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Abstract: A hydromagnetic free convection flow has been modeled and 

simulated. The flow is considered unsteady, near a moving infinite flat 

plate in a rotating fluid. For the radiative heat transfer to be significant, 

very high temperatures are involved rendering the problem highly non-

linear. The simulation is based on a generic finite element scheme 

coupled with a stepwise Lagrange polynomial. The equations and other 

parameters entering into the description of the flow are transformed into 

interpretable postfix codes. Numerical values are computed for the 

temperature and velocity distributions. The results obtained are depicted 

graphically and discussed. 
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Introduction  

The study of the magnetohydrodynamic flows is 

important because of its enormous applications in 

magnetohydrodynamic electrical power generation, 

geophysics, etc. As a result, considerable research 

efforts have been made by various authors such as     

Ali and Andallah (2016; Aiyesimi et al., 2016; Bachir and 

Naroua, 2015; Dhar et al., 2016; Ghosh and Pop, 2007; 

Medikare et al., 2016; Tokis, 1988; Tu, 2015; Yassen et al., 

2016; Yusuf et al., 2016). 

El-Dabe et al. (2015) used finite differences to 
investigate and numerically solve a 

magnetohydrodynamic micropolar flow problem. The 
investigated flow was in the presence of mass and heat 
transfer. They observed that their numerical solution is 
in good agreement with the analytical solutions.        
Ali et al. (2015) used the Homotopy Analysis Method to 
solve a fluid flow problem in a porous medium. For their 

analysis, they considered a viscous and incompressible 
fluid. The results obtained from their solution and the 
numerical results collected from the literature have been 
compared. Hossain et al. (2015) made use of the 
Galerkin finite element method to investigate a 
Magnetohydrodynamic problem. The temperature and 

velocity distributions are computed and analyzed.  
Though the regularity of the problem is an 

important issue, we are proposing to solve a fluid flow 

problem with a generic computer tool using the 

Galerkin finite element scheme to compute the nodal 

values and generate the results from a stepwise 

Lagrange polynomial.  

Mathematical Formulation of the Problem 

The flow configuration and the equations governing 

the problem have been described by Naroua (2010). In 

non-dimensional form, the governing equations of the 

problem are: 
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with boundary conditions: 
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Where: 

u = The primary velocity 

v = The secondary velocity 
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Ө = The temperature 

Gr, Pr, E, R and M = Respectively the Grashof 

number, the Prandtl number, the 

Eckert number, the radiation 

parameter and the magnetic 

parameter 

 

Using the proposed generic computer tool and the 

boundary conditions (4), we numerically solve the above 

system of Equations 1-3. At the elemental level: 
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where, 1 ≤ i ≤ N, zi represents the lower coordinate of the 

i
th
 element, zi+1 is the upper coordinate of the element i, 

φi represents the test function and Ω represents the 

domain of the flow.  

Solution of the Energy Equation   

The first step is to solve Equation 3 by constructing 

its quasi-variational equivalent to obtain Equation 6: 
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Next, we consider a Galerkin approximation of two 

parameters as developed and described by Reddy (1984): 
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We then use Equation 5 and 7 to reduce Equation 6 to: 
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Equation 8 can be rewritten with the help of the Θ-

operator to obtain (Reddy, 1984): 
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where: 
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Using the Galerkin method on a 64 elements mesh, 

we obtain the initial value 
0

1
d  given by: 

 

0

1
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For t > 0: 
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Solutions of the momentum equations 

To compute these solutions, we need to solve 

Equations 1 and 2 by constructing their quasi-variational 

equivalent to obtain Equations 14 and 15:  
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For each component of the velocity, we consider a 

Galerkin approximation of two parameters as developed 

and described by Reddy (1984): 
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With the help of Equations 5, 16 and 17, Equations 

14 and 15 can be rewritten as: 
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where: 
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With the help of the Θ-operator (Reddy, 1984), 

Equations 18 and 19 reduce to: 
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Using the Galerkin method on a 64 elements mesh, 

we obtain the initial values 
0

2
d  and 

0

3
d  given by: 
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For t > 0: 
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Equations 13, 26 and 27 are used to compute the 

values of the temperature and velocity distributions at 

the nodes. The simulation results are computed from 

stepwise Lagrange polynomials that are constructed from 

the nodal values. All input elements are transformed into 

interpretable postfix codes which are used for 

computation purposes. 

Discussion of Results 

The numerical values for the flow fields (temperature 

and velocity) are calculated and examined both in the 

presence of cooling (Gr = +5) and heating (Gr = -5) of 

the plate by free convection currents. The results 

obtained are depicted graphically in Fig. 1-6 and are in 

agreement with Naroua (2010). 

From Fig. 1, it is observed that: 

 

• An increase in the Prandtl number (Pr) leads to a 

decrease in the temperature profile (Ө) 

• An increase in the radiation parameter (R) leads to a 

fall in the temperature profile (Ө) whereas an 

increase in the time (t) leads to a rise in the 

temperature profile (Ө) 

 

From Fig. 2-4, it is observed that: 

 

• In both cases (cooling and heating of the plate), the 

primary velocity profile (u) changes insignificantly 

due to an increase in the radiation parameter (R). It 

increases with an increase in the rotation parameter 

(E) and the time (t) whereas it falls with an increase 

in the Grashof number (Gr) 

• An increase in the Prandtl number (Pr) leads to a fall 

in the primary velocity profile (u) in the first case 

(cooling of the plate); conversely, it leads to a rise in 

the primary velocity profile (u) in the second case 

(heating of the plate) 

• The primary velocity (u) is backward far away from 

the plate for larger positive Gr 

 

From Fig. 5 and 6, it is observed that: 

 

• In the two cases (cooling and heating of the plate), 

the secondary velocity profile (v) changes 

insignificantly due to an increase in the radiation 

parameter (R) whereas it falls with an increase in the 

rotation parameter (E) and the time (t) 

• The secondary velocity profile (v) increases in the 

first case (cooling of the plate) and decreases in the 

second case (heating of the plate) due to an increase 

in the Prandtl number (Pr) 
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Fig. 1. Temperature distribution for Gr = ±5 

 

 
 

Fig. 2. Primary velocity distribution for Gr = +5 
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Fig. 3. Primary velocity distribution for Gr = -5 

 

 
 

Fig. 4. Primary velocity distribution for Gr≶0 
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Fig. 5. Secondary velocity distribution for Gr = +5 

 

 
 

Fig. 6. Secondary velocity distribution for Gr = -5 
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Conclusion 

In this article, a radiative MHD flow in a rotating 

fluid has been simulated. The simulation was based on a 

generic software tool using finite elements coupled with 

a stepwise Lagrange polynomial. From the results 

obtained, it is concluded that generic computer tools and 

interpretable codes can efficiently be used to solve fluid 

flow problems. 
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