Deformation Retracts of the Reissner-Nordstrom Spacetime and its Foldings

${ }^{1}$ A.E. El-Ahmady and ${ }^{2}$ A. Al-Rdade
${ }^{1}$ Department of Mathematics, Faculty of Science, Taibah University, Madinah, Saudi Arabia
${ }^{2}$ Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

Received 2012-09-16, Revised 2013-05-07; Accepted 2013-07-02

Abstract

Our aim in the present article is to introduce and study the relation between the deformation retract of the Reissner-Nordstrom spacetime N^{4} and the deformation retract of the tangent space $T_{p}\left(N^{4}\right)$. Also, this relation discussed after and before the isometric and topological folding of N^{4} into itself. New types of conditional folding are presented. Some commutative diagrams are obtained.

Keywords: Retraction, Deformation Retracts, Folding, Reissner-Nordstrom Spacetime

1. INTRODUCTION

As is well known, the theory of foldings is always one of interesting topics in Euclidian and Non-Euclidian space and it has been investigated from the various viewpoints by many branches of topology and differential geometry (ElAhmady, 2013a; 2013b; 2013c; 2013d; 2013e).

Most folding problems are attractive from a pure mathematical standpoint, for the beauty of the problems themselves. The folding problems have close connections to important industrial applications Linkage folding has applications in robotics and hydraulic tube bending. Paper folding has application in sheet-metal bending, packaging and air-bag folding (El-Ahmady, 2012a; 2012b; 2011). Following the great Soviet geometer (El-Ahmady and AlRdade, 2013), also, used folding to solve difficult problems related to shell structures in civil engineering and aero space design, namely buckling instability (ElAhmady and Al-Hazmi, 2013). Isometric folding between two Riemannian manifold may be characterized as maps that send piecewise geodesic segments to a piecewise geodesic segments of the same length. For a topological folding the maps do not preserves lengths i.e., A map \mathfrak{I} : $\mathrm{M} \rightarrow \mathrm{N}$, where M and N are C^{∞}-Riemannian manifolds of dimension m, n respectively is said to be an isometric
folding of M into N , iff for any piecewise geodesic path γ : $\mathrm{J} \rightarrow \mathrm{M}$, the induced path $\mathfrak{J} 0 \gamma: \mathrm{J} \rightarrow \mathrm{N}$ is a piecewise geodesic and of the same length as γ (El-Ahmady and ElAraby, 2010). If \mathfrak{I} does not preserve length, then \mathfrak{J} is a topological folding. A subset A of a topological space X is called a retract of X if there exists a continuous map r: $\mathrm{X} \rightarrow \mathrm{A}$ such that $\mathrm{r}(\alpha)=\alpha, \forall \alpha \in \mathrm{A}$ where A is closed and X is open (Arkowitz, 2011; Banchoff and Lovett, 2010; ElAhmady, 2007a; 2007b, El-Ahmady, 2006; 2004a; 2004b). Also, let X be a space and A a subspace. A map r: $\mathrm{X} \rightarrow \mathrm{A}$ such that $\mathrm{r}(\alpha)=\alpha$, for all $\alpha \in \mathrm{A}$, is called a retraction of X onto A and A is the called a retract of X (El-Ahmady and Shamara, 2001). This can be re stated as follows. If i: $\mathrm{A} \rightarrow \mathrm{X}$ is the inclusion map, then $\mathrm{r}: \mathrm{X} \rightarrow \mathrm{A}$ is a map such that $\mathrm{ri}=\mathrm{id}_{\mathrm{A}}$. If, in addition, ri $\mathrm{ri} \square \mathrm{id}_{\mathrm{x}}$ we call r a deformation retract and A a deformation retract of X (El-Ahmady, 1994). Another simple-but extremely useful-idea is that of a retract. If $A, X \subset M$, then A is a retract of X if there is a commutative equation:

Corresponding Author: A.E. El-Ahmady, Department of Mathematics, Faculty of Science, Taibah University, Madinah, Saudi Arabia

If $f: A \rightarrow B$ and $g: X \rightarrow Y$, then f is a retract of g if ri $=\mathrm{id}_{\mathrm{A}}$ and $\mathrm{js}=\mathrm{id}_{\mathrm{B}}$ (Naber, 2011; Reid and Szendroi, 2011; Arkowitz, 2011; Strom, 2011; Shick, 2007). At each point p of a complete Riemannian manifold M, we define a mapping of the tangent space $T_{p}(M)$ at p onto M in the following manner. If X is a tangent vector at P we draw a geodesic $g(t)$ starting at P in the direction of X. If X has length α, then we map X into the point $g(\alpha)$ of the geodesic. We denote this mapping by $\exp _{\mathrm{p}}$: Tp $(\mathrm{M}) \rightarrow \mathrm{M}$, the map $\exp _{\mathrm{p}}$ is everywhere C^{∞} and in a neighborhood of p in M, it is a diffeomorphism (Kuhnel, 2006; Banchoff and Lovett, 2010).

1.1. Main Results

The Reissner-Nordström spacetime N^{4} is given by the following metric (El-Ahmady and Al-Rdade, 2013; Hartle, 2003; Griffiths and Podolsky, 2009; Straumann, 2003) Equation 1:
$\mathrm{ds}^{2}=-\left(1-\frac{2 \mathrm{~m}}{\mathrm{r}}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}}\right) \mathrm{dt}^{2}+\left(1-\frac{2 \mathrm{~m}}{\mathrm{r}}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}}\right)^{-1}$
$\mathrm{dr}^{2}+\mathrm{r}^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right)$
where, m represents the gravitational mass and e the electric charge of the body.

The coordinates of Reissner-Nordströ m spacetime N^{4} are given by Equation 2:
$\mathrm{x}_{1}^{2}=\mathrm{C}_{1-}\left(1-\frac{2 \mathrm{~m}}{\mathrm{r}}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}}\right) \mathrm{t}^{2}$
$\mathrm{x}_{2}^{2}=\mathrm{C}_{2+}\left(\mathrm{r}^{2}+4 \mathrm{mr}\right)+\left(4 \mathrm{~m}-\mathrm{e}^{2}\right) \operatorname{In}\left(\mathrm{r}^{2}-2 \mathrm{mr}+\mathrm{e}^{2}\right)$
$+\left(8 \mathrm{~m}^{2}-4 \mathrm{e}^{2} \mathrm{~m}\right) \frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \frac{\mathrm{r}-\mathrm{m}}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}}$
$\mathrm{x}_{3}^{2}=\mathrm{C}_{3}+\mathrm{r}^{2} \theta^{2}$
$x_{4}^{2}=C_{4+} r^{2} \sin ^{2} \theta \phi^{2}$
where, $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ and C_{4} are the constant of integration .
The Reissner-Nordström space time N^{4} geodesic equations for the metric (1) are given by the following Equation 3-6:
$\frac{d u^{1}}{d \tau}+\frac{\mathrm{e}^{2}-\mathrm{mr}}{\mathrm{r}\left(\mathrm{r}^{2}-2 \mathrm{mr}+\mathrm{e}^{2}\right)}\left(\mathrm{u}^{1}\right)^{2}-\frac{\left(\mathrm{r}^{2}-2 \mathrm{mr}+\mathrm{e}^{2}\right)}{\mathrm{r}}\left(\mathrm{u}^{2}\right)^{2}$
$-\frac{r^{2}-2 m r+e^{2}}{r} \sin ^{2} \theta\left(u^{3}\right)^{2}+$
$\frac{\left(\frac{m}{r^{2}}-\frac{e^{2}}{r^{3}}\right)\left(r^{2}-2 m r+e^{2}\right)}{r^{2}}\left(u^{4}\right)^{2}=0$
where, $\bar{\omega}_{1}$ and $\bar{\omega}_{2}$ are the constant of integrations. Substituting (7), (12) and (13) in (2), we get:

$$
\begin{aligned}
& -x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=\left(1-\frac{2 m}{r}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}}\right) \\
& \left(\frac{\bar{\omega}_{1} \mathrm{r}^{2}}{\mathrm{r}^{2}-2 \mathrm{mr}+\mathrm{e}^{2}}\right)^{2}+\left(\mathrm{r}^{2}+4 \mathrm{mr}\right)+\left(4 \mathrm{~m}-\mathrm{e}^{2}\right) \\
& \operatorname{In}\left(\mathrm{r}^{2}-2 \mathrm{mr}+\mathrm{e}^{2}\right)+\left(8 \mathrm{~m}^{2}-4 \mathrm{e}^{2} \mathrm{~m}\right) \frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \\
& \frac{\mathrm{r}-\mathrm{m}}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}}+\frac{\bar{\omega}_{2}^{2}}{\mathrm{r}^{2}}+\mathrm{H}_{1}
\end{aligned}
$$

Which is a hypersphere $\mathrm{S}_{1}^{3} \subset \mathrm{~N}^{4}$ which is a geodesic retraction.

Again, substituting (7), (12) and (13) in (3), we get the following curves geodesic retraction $\mathrm{S}_{1} \subset \mathrm{~N}^{4}$ $\left(u^{1}(\mu)\right)^{2}=\varpi_{1}^{2}+\left(\mathrm{k}-\frac{\varpi_{2}^{2}}{\mathrm{r}^{2}(\mu)}\right)\left(1-\frac{2 \mathrm{~m}}{\mathrm{r}(\mu)}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}(\mu)}\right)$ where $\mathrm{k}=-1$ corresponds timelike geodesics and also $\mathrm{k}=0$ corresponds to null geodesics.

Then, the following theorem has been proved.

Theorem 1

Types of the geodesic retraction of ReissnerNordstrom spacetime N^{4} are hypersphere retraction and curves retraction.

Theorem 2

The deformation retract of $\left(\mathrm{N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right)$ onto $\mathrm{S}_{1}^{3} \subset\left(\mathrm{~N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right)$ under the exponential map is an induced deformation retract of $T_{p 1} \quad\left(N^{4}\right)$ onto $\exp ^{-1}\left(S_{1}^{3}\right) \subset T_{p 1}\left(N^{4}-q_{1}\right)$. Any isometric folding $\mathrm{F}: \mathrm{N}^{4} \rightarrow \mathrm{~N}^{4}$ such that $\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2},\left|\mathrm{x}_{3}\right|, \mathrm{x}_{4}\right)$ induces the same deformation retract of $\mathrm{T}_{\mathrm{p} 1}\left(\mathrm{~N}^{4}\right)$ under the condition $\mathrm{x}_{3}=0$, which makes the equation:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{p}_{1}}^{4}(\pi)-\mathrm{p}_{1} \xrightarrow{\mathrm{~F}_{2}} \mathrm{D}_{\mathrm{p}_{1}^{4}}^{4}(\pi)-\mathrm{p}_{1} \\
& \exp ^{-1} \uparrow \\
& \uparrow \exp ^{-1} \\
& \mathrm{~N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right) \xrightarrow{\mathrm{F}_{1}} \mathrm{~N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)
\end{aligned}
$$

Commutative, where $\left(\mathrm{D}_{\mathrm{pl}}^{4}(\pi)-\mathrm{pl}\right)$ is an open ball of radius π and center at p_{1}.

Proof

The parametric equation of the Reissner-Nordström space time N^{4} is given:

$$
\begin{aligned}
& \xi=\left(\sqrt{ }\left(\mathrm{C}_{1}-\left(1-\frac{2 \mathrm{~m}}{\mathrm{r}(\mu)}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}(\mu)}\right) \mathrm{t}^{2}(\mu)\right)\right. \\
& \sqrt{ }\left(\mathrm{C}_{2+}\left(\mathrm{r}^{2}(\mu)+4 \operatorname{mr}(\mu)\right)+4\left(\mathrm{~m}_{-} \mathrm{e}^{2}\right)\right. \\
& \left.\operatorname{In}\left(\mathrm{r}^{2}(\mu)\right)-2 \operatorname{mr}(\mu)+\mathrm{e}^{2}\right) \\
& +\left(8 \mathrm{~m}^{2}-4 \mathrm{e}^{2} \mathrm{~m}\right) \\
& \frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \frac{\mathrm{r}(\mu)-\mathrm{m}}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \\
& \sqrt{ }\left(\mathrm{C}_{3}+\mathrm{r}_{2}(\mu) \theta^{2}(\mu)\right) \\
& \sqrt{\left.\mathrm{C}_{4+} \mathrm{r}^{2}(\mu) \sin ^{2} \theta(\mu) \phi^{2}(\mu)\right)}
\end{aligned}
$$

By using lagrangian equations:

$$
\frac{\mathrm{d}}{\mathrm{ds}}\left(\frac{\partial \mathrm{~T}}{\partial \mathrm{G}_{\mathrm{i}}}\right)-\left(\frac{\partial \mathrm{T}}{\partial \mathrm{G}_{\mathrm{i}}}\right)=0, \mathrm{i}=1,2,3,4
$$

where, $\mathrm{T}=\frac{1}{2} \mathrm{ds}^{2}$ we obtain the deformation retract of ($\left.\mathrm{N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right)$ given by:

$$
\begin{aligned}
& \mathrm{S}_{1}^{3}=\left(\sqrt{\mathrm{C}_{1}}, \sqrt{\mathrm{C}_{2}}+\left(4 \mathrm{~m}-\mathrm{e}^{2}\right) \operatorname{In}\left(\mathrm{e}^{2}\right)+\right. \\
& \left(8 \mathrm{~m}^{2}-4 \mathrm{e}^{2} \mathrm{~m}\right) \frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \\
& \left.\tan ^{-1} \frac{-\mathrm{m}}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}}, \sqrt{ } \mathrm{C}_{3} \sqrt{ } \mathrm{C}_{4}\right)
\end{aligned}
$$

With retraction $\mathrm{R}_{1}, \mathrm{R}_{1}:\left(\mathrm{N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right) \rightarrow \mathrm{S}_{1}^{3}$, then $\exp ^{-1}$ $\left(N^{4}-q_{1}\right)$ is an open ball $D_{p 1}^{n}(\pi) \subset T_{p 1}(N 4)$. If F_{1} is a deformation retract of $\left(\mathrm{N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right)$ onto a geodesic retraction $\mathrm{S}_{1}^{3}, \mathrm{~F}_{1}:\left\{\mathrm{N}^{4}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right\} \times \mathrm{I} \rightarrow_{\left\{\mathrm{N}^{4}-(\mathrm{p}, \mathrm{q} 1)\right\}}$ such that:

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{x}, \mathrm{v})=(1-\mathrm{v})\left(\sqrt{ }\left(\mathrm{C}_{1}-\left(1-\frac{2 \mathrm{~m}}{\mathrm{r}(\mu)}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}(\mu)}\right) \mathrm{t}^{2}(\mu)\right),\right. \\
& \sqrt{\left(\mathrm{C}_{2}+\left(\mathrm{r}^{2}(\mu)\right)+4 \operatorname{mr}(\mu)+4 \mathrm{~m}-\mathrm{e}^{2}\right) \operatorname{In}\left(\mathrm{r}^{2}(\mu)-2 \mathrm{mr}(\mu)+\mathrm{e}^{2}\right)} \\
& +\left(8 \mathrm{~m}^{2}-4 \mathrm{e}^{2} \mathrm{~m}\right) \frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \frac{\mathrm{r}(\mu)-\mathrm{m}}{\sqrt{\left.\mathrm{e}^{2}-\mathrm{m}^{2}\right)}} \sqrt{ }\left(\mathrm{C}_{3}+\mathrm{r}^{2}(\mu) \theta^{2}(\mu)\right), \\
& \quad \sqrt{\left(\mathrm{C}_{4+} \mathrm{r}^{2}(\mu) \sin ^{2}(\mu) \phi^{2}(\mu)\right)+\mathrm{v}\left(\sqrt{ }\left(\mathrm{C}_{2+}\right)\left(4 \mathrm{~m}-\mathrm{e}^{2}\right) \operatorname{In}\left(\mathrm{e}^{2}\right)+\right.} \\
& \quad\left(8 \mathrm{~m}^{2}-4 \mathrm{e}^{2} \mathrm{~m}\right) \frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \frac{-\mathrm{m}}{\sqrt{\left.\mathrm{e}^{2}-\mathrm{m}^{2}\right)}} \sqrt{\mathrm{C}_{3}} \sqrt{\left.\mathrm{C}_{4}\right)} \\
& \mathrm{F}_{1}(\mathrm{x}, 0)=\left(\sqrt{\left(\mathrm{C}_{1-}\right.}\left(1-\frac{2 \mathrm{~m}}{\mathrm{r}(\mu)}+\frac{\mathrm{e}^{2}}{\mathrm{r}^{2}(\mu)}\right) \mathrm{t}^{2}(\mu)\right) \sqrt{\left(\mathrm{C}_{2+}\right.}\left(\mathrm{r}^{2}(\mu)_{+4}\right. \\
& \operatorname{mr}(\mu))+\left(4 \mathrm{~m}_{-} \mathrm{e}^{2}\right) \operatorname{In}\left(\mathrm{r}^{2}(\mu)_{-2} \mathrm{mr}(\mu)+\mathrm{e}^{2}\right)+\left(8 \mathrm{~m}_{-4}^{2} \mathrm{e}^{2} \mathrm{~m}\right)
\end{aligned}
$$

$\left.\frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \frac{\mathrm{r}(\mu)-\mathrm{m}}{\sqrt{\left.\mathrm{e}^{2}-\mathrm{m}^{2}\right)}} \sqrt{\left(\mathrm{C}_{3}+\mathrm{r}^{2}(\mu)\right)} \theta^{2}(\mu)\right) \sqrt{\left(\mathrm{C}_{4+}\right.} \mathrm{r}^{2}(\mu)$ and $\left.\sin ^{2} \theta(\mu) \phi^{2}(\mu)\right)$
$F_{1}(x, 1)=\left(\sqrt{C_{1}}, \sqrt{\left(C_{2+}\right.}\left(4 m-e^{2}\right) \operatorname{In}\left(e^{2}\right) \sqrt{C_{4}}\right)+\left(8 m^{2}-4 e^{2} m\right)$
$\frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \frac{-\mathrm{m}}{\sqrt{\left.\mathrm{e}^{2}-\mathrm{m}^{2}\right)}}$

$$
\exp ^{-1}\left(\sqrt{\mathrm{C}_{1}} \sqrt{\left(\mathrm{C}_{2+}\right.}\left(4 \mathrm{~m}-\mathrm{e}^{2}\right) \operatorname{In}\left(\mathrm{e}^{2}\right)+\right.
$$

also $\left.\left(8 m^{2}-4 \mathrm{e}^{2} \mathrm{~m}\right) \frac{1}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \tan ^{-1} \frac{-\mathrm{m}}{\sqrt{\mathrm{e}^{2}-\mathrm{m}^{2}}} \sqrt{\mathrm{C}_{3}}, \sqrt{\mathrm{C}_{4}}\right)$ is a hypersphere $S_{1}^{3} \subset T_{p 1}\left(N^{4}\right)$ of radius $\frac{\pi}{2}$ then there is an induced deformation retract of $\left(D_{p 1}^{4}(\pi)-p_{1}\right)$ defined by $\mathrm{F}_{2}:\left\{\mathrm{D}_{\mathrm{pl}}^{4}(\pi)-\mathrm{p}_{1}\right\} \times \mathrm{I} \rightarrow\left\{\mathrm{D}_{\mathrm{pl}}^{4}(\pi)-\mathrm{p}_{1}\right\} \quad$ such \quad that $\mathrm{F}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right), \mathrm{v}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)(1-\mathrm{v})+\frac{\pi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)}{\mathrm{v} 2\left|\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)\right|}$

$$
\mathrm{F}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right), 0\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)
$$

Where

$$
\mathrm{F}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right), 1\right)=\frac{\pi\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)}{2\left|\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)\right|} \text { Which is }
$$

$$
\exp ^{-1}\left\{\mathrm{~F}_{1}(\mathrm{x}, 1)\right\}=\mathrm{F}_{2}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right), 1\right)=\mathrm{S}_{1}^{3}
$$

$\mathrm{S}_{1}^{3} \subset \mathrm{D}_{\mathrm{pl}}^{4}(\pi)$, also $=\mathrm{F}_{2}\left\{\mathrm{D}_{\mathrm{pl}}^{\mathrm{n}}(\pi)-\mathrm{p}_{1}\right\}=\mathrm{F}_{2}\left\{\exp ^{-1}\left(\mathrm{~N}^{4}-\mathrm{q}_{1}\right)\right\}$

$$
\Rightarrow \exp ^{-1} \mathrm{oF}_{1}=\mathrm{F}_{2} \mathrm{oxp}^{-1}
$$

and the following equation is commutative:

$$
\begin{aligned}
& \left(D_{p_{1}}^{4}(\pi)-p_{1}\right) \xrightarrow{\mathrm{F}_{2}}\left(D_{p_{1}}^{4}(\pi)-p_{1}\right) \\
& \exp ^{-1} \uparrow \\
& \left(\mathrm{~N}^{4}-\left(p_{1}, q_{1}\right)\right) \xrightarrow{\mathrm{F}_{1}}\left(\exp ^{-1}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)\right)
\end{aligned}
$$

If $\mathrm{F}_{1}: \mathrm{N}^{4} \rightarrow \mathrm{~N}^{4}$ is an isometric folding and any folding homeomorphic to this type of folding:

$$
\mathrm{F}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2},\left|\mathrm{x}_{2}\right|, \mathrm{x}_{4}\right)
$$

Then $F_{1}\left(F_{1}(x, 1)\right)=F_{1}(x, 1)$, there is an induced isometric folding $\mathrm{F}_{2}:\left(\mathrm{D}_{\mathrm{pl}}^{4}(\pi)-\mathrm{pl}\right) \rightarrow\left(\mathrm{D}_{\mathrm{pl}}^{4}(\pi)-\mathrm{p}_{1}\right)$ such

$$
\text { that } \begin{aligned}
& F_{2}:\left(S_{1}^{3}\left(\frac{\pi}{2}\right)\right)=S_{1}^{3}\left(\frac{\pi}{2}\right) \text { i.e. } F_{1}\left(F_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), 1\right)= \\
& F_{2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \text { if } F_{1}\left(F_{1}\right)=F_{1}
\end{aligned}
$$

Let F_{μ} is the set of all types of folding homeomorphic to F_{1} under the condition:

$$
\mathrm{F}_{1}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right)=\left(\mathrm{x}_{1}, \mathrm{x}_{2},\left|\mathrm{x}_{3}\right|, \mathrm{x}_{4}\right)
$$

Then the deformation retract of any $\mathrm{F} \in \mathrm{F}_{\mu}\left(\mathrm{N}^{4}\right)$ is invariant, i.e.,
$F_{1}(f)=S_{1}^{3}$, the induced invariant deformations retract:

$$
\mathrm{F}_{2}\left\{\overline{\mathrm{~F}}\left(\mathrm{D}_{\mathrm{pl}}^{4}(\pi)-\mathrm{pl}\right)\right\}=\mathrm{S}_{1}^{3}\left(\frac{\pi}{2}\right)
$$

Theorem 3

Under the condition $\mathrm{t}=\mathrm{e}=\mathrm{m}=0$, the deformation retract of $S_{1}^{2}-\left(p_{1}, q_{1}\right)$ onto $S_{1}^{1} \subset S_{1}^{2}-\left(p_{1}-q_{1}\right)$, under the exponential map is an induced deformation retract of $\mathrm{T}_{\mathrm{pl}}\left(\mathrm{S}_{1}^{2}\right) \quad$ onto $\exp ^{-1}\left(\mathrm{~S}_{1}^{1}\right) \subset \mathrm{T}_{\mathrm{pl}}\left(\mathrm{S}_{1}^{2}-\mathrm{q}_{1}\right)$. Any isometric folding $F: S_{1}^{2} \rightarrow S_{1}^{2}$ such that $F\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}\left|x_{2}\right| x_{3}\right)$ induces the same deformation retract of $\mathrm{T}_{\mathrm{pl}}\left(\mathrm{S}_{1}^{2}\right)$, which makes the equation:

$$
\begin{array}{ll}
\begin{array}{ll}
\mathrm{D}_{\mathrm{p}_{1}}^{2}(\pi)-\mathrm{p}_{1} \\
\exp ^{-1} \uparrow \\
& \\
\mathrm{~S}_{1}^{2}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right) \xrightarrow{\mathrm{F}_{2}} \xrightarrow{\mathrm{~F}_{1}} & \mathrm{D}_{\mathrm{p}_{1}}^{4}(\pi)-\mathrm{p}_{1_{1}}^{2}-\left(\mathrm{p}_{1}, \mathrm{q}_{1}\right)
\end{array}
\end{array}
$$

Commutative, where $\mathrm{D}_{\mathrm{pl}}^{2}(\pi)$ is an open ball of radius π and of center at p 1 .

Theorem 4

Any isometric folding $F: S_{1}^{3} \subset N^{4} \rightarrow S_{1}^{3} \subset N^{4}$ such that $F(p)=p, p$ is any point on $S_{1}^{3} \subset N^{4}$. There is an induced isomtric folding of the tangent space $\mathrm{T}_{\mathrm{pl}}\left(\mathrm{S}_{1}^{3}\right)$ such that the following equation is commutative:

$$
\begin{array}{rlr}
\mathrm{T}_{\mathrm{p}_{1}}\left(\mathrm{~S}_{1}^{3}\right) \xrightarrow{\overline{\mathrm{F}}} & \mathrm{~T}_{\mathrm{p}_{1}}\left(\mathrm{~S}_{1}^{3}\right) \\
& \exp ^{-1} \uparrow \\
& \uparrow \exp ^{-1} \\
\left(\mathrm{~S}_{1}^{2}-\mathrm{q}_{1}\right) \xrightarrow{\mathrm{F}} \xrightarrow{\text { (}}\left(\mathrm{S}_{1}^{2}-\mathrm{q}_{1}\right)
\end{array}
$$

q 1 is the conjugate point of $\mathrm{p} 1, \mathrm{p}_{1}, \mathrm{q}_{1} \in \mathrm{~S}_{1}^{3} \subset \mathrm{~N}^{4}$ i.e., $\exp ^{-1} \mathrm{oF}=\overline{\mathrm{F}} \mathrm{o} \exp ^{-1}$.

Proof

Since q_{1} is a conjugate point to p_{1}, then $\exp ^{-1}$: $\left(S_{1}^{3}-q_{1}\right) \rightarrow T_{p 1}\left(S_{1}^{3}\right)$ under this map ($S_{1}^{3}-q_{1}$) mapped onto an open ball $\mathrm{D}_{\mathrm{pl}}^{3} \subset \mathrm{~T}_{\mathrm{pl}}\left(\mathrm{S}_{1}^{3}\right), \mathrm{p}_{1}$ is the center of the ball with radius π.

Let $F:\left(S_{1}^{3}-q_{1}\right) \rightarrow\left(S_{1}^{3}-q_{1}\right)$ such that $F\left(p_{1}\right)=p_{1}$ be an isometric folding, then there is an induced isometric folding $\overline{\mathrm{F}}$ such that:

$$
\overline{\mathrm{F}}: \mathrm{T}_{\mathrm{pl}}\left(\mathrm{~S}_{1}^{3} \mathrm{t}\right) \rightarrow \mathrm{T}_{\mathrm{pl}}\left(\mathrm{~S}_{1}^{3}\right)
$$

Let γ be any curve in $\left(S_{1}^{3}-q_{1}\right)$ then $\mathrm{F}(\gamma)=\dot{\gamma}$, since there is no conjugate point to p_{1} on $\left(\mathrm{S}_{1}^{3}-\mathrm{q}_{1}\right)$, then $\exp ^{-1}$ $(\gamma)=\beta$, then $p_{1} \in \beta, p_{1}$ is the beginning of β, also $\exp ^{-1}(\dot{\gamma})=\dot{\beta}$. There is an induced isometric folding $\overline{\mathrm{F}}: \mathrm{T}_{\mathrm{pl}}\left(\mathrm{S}_{1}^{3}-\mathrm{q}_{1}\right) \rightarrow \mathrm{T}_{\mathrm{pl}}\left(\mathrm{S}_{1}^{3}-\mathrm{q}_{1}\right)$ such that:

$$
\begin{aligned}
& \overline{\mathrm{F}}(\beta)=\overline{\mathrm{F}}\left(\exp ^{-1}(\gamma)\right)=\alpha \\
& \exp ^{-1} \text { o } \mathrm{F}(\gamma) _\exp ^{-1}(\dot{\gamma})+\dot{\beta} \\
& \exp ^{-1}\left(\mathrm{~F}\left(\mathrm{p}_{2}\right)\right)=\exp ^{-1}\left(\mathrm{P}_{3}\right)=\mathrm{P}_{3}^{\prime} \\
& \overline{\mathrm{F}}\left(\exp ^{-1}\left(\mathrm{p}_{2}\right)\right)
\end{aligned}
$$

Is the end of β and the beginning point of α is the beginning point of β, the end point of α is the end point of β, then $\alpha=\beta$, i.e.:

$$
\exp ^{-1} \mathrm{oF}=\overline{\mathrm{F}}_{o} \exp ^{-1}
$$

Theorem 5

Under the condition $\mathrm{t}=\mathrm{e}=\mathrm{m}=0$, Any isometric folding $\mathrm{F}: \mathrm{S}_{1}^{2} \rightarrow \mathrm{~S}_{1}^{2}$ such that $\mathrm{F}(\mathrm{p})=\mathrm{p}, \mathrm{p}$ is any point on S_{1}^{2}. There is an induced isomtric folding of the tangent space $T_{p 1} S_{1}^{2}$ such that the following diagram is commutative:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{p}_{1}}\left(\mathrm{~S}_{1}^{2}\right) \xrightarrow{\mathrm{F}} & \mathrm{~T}_{\mathrm{p}_{1}}\left(\mathrm{~S}_{1}^{2}\right) \\
& \exp ^{-1} \uparrow \\
& \uparrow \exp ^{-1} \\
\left(\mathrm{~S}_{1}^{2}-q_{1}\right) \xrightarrow{\mathrm{F}} & \left(S_{1}^{2}-q_{1}\right)
\end{aligned}
$$

q_{1} is the conjugate point of $p_{1}, p_{1}, q_{1} \in S_{1}^{2}$ i.e.:

$$
\exp ^{-1} o F_{1}=F_{2} o \exp ^{-1}
$$

Theorem 6

Under the conditions in theorem (2), if the following equation:

$$
\begin{aligned}
\left(D_{p_{1}}^{4}(\pi)-p_{1}\right) \xrightarrow{F_{2}} & \left(D_{p_{1}}^{4}(\pi)-p_{1}\right) \\
& \uparrow \exp ^{-1} \uparrow \\
\left(N^{4}-\left(p_{1}, q_{1}\right)\right) \xrightarrow{F_{1}} & \left(N^{4}-\left(p_{1}, q_{1}\right)\right)
\end{aligned}
$$

Is commutative and $\mathrm{F}_{1}\left(\mathrm{~F}_{1}\right)=\mathrm{F}_{1}$, then the following equation is commutative:

$$
\begin{aligned}
\left(D_{p_{1}}^{4}(\pi)-p_{1}\right) \xrightarrow{F_{2}} & \left(D_{p_{1}}^{4}(\pi)-p_{1}\right) \\
& \uparrow \exp ^{-1} \\
\left(N^{4}-\left(p_{1}, q_{1}\right)\right) \xrightarrow{F_{1}} & \left(N^{4}-\left(p_{1}, q_{1}\right)\right)
\end{aligned}
$$

Proof

Since $\exp ^{-1}$ o $F_{1}=F_{2} o \exp ^{-1}$, then:

$$
\mathrm{F}_{1}=\exp o \mathrm{~F}_{2} \operatorname{oexp}^{-1}, \mathrm{~F}_{1}\left(\mathrm{~F}_{1}\right)=\mathrm{F}_{1}, \mathrm{~F}_{2}\left(\mathrm{~F}_{2}\right)=\mathrm{F}_{2}
$$

We get:

$$
\begin{aligned}
& \exp ^{-1} o F_{1}=\exp ^{-1}\left(F_{1}\right)=\exp ^{-1} \\
& \left(\exp \text { o } F_{2} \exp ^{-1}\right)=F_{2} \text { o } \exp ^{-1}=F_{2} o \exp ^{-1}
\end{aligned}
$$

2. CONCLUSION

In this study we achieved the approval of the important of the curves and surface in ReissnerNordström spacetime N^{4} by using some geometrical transformations. The relations between folding, retractions, deformation retracts, limits of folding and limits of retractions of the curves and surface in the Reissner-Nordström spacetime N^{4} are discussed. New types of the tangent space $\mathrm{T}_{\mathrm{p}}\left(\mathrm{N}^{4}\right)$ in Reissner-Nordström spacetime N^{4} are deduced.

3. ACKNOWLEDGMENT

The author is deeply indebted to the team work at the deanship of the scientific research, Taibah University for their valuable help and critical guidance and for facilitating many administrative procedures. This research work was financed supported by Grant no. 3066/1434 from the deanship of the scientific research at Taibah University, AlMadinah Al-Munawwarah, Saudi Arabia.

4. REFERENCES

Arkowitz, M., 2011. Introduction to Homotopy Theory. 1st Edn., Springer, New York, ISBN-10: 144197329X, pp: 344.

Banchoff, T.F. and S.T. Lovett, 2010. Differential Geometry of Curves and Surfaces. 1st Edn., A.K. Peters, Natick, ISBN-10: 1568814569 , pp: 331.
El-Ahmady, A.E. and A. Al-Rdade, 2013. A geometrical characterization of reissner-nordström spacetime and its retractions. Int. J. Applied Math. Stat., 36: 83-91.
El-Ahmady, A.E. and A. El-Araby, 2010. On fuzzy spheres in fuzzy minkowski space. Nuovo Cimento.
El-Ahmady, A.E. and H.M. Shamara, 2001. Fuzzy deformation retract of fuzzy horospheres. Ind. J. Pure Applied Math., 32: 1501-1506. DOI: 10.1007/BF02875737

El-Ahmady, A.E. and N. Al-Hazmi, 2013. Foldings and deformation retractions of hypercylinder. Ind. J. Sci. Technol., 6: 4084-4093.
El-Ahmady, A.E., 1994. The deformation retract and topological folding of Buchdahi space. Periodica Mathematica Hungarica, 28: 19-30.
El-Ahmady, A.E., 2004a. Fuzzy folding of fuzzy horocycle. Circolo Matematico Palermo, 53: 443450. DOI: 10.1007/BF02875737

El-Ahmady, A.E., 2004b. Fuzzy Lobachevskian space and its folding. J. Fuzzy Mathem., 12: 609-614.
El-Ahmady, A.E., 2006. Limits of fuzzy retractions of fuzzy hyperspheres and their foldings. Tamkang J. Mathem., 37: 47-55.
El-Ahmady, A.E., 2007a. Folding of fuzzy hypertori and their retractions. Proc. Math. Phys. Soc., 85: 1-10.
El-Ahmady, A.E., 2007b. The variation of the density functions on chaotic spheres in chaotic space-like Minkowski space time. Chaos, Solitons Fractals, 31: 1272-1278. DOI: 10.1016/j.chaos.2005.10.112
El-Ahmady, A.E., 2011. Retraction of chaotic black hole. J. Fuzzy Mthem., 19: 833-838.
El-Ahmady, A.E., 2012a. Retraction of null helix in Minkowski 3-space. Scientif. J. Applied Res., 1: 2833.

El-Ahmady, A.E., 2012b. Folding and unfolding of chaotic spheres in chaotic space-like Minkowski space-time. Scientif. J. Applied Res., 1: 34-43.

El-Ahmady, A.E., 2013a. Folding and fundamental groups of Buchdahi space. Ind. J. Sci. Technol., 6: 3940-3945.
El-Ahmady, A.E., 2013b. Fuzzy elastic Klein bottle and its retraction. Int. J. Applied Math. Stat., 42: 94-102.
El-Ahmady, A.E., 2013c. On the fundamental group and folding of Klein bottle. Int. J. Applied Math. Stat., 37: 56-64.
El-Ahmady, A.E., 2013d. On elastic Klein bottle and fundamental groups. Applied Math., 4: 499-504. DOI: 10.4236/am. 2013.43074
El-Ahmady, A.E., 2013e. Folding and fundamental groups of flat Robertson-Walker Space. Ind. J. Sci. Technol., 6: 4235-4242.
Griffiths, J.B. and J. Podolsky, 2009. Exact Space-Times in Einstein's General Relativity. 1st Edn., Cambridge University Press, Cambridge, ISBN10: 1139481169, pp: 525.
Hartle, J.B., 2003. Gravity, An Introduction to Einstein's General Relativity. 1st End., Pearson Education India, ISBN-10: 813170050X, pp: 656.
Kuhnel, W., 2006. Differential Geometry Curves-Surfaces-Manifolds. 2nd Edn., American Mathematical Soc, Providence, ISBN-10: 0821839888, pp: 380.
Naber, G.L., 2011. Topology, Geometry and Gauge Fields. 2nd Edn., Springer, New York, ISBN-10: 144197895X, pp: 419.
Reid, M. and B. Szendroi, 2011. Topology and Geometry. 1st Edn., American Mathematical Soc, ISBN-10: 0821856502 , pp: 263.
Shick, P.L., 2007. Topology: Point-Set and Geometry. 1st Edn., Wiley-Interscience, New York, ISBN-10: 0470096055, pp: 271.
Straumann, N., 2003. General Relativity with Application to Astrophysics. 1st Edn., Springer, New York, ISBN-10: 038740628X, pp: 312.
Strom, J., 2011. Modern Classical Homotopy Theory. 1st Edn., American Mathematical Society, Providence, ISBN-10: $0821884298, \mathrm{pp:} 835$.

