicate
and exchange information to solve problems
collaboratively (Houhamdi, 2011). Because the
agents’ interactions in MAS context can conceivably
lead to behavioral faults like deadlock, the MAS
behavior should be tested and supervised facing the
unwanted behaviors (usually known as emergent
behavior) before introducing it to the main stream of
commercial software development (Nguyen et al.,
2010). The AOSE methodologies usually do not cover
monitoring and testing (Huget and Demazeau, 2004).

As a consequence, testing software agents search for
new testing techniques dealing with their particular
nature. The techniques require to be efficient and good

enough to assess agent’s autonomous behaviors and build
confidence in them (Houhamdi and Athamena, 2011a).

On the other hand as model-based software
development discipline such as the Unified Modeling
Languages (UML) have previously obtained
reputation, more and more UML-based design,
analysis, testing and monitoring tools have been
developed. UML consist of a set of models that can
provide different levels of capacity and accuracy for
modeling objects and then can be employed to fulfill
different requirements in real word applications.

However, a usual AOSE methodology such as MaSE
(Bergenti et al., 2004; DeLoach, 2009) presents diverse
new abstractions and design concepts to software
development in comparison with regular model-based
approaches such as UML. This makes the deployment of
UML-based testing tools for checking the internal
behavior of MAS difficult and sometimes impossible.
Thereby, transformation models that fill the gap between
the AOSE design/ analysis artifacts and the UML-based
testing and supervising tools can be very helpful. The
transformation models can assist MAS engineers to use

Zina Houhamdi and Belkacem Athamena / American Journal of Applied Sciences 9 (11) (2012) 1876-1883

1877 Science Publications

AJAS

the UML-based testing and supervising tools to test and
check the internal behavior of the developed MAS before
delivering it as commercial software.

In this study, we propose a formal approach for agent
testing process by using PN model. This approach exploits
the link between AOSE, UML and PN. We describe the
proposed approach with reference to MaSE software
development methodology and consider MAS as the target
implementation technology. The MaSE design/analysis
artifacts should be converted to the standard UML diagrams
which will be used for constructing PN diagrams in order to
achieve agent formal testing. Then, the PN based analysis
techniques can be applied to software testing.

The rest of the study recalls basic elements of the
MaSE methodology and introduces related works.

1.1. MaSE

The Multi-agent Systems Engineering methodology
(MaSE) is a methodology for building practical agent
systems that defines MAS in terms of agent classes and
their organization (DeLocah, 2004). There are two basic
phases in MaSE: analysis and design. The first phase,
Analysis, includes three steps.

1.2. Capturing Goals

In this step the system goals are elaborated and
specified from the system viewpoint and not from the user
viewpoint. A goal is an abstraction of a set of functional
requirements. This stage comprises two sub-stages:
identifying the goals and structuring them in a hierarchy.

1.3. Applying Use Cases

In this step the system use cases are specified. It is
split into two sub-stages: the creation of use cases and the
creation of the sequence diagrams. A use case is a set of
interactions which describes the general system behavior
(what the system should do). The transformation from the
use cases specification to sequence diagrams is
straightforward; each entity becomes a role and information
passing becomes an event (or a message).

1.4. Refining Roles

In this step the system functional decomposition is
determined by producing a set of roles and their associated
tasks. This stage consists of two sub-stages: building the
role diagram and specifying the tasks' behavior. The inputs
for this stage are the goals determined in the 1st stage and
the sequence diagrams created in the 2nd stage.

In the Design phase, we transform the analysis
models into constructs useful for actually implementing
the MAS. The Design phase has four steps.

1.5. Creating Agent Classes

In this step, the overall MAS architecture is
determined. Agent classes are created by assigning roles

to agents. Each agent is associated with at least one role.
The conversations among agent classes are also specified
using the protocols defined in the analysis phase (the
links among tasks within the role model).

1.6. Constructing Conversations

In this step, the designer defines the coordination
protocols between agent couples. In particular, two
communication class diagrams are defined for each
conversation. One diagram specifies the initiator
behavior during that conversation and the second one
specifies the responder behavior during that
conversation. The communication class diagram is
designed using a finite state automaton.

1.7. Assembling Agent

In this step, the agent’s internal architecture is
specified. One can use its own architecture to build an
agent (e.g., Belief-Desire-Intention) or convert the tasks
from the previous step into components. The agent
architecture consists of the components and the
relationships among them.

1.8. System Design

This step is aim at presenting the physical system
architecture and the distribution of the various agent
classes’ instances within that architecture.

According to the results of evaluation in (Elamy and
Far, 2008) the MaSE was ranked first in three of the
proposed dimensions, i.e., modeling-related attributes,
application-related attributes and user perception
attributes. Eventually, MaSE was ranked first in overall
ranking of evaluated AOSE methodologies.

1.9. UML

 The Unified Modeling Language (UML) is an OMG
standard language for modeling object-oriented systems.
UML is used by developers to describe designs at
different levels of abstraction, from conceptual to
detailed design (Bergenti et al., 2004). There are several
advantages gained from using UML OMG, 2007:

• Firstly, UML includes a set of models that can
provide different levels of capacity and accuracy for
modeling objects and thus can be used to satisfy
various needs in real word applications

• Secondly, UML has emerged as the de-facto
industry standard for software modeling

• Thirdly, UML provides high level information that
illustrates the internal behavior of the system, which
can be used efficiently and effectively in testing

UML has 14 types of diagrams divided into two

categories. Seven diagram types represent structural

information and the other seven represent general

Zina Houhamdi and Belkacem Athamena / American Journal of Applied Sciences 9 (11) (2012) 1876-1883

1878 Science Publications

AJAS

types of behavior, including four that represent

different aspects of interactions.
When using UML in the software testing process, we

will pay a special attention to the diagrams in the
Behavioral Elements package. This is because most of
the activities in software testing attempt to detect defects
that appear during the software execution and these
defects are generally dynamic (behavioral) in nature
(DeLocah, 2004). Nevertheless, there are cases where the
behavioral information will need to be augmented with
static information.

UML design models are typically evaluated using
walkthroughs, inspections and other informal types of
design review techniques that are largely manual. These
techniques are not effective when applied to UML design
models of large or complex systems. Reviewers need to
manually track and relate a large number of concepts
across various diagrams and the manual tasks can rapidly
become wearisome and fault-prone for complex design
which is the case in MAS (Houhamdi and Athamena,
2011b). Thus, providing a formal approach for MAS
design testing will be considerably helpful.

1.10. Petri Net

PNs are a formal language for describing and
studying systems that are characterized as concurrent,
asynchronous, distributed, parallel, nondeterministic
and/or stochastic. As a graphical tool, PNs can be used as
a visual communication support similar to flow charts,
block diagrams. In addition, tokens are used in these nets
to simulate the dynamic and concurrent activities of
systems. PN consists of places, transitions and arcs:

• Transitions are active components. They model
activities which can occur, thus changing the state of
the system. Transitions are only allowed to fire if
they are enabled, which means that all the
preconditions for the activity have been fulfilled

• Places are tokens’ holders. The current state of the
system being modeled is called marking which is
given by the number and type (if the tokens are
distinguishable by type) of tokens in each place

• Arcs are of two types: Input and output. Input arcs

start from a places and ends at a transitions, while

output arcs start at a transition and end at a place

When the transition fires, it removes tokens from
its input places and adds some at all of its output
places. The number of tokens removed/added depends
on the cardinality of each arc.

The use of PNs leads to a mathematical description of
the system structure that can then be investigated
analytically. It is possible to set up state or algebraic
equations and other mathematical models governing the
behavior of systems. PNs can be used for analyzing

automatically system properties like reachability,
boundedness, liveness, persistence and fairness
(Oliveira et al., 2007). The advantages of automated
testing are reliability, cost reduction and fastness.

The remainder of the study is organized as follows.
Section 2 discusses the proposed approach; a PN based
agent testing process. An illustrative example is
presented in section 3. Similar works are listed in section
4. Finally, section 5 concludes our work.

2. MATERIALS AND METHODS

We have already proposed a PN based approach for
the whole MAS behavior testing (Athamena and
Houhamdi, 2012). In this study, we will focus on
proposing a PN based approach for a single agent
behavior testing. In section 2, a conversion model is
presented for adopting the MAS design/analysis models
created based on MaSE methodology into standard UML
2.0 models and then the UML models are transformed to
PNs for formal testing. The proposed approach overview
is shown in Fig. 1.

The approach is divided into two main modules.

2.1. Module 1. Constructing Agent Behavioral

Model

A conversion model is proposed to transform the MaSE
design/analysis artifacts into standard UML 2.0 models.
This module uses the MaSE models as input and constructs
the Agent behavioral models based on UML models.

2.2. Module 2. Converting Behavioral Model to PN

A conversion model is proposed to transform the
UML 2.0 models into PNs model. This module uses the
UML models as input and constructs the agent
behavioral model based on PN model.

Fig. 1. Agent design testing flow chart

Zina Houhamdi and Belkacem Athamena / American Journal of Applied Sciences 9 (11) (2012) 1876-1883

1879 Science Publications

AJAS

Fig. 2. MAS meta-model

Table 1. Concepts mapping from activity diagram to PN

Concepts Activity diagram Petri net

Scenario representation activity CP Net
Entities Swimlane/Partition Will be modeled as a place
Function and action performed Action Transition
Scenario starts and stop Initial node and final node A place without any incoming edge and a place
 without any outgoing edge, respectively
Alternative scenario Sub activity Subpage
Concurrency flow Fork node Will be modeled as a transition
Alternative flow Decision node Will be modeled as a place
Sequence flow Activity edge Arc
Alternative merge Merge node Will be modeled as a place
Synchronizing concurrent flow Join node Will be modeled as a transition
Objects Object node Will be modeled as a place

Table 2. Translation rules of activity edges to PNs

Source node(s) Target node(s)
of edge of edge Transformation

Initial node or Action Node or Arc
Decision node or Fork Node or
Merge node or Join Node
Object node
Initial node or Decision node or Arc, dummy
Decision node or Merge node or Transition and
Merge node or Object node or dummy Arc
Object node Final node
Action node or Action node or Arc, dummy
Fork node or Fork node or place and
Join node Join node dummy Arc
 Decision node or
Action node or Merge node or
Fork node or Object node or
Join node Final node Arc

2.3 Constructing Agent Behavioral Model

Figure 2 presents an illustrative meta-model for the
MAS. In this figure, each MAS consists of several
agents. Agents are the building blocks used to define
MAS classes and capture system goals during the design
phase. With each role is associated several tasks and
each task can be presented by a MaSE task diagram
(Bergenti et al., 2004). Each MaSE task diagram can be
converted to a UML activity diagram which describes

how a goal is achieved by a specific agent task and can
be represented by PN.

A proposed approach for transforming the agent

behavior from task diagram to UML activity diagrams is

introduced in section 2.3. More details on deriving PN

from UML activity diagrams are provided in section 2.4.

In MaSE, a task is a structured set of activities and

communications, represented by a state machine diagram

which consists of states and transitions. State represents a

stage in the agent behavior pattern and includes the

internal processing of the agent and transition is a

progression from one state to another and will be triggered

by an event that is either internal or external to the agent.

Thus, transitions allow communication between tasks.
A transition in MaSE task diagram uses the syntax of

trigger (guard)/transmission, interpreted as if an event
trigger is received and the condition guard holds, then
the message transmission is sent. In this transition
notation all items are optional.

In Tasks diagram, states may include activities that
represent internal reasoning, performing actions via
agent, or reading a percept from sensors. Several
activities can be in a unique state and are executed in an
uninterruptable succession. Once in a state, the task
remains there until the activity sequence is completed.

Zina Houhamdi and Belkacem Athamena / American Journal of Applied Sciences 9 (11) (2012) 1876-1883

1880 Science Publications

AJAS

Consequently, the activities within tasks diagrams,
their execution constraints and their sequences can be
extracted from the states and the corresponding activity
diagram for a MaSE task diagram can be produced.

In addition, because the protocol transition in
MaSE task diagram uses the syntax of trigger
(guard)/transmission and the trigger and transmission
are restricted to send and receive messages (DeLocah,
2004), trigger should be considered as the last activity
of the source state and transmission should be
considered as the first activity of destination state. In
this way, the trigger message is considered as the
activity that after completing its execution the control
flow will be transferred to the first activity of
destination state (transmission).

2.4 Deriving PN from Activity Diagram

As already mentioned, PNs is a formal language which

can be used for Design validation by simulating/executing

the system models. The section 2.4. explain how the

concepts introduced in UML 2.0 Activity Diagrams can be

mapped to PNs. In this conversion, the proposed idea by

(Maqbool, 2005) was used.

The table below (Table 1) explains the mapping of

concepts of Activity Diagrams to PNs.

The Translation rules of activity edges to PNs are

presented in the following table (Table 2).

Maqbool (2005) propose different possibilities of

Activity Diagrams simplifications before the

transformation to PNs to reduce the number of transitions,

places and arcs in the resulting net.

3. RESULTS

 An example of a task diagram describing the locate

victim task is shown in Fig. 3 (DeLoach et al., 2002).

Actions within each state are executed sequentially and

are written as functions. Locate victim is a reactive task,

which means that it is initiated whenever a search (area)

message is received from the find area to Search task.

After the task receives a search area message, it plans a

route to obtain to the area and then goes about executing

the route. If route execution fails, the task re-plans the

route and updates the map.

Fig. 3. Locate victim task diagram

Zina Houhamdi and Belkacem Athamena / American Journal of Applied Sciences 9 (11) (2012) 1876-1883

1881 Science Publications

AJAS

Fig. 4. Corresponding activity diagram

When the robot gets to its area, it scans the area for
victims. If one is found, it notifies an organizer role. The
robot then moves to another area and continues
searching. If no victims are found, the robot moves to
another area and scans there. Once it has scanned its
area, it sends the find area to search task a complete
message and terminates. Notice that tasks actually define
a plan on how to locate victims. Figure 3 shows task
diagram for locate victim and Fig. 4 give its
corresponding activity diagram.

Fig. 5. Associated PN

 According to the proposed algorithm, the equivalent

PN of activity diagram (Fig. 4) is shown in Fig. 5.

4. DISCUSSION

The rest of the section 4 surveys recent and active
work on testing software agents.

Luck and Gomez-Sanz (2009) presented advances in
testing and debugging used in the INGENIAS
methodology (Pavon et al., 2005). The meta-model of
INGENIAS has been extended to introduce testing
declaration, i.e., tests and test packages. JUnit-based test
case and suite skeletons can be generated and it is the
developer’s task to modify them as needed. The study
also provided facilities to access mental states of
individual agents to check them at runtime.

Coelho et al. (2006) proposed a framework for unit

testing of MAS based on the use of mock agents. Even

Zina Houhamdi and Belkacem Athamena / American Journal of Applied Sciences 9 (11) (2012) 1876-1883

1882 Science Publications

AJAS

though they called it unit testing but their work

focused on testing roles of agents at agent level. Mock

agents that simulate real agents in communicating

with the agent under test were implemented manually;

each corresponds to one agent role.
Sharing the inspiration from JUnit (Gamma and

Beck, 2000) with Coelho et al. (2006) and Tiryaki et al.
(2007) proposed a test-driven MAS development
approach that supported iterative and incremental MAS
construction. A testing framework called SUnit, which
was built on top of JUnit and Seagent (Dikenelli et al.,
2005) was developed to support the approach. The
framework allows writing tests for agent behaviors and
interactions between agents.

 Lam and Barber (2005) proposed a semi-automated
process for comprehending software agent behaviors.
The approach imitates what a human user (can be a
tester) does in software comprehension: Building and
refining a knowledge base about the behaviors of agents
and using it to verify and explain behaviors of agents at
runtime. Although the study did not deal with other
problems in testing, the way it evaluates agent behaviors
is interesting and relevant for testing software agents.

Nunez et al. (2005) introduced a formal framework to
specify the behavior of autonomous ecommerce agents.
The desired behaviors of the agents under test are
presented by means of a new formalism, called utility
state machine that embodies users’ preferences in its
states. Two testing methodologies were proposed to
check whether an implementation of a specified agent
behaves as expected (i.e., conformance testing). In their
active testing approach, they used for each agent under
test a test (a special agent) that takes the formal
specification of the agent to facilitate it to reach a
specific state. The operational trace of the agent is then
compared to the specification in order to detect faults.
On the other hand, the authors also proposed to use
passive testing in which the agents under test were
observed only, not stimulated like in active testing.
Invalid traces, if any, are then identified thanks to the
formal specifications of the agents.

In this study, we have proposed a model checking
approach for agent behavioral testing using the MaSE
methodology design/analysis artifacts. These artifacts
(more precisely task diagram) are transformed into the
standard UML 2.0 models (exactly into activity diagram)
using a proposed conversion model. Then, these activity
diagrams are used to generate an equivalent PN. Finally,
the analysis techniques of PN can be applied to
automatic MAS testing.

Specifically, the proposed approach contributes to the
existing AOSE methodologies by providing:

• A complete and comprehensive testing process

for MAS

• Reducing/removing side effects in test execution

and monitoring because introducing new entities

in the system, e.g., mock agents tester agents and

monitoring agent as in many approaches, can

influence the behavior of the agents under test

and the performance of the system as a whole.

• Testing emergent properties at macroscopic

design level

5. CONCLUSION

Testing and monitoring MAS to eliminate the risk of
unwanted emergent behaviors is an important
precondition for introducing MAS to the main stream of
commercial software. Most of the exiting testing
techniques for MAS have addressed the MAS
verification aspects.

This study describes a systematic and automatable
approach to test agent design models using PN theory. The
MAS design models, consisting of agent task diagrams
built based on the MaSE methodology, are converted to
UML activity diagrams which are used to generate an
equivalent PN diagram. Since PNs are formal language,
they are used for automatic checking of agent’ behavioral
properties thereby eliminating human errors.

REFERENCES

Athamena, B. and Z. Houhamdi, 2012. A petri net based

multi-agent system behavioral testing. Modern

Applied Sci., 6: 46-57. DOI: 10.5539/mas.v6n3p46

Bergenti, F., M.P. Gleizes and F. Zambonelli, 2004.

Methodologies and Software Engineering for Agent

Systems: The Agent-oriented Software Engineering

Handbook. 1st Edn., Springer, Boston, ISBN-10:

1402080573, pp: 536.

Coelho, R., U. Kulesza, A. Staa and C. Lucena, 2006.

Unit testing in multi-agent systems using mock

agents and aspects. Proceedings of the International

Workshop on Software Engineering for Large-Scale

Multi-Agent Systems, May 20-28, ACM Press, New

York, pp: 83-90. DOI: 10.1145/1138063.1138079
DeLoach, S., E.T. Matson and Y. Li, 2002. Applying

agent oriented software engineering to cooperative
robotics. Proceedings of the 15th International
FLAIRS Conferences Pensacolo Florida, (PF’ 02),
AAAI Press, pp: 532-6350.

DeLoach, S.A., 2009. Moving multi-agent systems from
research to practice. Int. J. Agent-Oriented Software
Eng., 3: 378-382. DOI:
10.1504/IJAOSE.2009.025315

Zina Houhamdi and Belkacem Athamena / American Journal of Applied Sciences 9 (11) (2012) 1876-1883

1883 Science Publications

AJAS

DeLocah, S.A., 2004. The MaSE Methodology. In:
Methodologies and Software Engineering for Agent
Systems: The Agent-oriented Software Engineering
Handbook, Bergenti, F., M.P. Gleizes and F.
Zambonelli, (Eds.)., Springer, Boston, ISBN-10:
1402080573, pp: 107-127.

Dikenelli, O., R.C. Erdur and O. Gumus, 2005. Seagent:
A platform for developing semantic web based multi
agent systems. Proceedings of the 4th International
Joint Conference on Autonomous Agents and Multi-
Agent Systems, (AAMAS’ 05), ACM Press, New
York, pp: 1271-1272. DOI:
10.1145/1082473.1082728

Elamy, A. and B. Far, 2008. A statistical approach for

evaluating and assembling agent oriented software

engineering methodologies. Agent-Oriented Inform.

Syst., 6: 105-122.
Gamma, E. and K. Beck, 2000. JUnit: A regression

testing framework. CiteULike.
Houhamdi, Z. and B. Athamena, 2011a. Structured

integration test suite generation process for multi-

agent system. J. Comput. Sci., 7: 690-697. DOI:

10.3844/jcssp.2011.690.697

Houhamdi, Z. and B. Athamena, 2011b. Structured

system test suite generation process for multi-agent

system. Int. J. Comput. Sci. Eng., 3: 1681-1688.

Houhamdi, Z., 2011. Multi-agent system testing: A

survey. Int. J. Adv. Comput. Sci. Appli., 2: 135-141.

Huget, M. and Y. Demazeau, 2004. Evaluating

multiagent systems: A record/replay approach.

Proceedings of the IEEE/WIC/ACM International

Conference on Intelligent Agent Technology, Sept.

20-24, IEEE Xplore Press, pp: 536-539. DOI:

10.1109/IAT.2004.1343013

Lam, D.N. and K.S. Barber, 2005. Debugging agent

behavior in an implemented agent system. Program.

Multi-Agent Syst., 3346: 104-125.

Luck, M., and J.J. Gomez-Sanz, 2009. Agent-Oriented
Software Engineering. 1st Edn., Springer-Verlag
Berlin, Heidelberg, Berlin, ISBN-10: 3642013376,
pp: 289.

Maqbool, S., 2005. Transformation of a core scenario

model and activity diagrams into Petri nets. M.Sc

Thesis, University of Ottawa, Ontario, Canada.
Nguyen, C., A. Perini and P. Tonella, 2010. Goal-

oriented testing for MASs. Int. J. Agent-Oriented
Software Eng., 4: 79-109. DOI:
10.1504/IJAOSE.2010.029810

Nunez, M., I. Rodriguez and F. Rubio, 2005.
Specification and testing of autonomous agents in e-
commerce systems. Software Test. Verific. Reliab.,
15: 211-233. DOI: 10.1002/stvr.v15:4

Oliveira, E., H. Almeida and L. Silva, 2007. Formal
modelling and verification of a component model
using coloured petri nets and model checking.
Proceedings of the 1st Symposium Applied
Computing, (SAC’ 07), ACM Press, New York,
USA., pp: 1427-1431. DOI:
10.1145/1244002.1244309

Pavon, J., J. Gomez-Sanz and R. Fuentes-Fernandez,

2005. The INGENIAS Methodology and Tools. In:

Agent Oriented Methodologies, Fuentes, R., (Ed.).,

Universidad Complutense de Madrid, Spain, pp:

236-276.

Tiryaki, A.M., S. Oztuna, O. Dikenelli and R.C. Erdur,

2007. SUNIT: A unit testing framework for test

driven development of multi-agent systems. Agent-

Oriented Software Eng., 4405: 156-173.

