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ABSTRACT 

The need for image restoration is encountered in many practical applications. For instance, distortion due to 
Additive White Gaussian Noise (AWGN) or in some cases the multiplicative (speckle) one can be caused 
by poor quality image acquisition. Wavelet denoising attempts to remove these types of noise present in the 
signal while preserving the signal characteristics, regardless of its frequency content. A newly developed 
method based on the wavelet transform (semi-soft thresholding) appears promising, though there is little 
practical guidance on its use. The results that are obtained by the experiments are compared with traditional 
additive noise methods such as Sureshrink, Block Method 3 Dimensions (BM3D) and Speckle noise 
reduction methods as Lee filter, linear scaling filter (Lsmv). Furthermore, Cycle Spinning technique is 
implemented in order to enhance the quality of the denoised estimates. It has been found that the proposed 
method achieves better enhancement and restoration of the image while preserving high frequency features 
of the noiseless image. Moreover, the proposed algorithm matches the quality of the best redundant 
approaches, while maintaining a high computational efficiency and a low CPU/memory consumption. 
 
Keywords: Additive Noise, Speckle Noise, Wavelet, BM3D, Cycle Spinning 

1. INTRODUCTION 

An image can be defined as a two-dimensional 
function f(x, y), where x and y are spatial coordinates and 
the amplitude of f function at any pair of coordinates (x, y) 
is called the gray level or intensity of the image at that 
point. This image is often corrupted by noise since its 
acquisition or transmission (Narbada and Bhagwan, 2013). 

In recent years, the image denoising problem has been 
widely studied and two main approaches have been 
developed: The variational methods (Aujol and Chambolle, 
2005; Rudin et al., 1992; Chambolle, 2004; Osher et al., 
2003; Gilboa et al., 2006) and wavelet techniques (Meyer, 
2002; Donoho and Johnstone, 1994; 1995a; Chang et al., 
2000; Chambolle et al., 1998; Daubechies, 1990). 

Sankar et al. (2012) proposed a new method to extract 
respiratory signal from the recorded abdomen movement 
using hybrid of neural and fuzzy inference system. 

Also, there is a rapidly increasing interest in 
designing hybrid methods using both wavelet shrinkage 
and the Total Variation (TV) denoising methods 
(Banazier and Yasser, 2011), but this method has 
shortcoming in the regions near to the edges in the image 
and its valid for speckle noise only. Khmag et al. (2013), 
studied and summarized some standard methods that 
used the adaptive filtering technique to reduce the 
additive white Gaussian noise impacts. 

Durand and Froment (2003) proposed a hybrid 
method to remove the pseudo-Gibbs phenomenon by 
replacing the thresholded coefficients by values that 
minimized TV; this method presents some drawbacks 
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where it gave extra sharpness especially in high level 
scale of noises. In the 1D signal, the various artifacts 
mixed with cannot be filtered directly because they pass 
through the body and turn into an interference 
component. Balaiah and Ilavennila (2012) found that 
EEG is subjected to noise signal and it is contaminated. 
Then the noise is removed by means of Adaptive filter 
and Neuro-fuzzy filter. A new approach for Digital 
Imaging and Communications in Medicine (DICOM) 
image is done by applying contrast stretching and 
anisotropic diffusion where denoising of multiplicative 
noise is carried out and the level of contrast is 
improved (Yasmin et al., 2012). 

The classical wavelet-based denoising method was 
proposed by Donoho and Johnstone (1995a), both types 
of threshding that were presented in this study have a 
limitations such as blurring and over smoothing in the 
reconstructed image. In addition, it is a typical nonlinear 
wavelet threshold shrinkage method, but the deficiency 
of such methods is that some details of the image are 
also removed while the image noise is reduced. 
Therefore, a lot of improved algorithms are proposed to 
solve this issue (Hsung et al., 2005; Qing-Wu et al., 
2007), although they solve the problem of killing too 
many coefficients, but they still suffer from the time 
complexity where the use of Biorthogonal wavelet 
transformation leads to extra calculation and make it more 
complicated. In order to improve the efficiency of the 
image denoising techniques, Principal Component 
Analysis (PCA) is used, in which the removal of 
redundant and unwanted data is done. Applications such 
as Median Filtering and Adaptive thresholding are used 
for handling the variations in lighting and noise 
(Suganthy and Ramamoorthy, 2012). An image denoising 
algorithm based on Gaussian scale mixture model and 
Bayes Least Squares estimator (BLS-GSM) was also 
developed (Portilla et al., 2003), those methods and studies 
came up with a good results in the qualitative and 
quantitative points of view, but when the image is a 
symmetric or with periodic texture, the efficiency decreases. 

Luisier et al. (2007) introduced a new interscale SURE-
based approach to Orthonormal Wavelet image denoising 
(OWT-SURELET), the drawback of this method is that for 
Orthogonal wavelets, the same scaling filter is used for 
decomposition (analysis) and reconstruction (synthesis) the 
signal, it causes of delay analysis of the image. A recent 
study by Ladan et al. (2013) found that the best wavelet 
parameters were identified as those that provide less 
RMSE and did not change the details of the original 
image; this study is valid especially for data related to 

space and satellite images where it used for GIS 
applications in forest and urban areas. 

In this study, we are presenting a new image 
denoising scheme that performs better than the classical 
algorithms in both types of noise whether it is additive 
or multiplicative noise. This method is based on semi-
soft thresholding in order to remove the noise and 
artifact from contaminated images. The criteria of the 
noise removal problem depend on the noise type by 
which the image is corrupted, where Gaussian and 
Spackle noises are the main types of noise that the 
proposed algorithm deals with. 

The paper is organized as follows. The image 
denoising problem is discussed in section 2. Section 3 
discusses 2D discrete wavelet transformation and section 
4 discusses the proposed method. Experimental results 
and discussion is presented in section 5. Finally, this 
study is concluded in section 6. 

1.1. The Image Denoising Problem 

In this section, the image denoising and some of 
the preliminary issues such as the assumptions about 
the noise in images, noise models and types of noises 
will be discussed. 

1.2. Image Degradation and Restoration 

A noisy image as additive type in spatial domain is 
modeled by Equation (1): 
 
û u w= +  (1) 
 
where, û is the observed image, u is the unknown 
original image and w is assumed to be an independent 
and identically distributed random white Gaussian noise 
with zero mean and finite variance σ2

n. Where the noise 
wij~W(0,σ2). Figure 1 show the degradation process of 
the image that contaminated with additive noise w, the 
denoised image û is desired to be as close as possible to 
the original image u.  

Multiplicative noise model is another most frequently 
investigated noise model. Different from the Additive 
white Gaussian Noise (AGWN), the primary characteristic 
of the multiplicative noise is that a portion of the pixels 
within an image are corrupted by random-value, while the 
remaining pixels are unaffected. The mathematical 
expression of the multiplicative noise model (x1) is given 
by Shamik et al. (2011) as follow Equation (2): 
 

1
1

o

[i, j] with probability p1
x [i, j]

x [i, j] with probability 1 p1

η= 
−

 (2) 
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Fig. 1. The degradation process of the image 
 
where, ηl[i,j] denotes the corrupted pixel in the noisy 
image ηl, whose pixel values are uniformly distributed 
within [Lmin; Lmax]. Usually Lmin = 0; Lmax = 255 for 
8-bit gray-scale images. p1 is the probability of a pixel 
being corrupted by the multiplicative noise. 

1.3. Noise Model 

Noise can be additive or multiplicative. Gaussian noise 
can be classified as additive noise. The noisy image looks 
soft and slightly blurry, where each pixel in the image will 
be changed from its original values by a small amount. The 
model of additive noise can be written as Equation (3): 
 
F(x, y) O(x, y) (x,y)= + β  (3) 
 
where, F(x,y) is the observed image function, O(x,y) is 
the original image and β(x,y) represent the signal 
independent additive random noise. 

The Gaussian noise has a normal (Gaussian) 
probability function as Equation (4): 
 

2

(g )

2

2Gaussian

1
PDF e

2

− −µ
σ=

πσ
 (4) 

 
where, g is gray level, µ is mean, σ is standard deviation. 

In some cases, voltage spikes in the equipment can be 
the cause of the noise in the circuit, where the changes in 
the voltage due to the physical properties of the circuit 
material offers the best environment for this kind of noise. 
This kind of noise is called multiplicative noise. The model 
of multiplicative noise can be written as Equation (5): 
 
I(t) (I e)S(t) N(t)= − +  (5) 
 
where, e = {0,1} with a probability p and I(t) is the 
resulting data measured at a time (t), S(t) is the original 
signal measured and N(t) is the noise introduced by the 
sampling process, environment and other source of 
interference. These noises also known as “speckle” noise. 

1.4. 2D-Discrete Wavelet Transformation 

The Discrete Wavelet Transform (DWT) is a 
waveform of efficiently limited duration that has no 
average value zero. Wavelets are compared with 
sinewave, which are the basis of Fourier analysis. 
Sinewaves do not have limited duration while wavelets 
tend to be irregular (Narbada and Bhagwan, 2013). The 
wavelet decomposition of an image is done as follows: 
In the first level of decomposition, the image is split into 
four subbands, namely HH1, HL1, LH1 and LL1, as 
illustrated in Fig. 2. The HH1 sub-band gives the 
diagonal details of the image; the HL1 subband gives the 
horizontal features, while the LH1 represents the vertical 
structures. The LL1 subband is the low resolution 
residual consisting of low frequency components. This 
subband is further split at higher levels of 
decomposition. It has been shown that the noise standard 
deviation σ can be accurately estimated from the first 
decomposition level diagonal subband HH1 by the 
robust and accurate median estimator (Donoho and 
Johnstone, 1995b), which was given by Equation (6): 
 

1

w

media( HH )
ˆ

0.6745
σ =  (6) 

 
1.5. Wavelet Based Denoising (WBD)  

The WBD procedure involves three major steps: 
Forward transformation of the signal to the wavelet 
domain, wavelet coefficient reduction and transformation 
of the wavelet coefficients back to the original signal 
domain. Several fundamental decisions have to be made 
regarding the selection of the value of the threshold λ to 
distinguish signal and noise, the mother wavelet and the 
choice of thresholding method, as well as the optimal 
resolution level or scale for diagnosing. Figure 3 shows 
the main steps in the denoising algorithm. 
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Fig. 2. Subbands of the 2-D orthogonal wavelet transform 
 

 
 

Fig. 3. The main steps of denoising algorithm 
 

1.6. Hard and Soft Thresholding  

Signal denoising using the DWT consists of the 
three successive steps namely, signal decomposition, 
thresholding of the DWT coefficients and signal 
reconstruction. Firstly, we carry out the wavelet 
analysis of a noisy signal up to a chosen of 
decomposition (analysis) level N. Secondly; we 
perform thresholding of the detail coefficients from 
the decomposition level 1 to N. Lastly, synthesizing 
the signal using the altered detail coefficients from 
level 1 to N and approximation coefficients of level N 

(Misiti et al., 2013). However, it is generally 
impossible to remove all the noise without corrupting 
the signal as for thresholding; we can settle either a 
level-dependent threshold vector of length N or a 
global threshold of constant value for all levels 
according to the method of Donoho and Johnstone 
(1995b). Thresholding can be either soft or hard. Hard 
thresholding zeroes out all the signal values smaller 
than λ. Soft thresholding does the same thing and 
apart from that, subtracts λ from the values larger than 
λ. Soft thresholding causes no discontinuities in the 
resulting signal. In this study, a new method based on 



Asem Khmag et al. / American Journal of Applied Sciences 11 (2): 316-328, 2014 

 
320 Science Publications

 
AJAS 

semi-soft thresholding is proposed. This method 
overcomes the drawbacks in both types of 
thresholding techniques (hard and soft). These 
drawbacks represented in killing too much 
coefficients (setting them to zero) in hard thresholding 
and the over smoothing that affect the reconstructed 
image in soft thresholding. Figure 4 shows hard and 
soft thresholding graph that applied on wavelet 
coefficients. 

1.7. Improving Wavelet Image Denoising via 
Cycle Spinning 

In spite of the significant developments in WBD, 
wavelet thresholding methods are not perfect without 
limitations. Denoising with the traditional wavelet 
transform (orthogonal, maximally decimated) often 
show disturbing visual artifacts. In particular, pseudo-
Gibbs artifacts tend to be noticeable in the vicinity of 
high frequency parts (edges). This is mainly due to the 
lack of translation invariance of the wavelet basis. 

The idea of using “cycle spinning” has been 
previously proposed for the purpose of minimizing the 
pseudo-Gibbs disturbing artifacts that are often existing 
in wavelet-based image reconstruction and denoising 
(Mohsen, 2004). This can be achieved as follows. 

For a range of K shifts, one shifts of the image with 
size M×M, horizontally or vertically or both, denoises 
the shifted data using a wavelet thresholding technique 
of choice and then unshifts the denoised image. Doing 

this for each of a range of shifts and averaging the 
different results so obtained, produces a reconstruction 
subject to weaker pseudo-Gibbs phenomena than the 
thresholding-based denoising using the traditional 
orthogonal wavelet transform. 

This is a result of the fact that the discrete wavelet 
transform is not translation invariant in the case of a 
periodic signal. In other words, if a periodic signal is 
shifted, then its wavelet decomposition coefficients are 
not simply permuted. Mathematical details of this fact 
have been studied in Mallat (1989). 

Since the image is assumed to be periodic with 
period M, better results can be obtained by using a 
higher number of shifts K∈{0, 1, 2,.... M-1}. When K 
= M-1, it is said that total-shift cycle spinning is 
performed. Otherwise only partial-shift cycle spinning 
is performed. As it will be illustrated, the quality of 
the denoised signal, as measured by the MSE, PSNR 
and Quality Indexed Image fidelity measures, 
improves considerably for the first few values of K. 
However, for larger values of K, no visible gain is 
achieved by increasing K even further. In our 
experiments K is chosen to be 8. 

The cycle spinning algorithm may be rather 
computationally expensive. Indeed, when 
incorporating this algorithm with K shifts for any 
denoising method, the computational complexity is 
multiplied by K times. 

 

 
 (a) (b) 

 
Fig. 4. (a) Hard thresholding, (b) soft thresholding operators as applied on the wavelet coefficients 
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2. MATERIALS AND METHODS 

A new method that depends on WBD will be 
presented where wavelet denoising is used with semi-
soft thresholding and cycle spinning techniques in 
order to remove the artifacts and noises from the 
original image. 

In this method we derived the thresholding function 
that depends on the criterion of wavelet coefficient 
properties and the fact while signal energy becomes 
more concentrated into few largest coefficients in the 
transform domain, noise energy concentrated in small 
coefficients. It helps for the separation of signal from 
noise. This scheme also yields results that are consistent 
with the human visual system which is more sensitive to 
the presence of noise in flat regions than near edges of 
the image (Mohsen, 2004). 

The qualitative measures (i.e., RMSE, PSNR and 
Quality Index Image) are used in these experiments. This 
is because; most of the remaining noise is localized in 
the vicinity of edges and other high-frequency content of 
the image where the human visual system is less 
sensitive to noise near edges.  

2.1. Thresholding Function Using 
Neighborhood Coefficients 

Wavelet coefficients are correlated in a small 
neighbourhood. A large wavelet coefficient will 
probably have large coefficients within its neighbours. 
Therefore, the proposed thresholding function can be 
derived from the neighborhood coefficients of the noisy 
image. Suppose Bi,j is the set of wavelet coefficients of 
the noisy 2D signal. Let Equation (7): 
 

2 2 2 2
i, j i, j 1 i, j i, j 1U B B B− += + +  (7) 

 
where, U2

i,j is resulted from summation of square of 
the coefficients where its location in the same row of 
the coefficient that to be thresholded and (i,j) is 
representing the location of the coefficient in the 
contaminated image Equation (8): 
 

2 2
i, jIf U ≤ λ  (8) 

 
 Then we set the wavelet coefficient Bi,j to zero. 

Otherwise, we shrink it according to Equation (9): 
 

2
2 2 2

i, j i, j i, ji, j
B B B / Uλ= −  (9) 

where, 22 log Nλ = σ , σ is the noise variance and N is 

number of pixels in the image (size of the image). 
For every (wavelet coefficient) that wanted to be 

thresholded, a square neighbourhood window Fj,k is 
considered around the coefficient Bi,j. That means the 
neighbourhood window size could be represented as 
M×M, where M is a positive odd number. Figure 5 
illustrates a 3×3 neighbourhood window centered at the 
wavelet coefficient to be thresholded. We should 
threshold different wavelet coefficient subbands 
independently because the boundaries of different 
subbands are not correlated. 

Furthermore, when the window size is intermediate, 
say 3×3 or 5×5, the shrinkage to the current wavelet 
coefficient will take more coefficients in the thresholding 
function U2

i,j. Therefore, in this case, more important 
image features will be kept and more noise will be 
removed as well. However, if the size of the window 
around the pixel is too large, a lot of noise will be kept, 
so an intermediate window size of 3×3 or 5×5 is fair to 
be used. Trade off should be considered when the 
window size is chosen, because it will affect the quality 
of the reconstructed image as it was explained early. 

2.2. Wavelet Mother Functions 

Users of the wavelet transform must identify in 
advance the nature of the type of filter functions that are 
to be used. These functions will be known as ‘mother 
wavelets functions’ and they differ in terms of their 
smoothing and symmetry properties. The synthetic data 
were used to assess the effects of the use of a wide range 
of different mother wavelets (Daubechies, Coiflet and 
Symmlet). The experience obtained from these 
experiments allowed the specification of a number of 
guidelines, which were then used in noise removal 
(denosing) and compression process in image processing 
applications. Figure 6 shows the shapes of the mother 
wavelets investigated in this study. 

2.3. Significance of the Proposed Algorithm 

For speckle noise and Gaussian noise, the image 
assessment such as PSNR, MSR and Quality indexed 
image as well as the visual quality give us good results in 
subjective an objective assessments points of view. In 
the same regard, the benefits of this research to the 
community and industry lay in forensic investigation, as 
well as defense and border security, with the end result 
of the research being directly applicable in areas of video 
surveillance and security for analysis and restoration. 
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Fig. 5. An illustration of the nieghbourhood window centered at the wavelet coefficient to be thresholded 
 

           
 (a) (b) 
 

 
(c) 

 
Fig. 6. The wavelet mother functions that used in this study, (a) Coif2. (b) Sym4. (c) Db4 

 
3. RESULTS 

In this section, we present numerical experiments 
to validate the method proposed above. It was applied 
on a gray scale benchmark image Lena with 512×512 

(Fig. 7). The first experiment was applied on Additive 
noise (Gaussian), the image has noise variance σn = 
0.05. For the second experiment, experiment on 
Spackle noise with noise level σn = 30 is conducted. 
The wavelet transform that we have employed is 
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Symmetric supported wavelet with 8 vanishing 
moments (Sym8) and four scales of orthogonal 
decomposition. The incorporation of the cycle 
spinning for the purpose of the denoising based on 
wavelet transform predictive scheme has resulted in 
significant improvement of the denoised estimate, as 
most of the artifacts have been reduced. This has 
indeed resulted in the best wavelet based        
denoised estimate. 

The performance of noise removing algorithms is 
measured using quantitative performance measures such 
as MSE, PSNR and Quality Indexed image as well as in 
term of visual quality of the images. The mathematical 
form of the universal quality index Q deals with three 
main different factors: Loss of correlation, luminance 
distortion and contrast distortion. Q is computed for a 
sliding window of the image size and its highest value is 
1 and lowest value is -1. 

The results are given in Table 1 and 2. It is evident 
from the tables that our scheme outperforms the standard 
methods of additive and speckle noise such as 
VisuShrink, BM3D and the adaptive Median. In other 
words, our scheme removes noise significantly.  

Original image of Lena, Gaussian noisy image and 
different denoised images with noisy level σ 30 are 
shown in Fig. 7. However, Fig. 8 shows the original 

image, speckle noisy image and different denoised 
images. The results obtained before and after applying 
the cycle spinning algorithm are presented. 

Figure 7 shows the benchmark image (Lena) with 
additive noise and the despeckled images. Those 
filters that mentioned above compared with the 
proposed method. The best visual results obtained by 
the proposed method with cycle spinning showed 
good visual results not only removing speckle but also 
preserving the details of the image and preserves the 
edge properties. Flat regions of the image, such as the 
shoulder, face and background, are relatively smooth 
most of the noise in these regions have been 
suppressed in the fractal representation. Also from 
Fig. 7f, one can see that although the result obtained 
by wavelet Shrinkage method contains abundant 
textures, much noise is retained in the image. Figure 
7e shows the result obtained by BM3D method. We 
see that most of the noise have been removed, but 
many textures are also removed. Figure 7g and h 
show the result by our method with and without cycle 
spinning respectively, from which we can see that the 
textures are better preserved while removing the 
noise, especially in Fig. 7h the proposed method 
successfully balances the relationship between noise 
suppression and texture preserving. 

 
Table 1. Image quality evaluation metrics computed for Lena image with additive noise with σn = 30 

 Feature sets 
 ----------------------------------------------------------------------------------------------------------------- 
Filter method  MSR PSNR Q Execution time/S  

Normal shrink 112.4101 28.5241 0.3812 2.300 
BM3D 84.1201 31.2063 0.4987 1.960 
Visu shrink 91.3778 28.1382 0.3627 3.201 
Sure shrink 87.1179 29.6352 0.4532 43.050 
Proposed method 79.8830 31.3654 0.5092 37.121 
Proposed method with CS 76.4142 32.2134 0.5218 15.400 

 
Table 2. Image quality evaluation metrics computed for Lena image with speckle noise with σn = 0.05 

 Feature sets 
 ---------------------------------------------------------------------------------------------------------------- 
Filter method MSR PSNR Q Execution time/S 

Lee filter  165.6337 25.9393 0.4474 24.741319 
Median 263.3980 23.9247 0.4534 0.780064 
Weiner 148.6431 26.4094 0.4357 0.732820 
Lsmv filter 112.2887 27.0114 0.4645 3.100400 
Proposed method 97.8831 28.2237 0.4850 15.112100 
Proposed method With CS 88.1524 28.6785 0.4962 11.019210 
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 (a) (b) (c) 

 

     
 (d) (e) (f) 

 

    
 (g) (h) 

 
Fig. 7. Results of various filters on an additive noise with σn = 30, (a) Original image (Lena image), (b) Noisy image (c) Visushrink 

filter, (d) Sureshrink filtering, (e) BM3D filter, (f) Normal shrink filter, (g) Proposed method, (h) Proposed method using SC 
with K = 8 shifts 
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 (a) (b) (c) 
 

   
 (d) (e) (f) 
 

  
 (g) (h) 

 
Fig. 8. Results of various filters on a multiplicative noise with σn = 0.05, (a) Original image (Lena image), (b) Noisy image, (c) Lee 

filter, (d) Median filter, (e) Wiener filter,(f) Lsmv filter, (g) Proposed method, (h) Proposed method using SC with K = 8 shifts 
 

Benchmark image (Lena) with multiplicative 
(speckle) noise and the despeckled images are shown in 

Fig. 8. The best visual results obtained by the proposed 
method with cycle spinning and 8 shifts showed good 
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visual results by not only removing speckle but also 
preserving the details of the image especially in the 
edges where the high frequency appears. Also from the 
Fig. 8e, it is clear to see that although the result 
obtained by wavelet shrinkage method contains too 
much textures and image details, highly noise is 
retained in the image. 

The result obtained by Lsmv filter is shown in Fig. 
8f. We see that most of the noise have been removed, but 
many textures are removed as well. Figure 8g and h 
show the result by our method with and without cycle 
spinning respectively. It is evident to notice that the 
textures are better preserved while removing the noise, 
especially in (h) where we use the proposed method with 
cycle spinning (K = 8). The proposed method 
successfully balances the relationship between noise 
suppression and texture preserving. 

4. DISCUSSION 

Table 1 shows the image quality evaluation metrics, 
Lena image between the original and the despeckled 
image, respectively. Performance of all additive noise 
algorithms is tested with the bench mark image. The 
number of shifts K that should be taken should be less 
than the size of the image N i.e., (K≤N). Best values 
were obtained for the proposed method with cycle 
spinning with shift K = 8, it gives lower MSE and higher 
SNR and PSNR and best values for the universal Quality 
index (Q), Filters Normal shrink, Visushrink, Sure 
shrink, showed poorer visual results and a blurring 
effect. But the filters of the proposed algorithm and 
BM3D show better visual results compared to these 
filters. In addition, the execution time plays a major role 
especially when programming time and running time are 
taken into consideration. In our experiments it is clear to 
notice that BM3D has the shortest execution time 
compared with the rest of other filters, while Sureshrink 
has the longest one. Our method has an average time lies 
in the range of 15-37 sec. It has been found that the 
proposed method with CS is better than all other 
algorithms in the quantitative terms as well as the visual 
quality of the image. 

Table 2 shows the image quality evaluation metrics, 
Lena image between the original and the despeckled 
image, respectively. Performance of all speckle noise 
algorithms was tested with the bench mark image. Best 
values were obtained for the proposed method with cycle 
spinning with shift K = 8, it gives lower MSE, higher 
PSNR. Best values for the universal Quality index (Q), 
Filters Lee, Lsmv while Median showed poorer visual 

results and a blurring effect. But the filters of the 
proposed algorithm and Weiner show better visual 
results compared to these filters. Moreover, in terms of 
execution time; it is clear to notice that Weiner filter has 
the shortest time compared with the rest of other filters 
where it is considered as the sharpest and standard filter 
in multiplicative noise. On the other hand, Lee filter is 
the worst filter in the execution time because of the 
construction of its functions. It has been found that the 
proposed method with CS is better than all other filters in 
quantitative terms as well as visual quality of the image. 

5. CONCLUSION 

In this study, we proposed a speckle and additive 
Gaussian noise reduction method by combining a 
wavelet-based denoising shrinkage filter and cycle 
spinning with K shifts. The proposed hybrid method 
takes full advantage of sparsity and orthogonality in 
wavelet with the cycle spinning technique to denoise the 
low frequency subband without losing textures and uses 
the wavelet shrinkage method based on local variance 
information to extract textures from noise in the high 
frequency subbands. The image denoising algorithm uses 
semi-soft thresholding to provide smoothness and better 
edge preservation at the same time. Not only removing 
speckle and additive noise, but also preserving the details 
of the image and is better than all other algorithms in 
quantitative terms as well as visual quality of the image. 

Two experiments have been conducted on the bench 
mark image (Lena), the first experiment is conducted on 
additive white Gaussian noise to compare our method 
with many other well-known techniques such as the 
VisuShrink, Normal shrink, BM3D and Sureshrink. The 
results show that our method outperformed the 
traditional methods and removes noise significantly most 
of the time. In the second experiment, it was conducted 
on multiplicative noise (Speckle), our method compared 
with Lee filter, Median filter, Wiener and Lsmv filter. 
The results show that the proposed method with cycle 
spinning with K = 8 shifts outperformed the method as it 
was mentioned earlier and gave better preservation 
where most of details in the denoised image are kept 
clear. On the other hand, the most important parameter in 
our experiments that computed is the execution time. It 
shows that the standard methods like Wiener, Median 
and BM3D filters give the shortest time in this 
experiment. The use of cycle spinning causes for the 
slowing of the running time compared with the standard 
filters. In the future work, we will work on the 
enhancement of the running time in order to reach to the 
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same level of the quality image that is got from this 
study. Our experiments are implemented on a PC (CPU: 
Intel core i7 950 3.07 GHz, 3GB Ram).  
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