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ABSTRACT 

Image fusion based on wavelet transform is the most commonly used image fusion method, which fuses the 
source images’ information in wavelet domain according to some fusion rules. But because of the 
uncertainties of the source images’ contributions to the fused image, how to design a good fusion rule to 
integrate as much information as possible into the fused image becomes the most important problem. This 
study proposed a image fusion algorithm based on wavelet transform and fuzzy reasoning. The edges in 
source images are detected using set of fuzzy rules. The hardware architecture for fuzzy based image fusion 
is proposed. This proposed hardware architecture reduces the hardware utilizations and best suitable for low 
power applications. The design possesses only two line memory buffers with very low computational 
complexity, thereby reducing the hardware cost and appropriate for several real-time applications. The 
proposed hardware architecture consumes 4179 gates and power consumption of 203.27 mW.  
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1. INTRODUCTION 

Image fusion is a tool to combine multimodal images 
by using image processing techniques. Specifically it 
aims at the integration of disparate and complementary 
data in order to enhance the information apparent in the 
images, as well as to increase the reliability of the 
interpretation. This leads to more accurate data and 
increased utility. In addition, it has been stated that fused 
data provides for robust operational performance such as 
increased confidence, reduced ambiguity, improved 
reliability and improved classification. Image fusion is a 
procedure that aims at the integration of disparate and 
complementary data to enhance the information present 
in the source images as well as to increase the reliability 
of the interpretation. This process leads to more accurate 
data interpretation and utility. 

A fusion process is nothing but a combination of 
salient information in order to synthesize an image with 
more information than individual image and synthesized 

image is more suitable for visual perception. We use the 
term image fusion to denote a process by which multiple 
images or information from multiple images is 
combined. These images may be obtained from different 
types of sensors. With the availability of the multisensor 
data in many fields, such as remote sensing, medical 
imaging or machine vision, image fusion has emerged as 
a promising and important research area. In other words, 
Image fusion is a process of combining multiple input 
images of the same scene into a single fused image, 
which preserves full content information and also 
retaining the important features from each of the original 
images. The fused image should have more useful 
information content compared to the individual image. 
As far as the knowledge of the author, none of the image 
fusion method has been reported which deals with multi 
focus and multi modal images simultaneously. 

So in this study we propose a novel region based 
image fusion algorithm for multifocus and multimodal 
images which also overcomes the limitations of 
different approaches. 
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2. RELATED WORKS 

An algorithm based on Lifting Wavelet Transform 
(LWT) has been proposed in Gonzalez et al. (2013) to 
fuse multi-modality medical images. LWT allows in-
place implementation of wavelet transform thereby 
reducing the memory requirement and computational 
time. LWT ensures faster image fusion. Also, a local 
feature-based fusion rule to extract features from multi-
source images and improve fusion quality has been 
employed. Several experimentations were performed 
for the fusion of registered medical CT/MRI, 
CT/SPECT, MRI/PET images. Their results showed 
that their scheme has a good performance to fuse 
medical images effectively. 

Bhatnagar et al. (2013) presented a fusion 
technique based on Non-Sub sampled Contourlet 
Transform (NSCT). The source medical images are 
first transformed by NSCT followed by combining 
low- and high-frequency components. Two different 
fusion rules based on phase congruency and directive 
contrast are proposed and used to fuse low- and high-
frequency coefficients. Finally, the fused image is 
constructed by the inverse NSCT with all composite 
coefficients. Experimental results and comparative 
study show that the proposed fusion framework 
provides an effective way to enable more accurate 
analysis of multimodality images. Further, the 
applicability of the proposed framework is carried out 
by the three clinical examples of persons affected with 
Alzheimer, sub-acute stroke and recurrent tumor. 

Rana and Arora (2013) explored different medical 
image fusion methods and their comparison to find out 
which fusion method gives better results based on the 
performance parameters. Here medical images of 
Magnetic Resonance Imaging (MRI) and Computed 
Tomography (CT) images are fused to form new image. 
This new fused image improves the information content 
for diagnosis. Fusing MRI and CT images provide more 
information to doctors and clinical treatment planning 
system. MRI provides better information on soft tissues 
whereas CT provides better information on denser 
tissues. Fusing these two images gives more 
information than single input image. In this study, 
wavelet transform, Principle Component Analysis 
(PCA) and Fuzzy Logic techniques are utilized for 
fusing these two images and results are compared. The 
fusion performance is evaluated on the basis of Root 
Mean Square Error (RMSE), Peak Signal to Noise 
Ratio (PSNR) and Entropy (H). 

A wavelet-based medical image fusion scheme was 
proposed by Yang et al. (2010). The medical images to 
be fused are decomposed by the wavelet transform and 
then different fusion schemes are employed to combine 
the wavelet coefficients, i.e., visibility-based method 
for coefficients in low-frequency band and variance-
based scheme for coefficients in high-frequency band. 
Then, a window-based reliability verification process 
is done to remove the noise and guarantee the 
homogeneity of the fused image. The inverse wavelet 
transform with all the complex wavelet coefficients 
gives the fused image. Experiments on simulated and 
real medical images were done and compared with 
existing methods to prove that the proposed method is 
effective than other fusion techniques. 

Arunmozhi and Mohan (2013) has proposed a fusion 
algorithm based on wavelet decomposition methodology 
to fuse the hyper spectral images.This method has 
provided lower PSNR value in terms of image quality. 
Chen et al. (2011) has developed low-cost high-quality 
adaptive scalar processing technique for real-time 
multimedia applications. This method consumed more 
power due ti its complex architecture design. Jacobson et al. 
(2007) has developed a technique such as linear fusion of 
image sets for display. This methodology provided 
optimum enhancement of image sets for image fusion. 
Nagarajan et al. (2010) has proposed scalable approach to 
fusing spatiotemporal data to estimate streamflow via a 
Bayesian network. Tsagaris et al. (2005) has introduced 
fusion technique of hyperspectral data using segmented 
PCT for enhanced color representation. 

An image fusion technique based on discrete 
wavelet transform using high boost filtering was 
proposed in Zaveri et al. (2011). The proposed 
algorithm achieved an accurate segmentation for 
region-based fusion using graph based normalized cut 
algorithm. The regions were extracted from the input 
registered source images using the resultant segmented 
image. Then the extracted regions were processed to 
fuse different regions using different fusion rules. The 
method was implemented on various registered images 
of multi-focus and multimodality categories and the 
fusion results were compared using standard reference 
based and non-reference based image fusion 
parameters. It has been observed from simulation 
results that the algorithm was consistent and preserved 
more information compared to earlier reported pixel 
based and region based fusion methods. Based and 
region based fusion methods. 
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3. PROPOSED FUSION ALGORITHM 

Figure 1 shows the block diagram of the proposed 
fusion algorithm. It consists of a spatial domain filter, 
fuzzy based edge detector, fusion block and mean 
filter. The spatial domain filter serves as a pre-filter to 
reduce blurring and aliasing artifacts produced by the 
bilinear interpolation. First, the input pixels of the 
original images are filtered by the spatial filter to 
enhance the edges and remove associated noise. 
Second, the filtered pixels are filtered again to smooth 
unwanted discontinuous edges of the boundary 
regions. Finally, the edge detected images are fused 
into a single image and artifacts present in it are 
removed using the mean filter. The details of each part 
will be described in the following sections. 

3.1. Spatial Domain Filter 

The spatial filter is a kind of high-pass filter and is 
used to reduce blurring artifacts. It is defined by a kernel 
to increase the intensity of a centre pixel relative to its 
neighboring pixels. The clamp filter, a kind of low-pass 
filter, is a 2-D Gaussian spatial domain filter and 
composed of a convolution kernel array. It usually 
contains a single positive value at the centre and is 
completely surrounded by ones. The clamp filter is used 
to reduce aliasing artifacts and smooth the unwanted 
discontinuous edges of the boundary regions. The 
sharpening spatial and clamp filters can be represented 
by convolution kernels. A larger size of convolution 
kernel will produce higher quality of images. However, a 
larger size of convolution filter will also demand more 
memory and hardware cost. For example, a 6×6 
convolution filter demands at least a five-line-buffer 
memory and 36 arithmetic units, which is much more 
than the two-line-buffer memory and nine arithmetic 
units of a 3×3 convolution filter. In our previous work, 
each of the sharpening spatial and clamp filters was 
realized by a 2-D 3×3 convolution kernel as shown in 
Fig. 2a. It demands at least a four-line-buffer memory 
for two 3×3 convolution filters. For example, if the 
image width is 1920 pixels, 4×1920×8 bits of data 
should be buffered in memory as input for processing. 
To reduce the complexity of the 3×3 convolution 
kernel, a cross-model formed is used to replace the 
3×3 convolution kernel, as shown in Fig. 2b. It 
successfully cuts down on four of nine parameters in 
the 3×3 convolution kernel. 

Furthermore, to decrease more complexity and 
memory requirement of the cross-model convolution 
kernel, T-model and inversed T-model convolution 
kernels are proposed for realizing the sharpening spatial 
and clamp filters. As shown in Fig. 2c, the T-model 

convolution kernel is composed of the lower four 
parameters of the cross-model and the inversed T-model 
convolution kernel is composed of the upper four 
parameters. In the proposed scaling algorithm, both the 
T-model and inversed T-model filters are used to 
improve the quality of the images simultaneously. 

The T-model or inversed T-model filter is simplified 
from the 3×3 convolution filter of the previous work 
(Chan et al., 2011), which not only efficiently reduces 
the complexity of the convolution filter but also greatly 
decreases the memory requirement from two to one line 
buffer for each convolution filter. The T-model and the 
inversed T-model provide the low-complexity and low 
memory-requirement convolution kernels for the 
sharpening spatial and clamp filters to integrate the VLSI 
chip of the proposed low-cost image scaling processor. 

3.2. Fuzzy Edge Detector 

The edges of the image are detected based on fuzzy 
rules formulated. Figure 3 illustrates the edge detection 
procedure based on fuzzy rule formulation. 

3.2.1. Fuzzy Logic Matrix 

Fuzzy is a set or combination of rules and decisions. 
The proposed fuzzy system is designed with 4 inputs 
and a single output, such that the 4 inputs indicate the 4 
pixels present in the window mask. In this, the number 
of fuzzy sets used for the input Black and White is 2 
and for the output, 3 fuzzy sets are used. The Fuzzy 
rules are formulated as shown in Table 1 for the input 
and output variables.  

The accuracy level of edge detection in the image 
will be improved by using fuzzy logic. 16 Fuzzy rules 
are constructed for every 2×2 pixel sub-block. The 
output value indicates to which fuzzy set (Black fuzzy 
set, White fuzzy set or Edge fuzzy set) the output pixel 
‘P4’ belongs to. The fuzzy matrix is shown in Table 2. 
The notation ‘B’ represents black pixel and ‘W’ 
represents white pixel and ‘E’ represents edge pixel. For 
the construction of 2×2 sub block, the edge pixel is noted 
if any pixel variation occurs in this sub-block. 

3.2.2. Register Bank 

The Register Bank (RB) includes 12 registers-
Reg0 to Reg11, which stores the 3×3 pixel values of 
the current mask. Figure 4 illustrates the arrangement 
of RB in which each 3 registers are connected in 
series to provide three pixel values of a row in mask 
and Reg4 keeps the luminance value of the current 
pixel to be denoised. 
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Fig. 1. Block diagram of proposed fusion methodology 

 

 
 (a)  (b)  (c) 

 
Fig. 2.  Weights of the convolution kernels: (a) 3×3 convolution kernel (b) Cross-model convolution kernel (c) T-model and inversed 

T-model convolution kernels 

 

 
 

Fig. 3. Architecture of fuzzy based edge detector 



S. Anbumozhi and P.S. Manoharan / American Journal of Applied Sciences 11 (5): 769-781, 2014 

  
 773    Science Publications  

AJAS 

 
 

Fig. 4. Architectural arrangement of register banks 
 
Table 1. Fuzzy rules for input and output variables 
Input /output Name Range MF type 
Fuzzy input 1 = Pixel P1 Black [0 0 255] Triangular 
 White [0 255 255] Triangular 
Fuzzy input 2 = Pixel P2 Black [0 0 255] Triangular 
 White [0 255 255] Triangular 
Fuzzy input 3 = Pixel P3 Black [0 0 255] Triangular 
 White [0 255 255] Triangular 
Fuzzy input 4 = Pixel P4 Black [0 0 255] Triangular 
 White [0 255 255] Triangular 
Fuzzy output 1 = Pixel P4_out Black [0 3 5] Triangular 
 White [249 252 255] Triangular 
 Edge [130 133 135] Triangular 
 
Table 2. Fuzzy logic matrix for each sub-block 
Fuzzy inputs 
---------------------------------------------------------------------------------------------------------------------- Fuzzy output 
P1 P2 P3 P4 P4_out 
B B B B B 
B B B W E 
B B W B E 
B B W W E 
B W B B E 
B W B W E 
B W W B E 
B W W W E 
W B B B E 
W B B W E 
W B W B E 
W B W W E 
W W B B E 
W W B W E 
W W W B E 
W W W W W 
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Fig. 5. Architecture of the mean filter 

 

The luminance value from the input device enters 
the RB and immediately the denoising process starts. 
The twelve pixel values are stored in RB and then made 
use by consequent extreme data detectors and noise 
filters for denoising. After the denoising is complete, 
the reconstructed pixel values produced by the arbiter 
are fed to the line buffer. Suppose if we denoise row2 
and all four selection signals are set to 0, the values of 
row1 and row2 will be stored in Line Buffer-odd and 
line buffer-even, respectively. 

3.3. Mean Filter 

Figure 5 shows the design of the mean filter in which 
the |ADD| unit finds the absolute sum of two inputs. The 
mapping module helps in locating the four optimal 
directions entirely consisting of noise-free pixels. The 
directional differences for the four directions are 
computed and the least value is decided by the DIV/8 
unit. The last block gives the filtered output, i.e., the 
mean of two pixel values. 

4. RESULTS 

4.1. Evaluation Details of Proposed Algorithm 
using MATLAB 

The dataset used for our experimentation includes 
color PET scan images and normal brain MRI images. 
Both scan images have a resolution of 256×256 with 8-

bit precision in the luminance channel. The 
metabolisms exposed by the PET scan are fused with 
the anatomical structures shown in the MRI scan in 
the final image which provides an enhanced spatial 
relationship. It has been proven that the fused image 
obtained by the proposed method has a better visual 
quality than others and is shown in Fig. 6 and 7.  

Entropy is an important evaluation parameter to 
estimate the quality adherence of the fused image. Entropy 
is a statistical measure of randomness that can be used to 
characterize the texture of the fused brain image. 

The values of PSNR and MMSE are represented 
mathematically as given below Equation (1 and 2): 
 

10
fMAX

PSNR 20log
MSE

=  (1) 

 

( ) ( ) 2

0 0

m 1 n 11
MSE || f i, j g i, j ||

mn

− −= −∑ ∑   (2) 

 
where, ‘m’ represents width of the fused image and ‘n’ 
represents height of the fused image Equation (3): 
 

( )Entropy p log p=− ∗∑  (3) 

 
where, ‘p’ represents histogram counts of each pixel 
value in an fused brain image. 
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4.2. Evaluation Details of Hardware Architecture 

The results of proposed fusion algorithm shows that 
the system incorporated with its hardware architecture 
leads to lower power consumption in terms of slices, 
Look Up Tables and Flip Flops. The various devices in 
the Spartan-3 family are tested against their power 
consumption and tabulated in Table 3 to 6 and also 
graphically plotted in Fig. 8 to 11. 

The proposed fusion architecture is implemented in 

90 nm CMOS technology. The post layout results of the 
proposed fusion architecture are summarized in Table 7 
and the chip layout is shown in Fig. 12. The gate count is 
about 4179 gates and the power consumption is 203.27 
mW. The parameters considered for investigation 
include Current and Power Consumption (PC) and fusion 
latency. The performance of Spartan devices is analyzed 
based on Junction temperature and is tabulated in Table 
9. The same is graphically illustrated in Fig. 13. 

 

   
 (a)  (b)  (c) 
 

Fig. 6. Simulation results: (a) MRI brain Image (b) PET brain image and (c) fused brain image 
 

   
 (a)  (b)  (c) 
 

Fig. 7. Simulation results: (a) MRI brain image (b) PET brain image and (c) fused brain image 
 

 
 

Fig. 8. Graphical illustration of Table 3 
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Fig. 9. Graphical illustration of Table 4 

 

 
 

Fig. 10. Graphical illustration of Table 5 

 

 
 

Fig. 11. Graphical illustration of Table 6 
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 (a)  (b) 
 

 
(c) 

 
Fig. 12. Simulation results of proposed technique: (a) RTL schematic view (b) Technology schematic view and (c) Chip layout of 

proposed fusion IC 
 

 
 

Fig. 13. Graphical plot for performance based on junction temperature 
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Table 3. Comparison of power consumptions of spartan-3 family 
FPGA family Device specifications Power consumption 
Spartan-3E Xc3s500E 81.37 mW 
Spartan-3E Xc3s1200E 158.95 mW 
Spartan-3E Xc3s1600E 203.27 mW 

 
Table 4. Quiescent parameters evaluation in spartan-3E xc3s1200e family 

Parameters Current (mA) Power (mW) 
Quiescent form at 1.2V 52.86 63.43 
Quiescent Vccaux at 2.5V 35.00 87.50 
Quiescent Vcc025 at 2.5V 3.000 7.50 

 
Table 5. Quiescent parameters evaluation in Spartan-3E XC3S1600E family 

Parameters Current (mA) Power (mW) 
Quiescent form at 1.2V 69.4 83.27 
Quiescent Vccaux at 2.5V 45.0 112.50 
Quiescent Vcc025 at 2.5V 3.00 7.50 

 
Table 6. Quiescent parameters evaluation in spartan-3E XC3S500E family 

Parameters Current (mA) Power (mW) 
Quiescent form at 1.2V 25.82 30.98 
Quiescent Vccaux at 2.5V 18.00 45.00 
Quiescent Vcc025 at 2.5V 2.000 5.000 

 
Table 7. Post layout results of proposed architecture 
Technology CMOS 90 nm 
Clock frequency 100 MHz 
Gate count 4179 
Power consumption 203.27 mW 
Memory size 54492 kB 

 

5. DISCUSSION 

Our proposed fusion method is quantitatively 
evaluated using MATLAB R2012b and compared in 
terms of subjective testing, i.e., visual quality, where 
recommended parameters are used. All the fused results 
are assessed by three clinicians who all have over five 
years work experience in the relevant field. The 
original image and the fused image are compared by 
the two quality metrics such as Peak Signal to Noise 
Ratio (PSNR), Minimum Mean Square Error (MMSE), 
entropy and elapsed time. 

For the quantitative testing of the fused images, we 
make use of the Peak Signal-to-Noise Ratio (PSNR) is 
a prime evaluation factor. From the results, it is 
observed that our proposed fusion methodology 
performs very well. To prove the visual quality, the 
fused image of proposed method is compared with 

that of images obtained by other state of arts methods 
employing various set of MRI and PET images. 

Similarly, the proposed fusion algorithm and its 
hardware architecture system is designed and tested on 
various version of Spartan-3E family device using Model 
sim 6.1 and Xilinx 9.2i. This proposed scheme utilized 17 
LUTs and 9 slices at a maximum frequency of 200 MHz. 

The proposed fusion architecture has been 
implemented in 90 nm CMOS technology. The post 
layout results are previously summarized in Table 7. 
The present research is focused on the design and 
development of efficient hardware architecture for 
low power applications. The parameters considered 
for investigation include Current and Power 
Consumption (PC) and fusion latency. The gate count 
for our method is about 4179 gates and the power 
consumption is 203.27 mW.  

In this section, the comparisons of proposed method 
with existing methods in terms of certain parameters are 
being discussed. Table 10 illustrates the variation of 
PSNR, MSE and Entropy and Table 11 shows the 
time taken for fusion. Figure 14 and 15 graphically 
represent the variation of PSNR, MSE and Entropy 
and elapsed time variation in fusion, respectively. 
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Fig. 14. Graphical representation of the performance comparisons in terms of PSNR, MSE and ENTROPY 

 

 
 

Fig. 15. Graphical plot of performance comparison in terms of Fusion Latency 
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Table 8. Chip summary of FPGA devices 

Family 3E 3E 3E 

Device Xc3s 1600E Xc3s 1200E Xc3s 500E 
Package FG320 FG320 PQ208 
Speed Grade -4 -4 -4 

 
Table 9. Performance analysis based on junction temperature 

Device Junction temperature 

Xc3s 1600E 29.29°C 
Xc3s 1200E 28.64°C 
Xc3s 500E 22.11°C 

 
Table 10. Performance comparison of proposed fusion method in terms of quality metrics 

Methodology PSNR MSE ENTROPY 

Proposed Methodology 56.23 27.41 2.0958 
Group-Sparse Algorithm (Li et al., 2012) 29.54 32.56 1.7864 
Bivariate Laplacian mixture model (Rabbani et al., 2009) 22.16 37.19 1.9652 

 
Table 11. Performance comparison of proposed fusion method in terms of fusion latency  
Methodology Elapsed Latency (ms) 
Proposed Methodology 0.17 
Group-Sparse Algorithm (Li et al., 2012) 0.38 
Bivariate Laplacian mixture model (Rabbani et al., 2009) 0.45 

 
Table 12. Performance comparison based on hardware utilization 

Methodology Logic elements Bonded IOBs Elapsed time 

Proposed work 51 80 12.67 ns 
Besiris and Tsagaris (2012) 2828 - 7.56 ms 

Arunmozhi and Mohan (2013) 890 85 - 
Gonzalez et al. (2013) 1933 - 1301.2 s 

 

6. CONCLUSION 

In this study, the hardware implementation of a 
fusion method that is suitable for medical diagnosis has 
been presented. The hardware realization of our 
proposed fusion technique is based on FPGA technology 
and provides a fast, compact and low-power solution for 
medical image fusion. The dedicated sections provide a 
detailed description of the methodology to transform the 
fuzzy logic based fusion method in a hardware realizable 
process. Future work in this field has been planned in 
extending the algorithm to other types of image 
modalities and to objectively evaluate image fusion 
methods in real time. In Table 12, the comparison of 
proposed method with other existing methods in terms 
of hardware used and elapsed time is shown and it is 

proved that the proposed method is more efficient 
than most other methods. 
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