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Abstract: In an early stage of the course of the Middle East Respiratory 

Syndrome Coronavirus (MERS-CoV) outbreak in Korea in 2015, the 

Centers for Disease Control and Prevention of Korea and several studies 

reported estimated Case Fatality Ratios (CFRs) that were significantly 

different. Here, we propose an estimation method based on the commonly 

quoted naive estimator of CFR utilizing the number of in-hospital patients 

with comorbidities, as well as the numbers of cumulative confirmed and 

dead patients up to a certain date. We compared the proposed estimator 

with two naive and an integral method estimator by simulation experiments 

under the individual based susceptible-exposed-infected-recovered model 

and analysis of data from the 2015 epidemic of MERS-CoV in Korea. The 

proposed estimator better simulated and analyzed the Korean MERS data.  
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Introduction 

During the early stages of a pandemic of a novel 

influenza, an estimate of the Case Fatality Ratio (CFR) 

can be utilized to determine how to distribute resources 

to supervise, prevent and treat the disease; therefore, this 

information plays an important role in response. 

Accordingly, when a novel virus occurs and spreads, 

estimation of the CFR is essential. However, because the 

CFR is determined after the epidemic, it is unknown 

during the course of the epidemic and must be estimated. 

In this study, we considered the CFRs among lab-

confirmed cases. The first confirmed case of the Middle 

East Respiratory Syndrome Corona Virus (MERS-CoV) 

in Korea was reported on May 20, 2015. Prior to 

entering Korea, the CFR in other regions known to be 

affected, such as the Middle East, was known to be about 

40%. Additionally, secondary infections occurred 

through some hospitals and the Centers for Disease 

Control and Prevention of Korea (CDCPK) announced a 

daily estimate of CFR using the naive method, which is 

employed by the World Health Organization (WHO). 

The CFRs reported in the early stage of the epidemic 

were very low compared to the known CFR of MERS-

CoV in Middle East countries. About one month after 

the first confirmed patient on June 19, 2015, the CDCPK 

reported a CFR of 14.5%.  

During the epidemic in Korea, several articles were 

published thatestimated the CFR of the epidemic. 

Cowling et al. (2015) estimated the CFR as 21% using 

an integral method proposed by Garske et al. (2009) 

based on epidemic data of 24 deaths and 30 recovered 

persons among 166 confirmed cases up to June 19, 2015. 

Mizumoto et al. (2015) estimated the CFR in real time 

using an integral equation method and calculated 

estimates of 40 to 80% in the early stages of the 

epidemic. On the other hand, when data collected up to 

July 15 were used (after which there were no more new 

confirmed patients), Majumder et al. (2015) estimated the 

CFR to be 22% using the improved naive estimator, while 

CDCPK reported it as 17.7% based on the naive estimator. 

These wide ranging estimates in the early stages of the 

outbreak led to difficulties in developing preventative 

policies and treatments, as well as to uncertainty regarding 

which estimation method is more reliable.  

Many studies have investigated methods for 

estimation of CFR of infectious diseases. The naive 

estimator is defined as the ratio of cumulative deaths to 

cases. Ma and Driessche (2008) represented the naive 

estimator of CFR using parameters of a compartment 
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model with susceptible, infectious and recovered 

individuals. The naive estimator is widely used. For 

example, Atkins et al. (2014) estimated the CFR of 

Ebola in West Africa from 2013 to 2014 by the naive 

estimator. However, the naive estimator appears to 

underestimate the actual value since it assumes all 

patients in the hospital will recover and hence be 

discharged. Conversely, the improved naive estimator, 

which is given as the ratio of the number of dead 

patients to in-hospital patients, assumes that not all 

patients in the hospital have been infected, resulting in 

overestimation in the early stages of an epidemic. 

Therefore, trials have been conducted to improve two 

naive estimators by using auxiliary information of 

patients other than the number of confirmed cases and 

the number of dead patients. 

Upon estimation of the CFR of SARS in Hong Kong 

and worldwide in 2003, Donnelly et al. (2003) and 

Ghani et al. (2005) used additional information 

regarding the time from onset to death or discharge from 

the hospital. Garske et al. (2009) investigated an integral 

method of CFR estimation of a novel flu (A/H1N1) that 

occurred in 2009 worldwide, resulting in 100,000 known 

patients and 429 deaths. Their proposed estimator 

utilized the ratio of deaths to a modified number of 

confirmed patients by using an estimated cumulative 

distribution of the time from onset to death, such that it 

improves underestimation of the naive estimator.  

Among these, two naive estimators and an integral 

method estimator using the cumulative distribution of 

delay times from onset to death were employed for 

estimation of CFR during the 2015 Korean MERS-CoV 

epidemic. However, the integral method estimators 

depend on estimates of the times from onset to death, 

resulting in the estimated CFR differing among studies.  

Here, we propose a novel estimator of CFR that 

utilizes information regarding comorbidities of patients 

in the hospital on the day of estimation and compare it to 

the two naive estimators and an integral method 

estimator. We demonstrate that the proposed estimator is 

better than the naive estimators and the integral method 

estimator used in the 2015 Korean MERS-CoV 

pandemic based on simulation experiments and analysis 

of data from the 2015 Korean MERS-CoV.  

Materials and Methods 

Let s be the days from when the first MERS-CoV 

patient was confirmed in a country and C(s), D(s) and 

R(s) be the cumulative numbers of confirmed patients, 

dead patients and recovered patients, respectively, up to 

day s. When an epidemic is completed on day T, the case 

fatality ratio π of a nation or a region is defined as the 

ratio of the cumulative number of deaths to that of 

confirmed patients up to T, that is, π = D(T)/C(T). Here, 

we do not count patients who have not come to the 

hospital for various reasons and therefore not been 

diagnosed as confirmed.  

There are two types of naive estimators, the naive 

and improved naive estimator, which are as follows: 

 

1
( ) ( ) / ( )ˆ s D s C sπ =  (1) 

 

2
( ) ( ) / { ( ) )}ˆ (s D s D s R sπ = +  (2) 

 

For s = 1,2,…,T, respectively. These estimators are 

also quoted as simple crude estimators as reported by 

Ghani et al. (2005) and Garske et al. (2009). Note that at 

day s = 1,…,T, the estimator 
1

π̂  assumes that every 

patient in the hospital has recovered, while 
2

π̂  assumes 

that all patients in the hospital are free from infection. 

When the epidemic is completed, the two estimators 

become the same, resulting in the true CFR. At each 

observation time during the epidemic process, the 

confidence intervals of the two estimators are given 

using normal approximation as in Ghani et al. (2005).  

The estimator suggested by Garske et al. (2009) 

reduced the number of confirmed patients by 

employing an estimated distribution function of the 

time from onset to death to give a bigger value than 

the naive estimator. The estimator developed by 

Garske et al. (2009) is as follows: 
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where, c(u) is the number of confirmed patients who 

begin symptoms at day u and F(s) is an estimated 

cumulative distribution of delay times from symptom 

onset to death. Therefore, F(s-u) is the probability that 

a patient who develops symptoms on day u will die by 

day s. However, if the day of symptom onset for a 

patient is not known, it must be estimated. If it is 

over-estimated, the Garske estimator itself becomes 

over estimated by reducing the denominator. The 

confidence interval for 
3

π̂ on each day can be obtained 

by using the bootstrap method with the estimated 

distribution function F(⋅) using data describing the delay 

times. Garske et al. (2009) compared his proposed 

estimator to the naive estimator and the improved naive 

estimator by simulation under the SEIR model.   

Cowling et al. (2015) used a log normal distribution and 

Mizumoto et al. (2015) a gamma distribution for F(⋅). 

The Garske et al. (2009) method is widely used in the 

literature. Cowling et al. (2015) estimated Korean 

MERS-CoV with Garske, while Mizumoto et al. (2015) 

used an integral method, of which Garske’s method is 

included. Many studies have been conducted using 
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Garski’s method (Cowling et al., 2015; Mizumoto et al., 

2015; Mishra et al., 2010; Presanis et al., 2009;     

Balcan et al., 2009; Khandaker et al., 2011; Nishiura, 

2010; Yu et al., 2013; Nguyen-Van-Tam et al., 2010; 

Echevarría-Zuno et al., 2009; Merler et al., 2011; 

Yang et al., 2009). 

When information regarding comorbidities of 

confirmed patients are available, we propose an 

estimator using this information in Equation 1 of the 

naive estimator. On day s, let the number of patients with 

and without comorbidities be Hs(s) and Hu(s), 

respectively. The proposed estimator is: 

 

4
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The estimator 
4

π̂ assumes 100α% of patients with 

comorbidites are dead and 100β% of patients without it 

are as recovered on day s, where α and β are given 

constants obtained from previous pandemics of MERS, 

if available. Note that the naive estimator assumes α = β 

= 0 and the improved naive estimator assumes H(s) = 0 

in addition to α = β = 0, i.e., not taking into account in-

hospital patients. The confidence interval of π can be 

obtained using normal approximation as follows (see 

appendix for proof): 
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Results 

To compare the proposed estimator with the two 

naive estimators and the integral method estimator, we 

conducted simulation experiments and analyzed the 2015 

Korean MERS-CoV epidemic data.  

Simulation 

An individual based Susceptible-Exposed-Infected-

Removed (SEIR) model was used to simulate epidemic 

outbreaks. The EpiFast algorithm of Bisset et al. (2009) 

for the individual based SEIR model was implemented in 

C++. We assumed the population was homogenously 

mixed. The number of susceptible individuals in the 

group was set to 500. The number of the initial 

infectious patients and the initial latent patients was set 

to 1 and 0, respectively. The case fatality ratio of the 

entire group was set to 0.2 (0.1) 0.4 and the ratio of 

patients with comorbidities in the population was set as 

0.10, 0.20 and 0.30. For the given CFR and the ratio of 

patients with comorbidity in the population, the CFR of 

patients with comorbidity was set as 0.9 (0.1) 0.5 and the 

CFR of patients without comorbidity was set such that 

the CFR of the whole group was satisfied. Removed 

individuals were classified as dead or recovered. The 

days from exposure to onset were set to 3, 4 and 5 with 

probabilities of 0.25, 0.5 and 0.25, respectively. 

Simulations were repeated until we had 1,000 selected 

observed processes with more than 30 infected patients 

at the end of the epidemic process for the pandemic. 

Because we do not know how high or low the CFR of 

patients with or without comorbidities is, we set α = 0 

and β = 0.6 for simplicity. 

To compare performance of the estimators, we 

proposed the following measurement: Assume we 

generate an epidemic process R times independently. For 

each epidemic process simulated, we first calculated the 

CFR π
j
, j = 1,…, R after the epidemic was completed. 

Let ( )ˆ
j

k iπ  be the estimate of π
j
 on day i = 1,…,Nj and Nj 

the days for which the epidemic continued in the j-th 

simulation, corresponding to ˆ , 1,...,4
k
kπ = . The square 

root of the mean square error of the daily estimates for 

estimator ˆ
k

π on the j-th repetition is defined by: 
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0

2

( )
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1
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i
d j R

N

π π

=

−

= =

−

∑  

 

where, i0 is the day on which the number of cumultive 

deaths is greater than or equal to a given number. In our 

simulation, i0 was set to 5. This was because, in each 

epidemic process, if the number of cumulative deaths is 

too small, the estimate of the final CFR becomes unstable. 

For ( )k

jd , mean ( )k
d  and standard deviation m

(k)
 are 

calculated. The simulation results are listed in Table 1. 

The values of (4)
d  were the smallest among ( )k

d , k = 

1,2,3,4 for all cases, which means the performance of the 

proposed estimator 
4

π̂ was better than that of the others. 

As expected, the values of (2)
d were largest among ( )k

d , 

k = 1,2,3,4 for all cases. The values of (3)
d were larger or 

the same as (1)
d , which was somewhat unexpected 

because the Garske type estimator is known to be an 

improvement of the simple estimator. One explanation 

for this is that the Kaplan Meier type estimate for the 

cumulative distribution function utilized in the present 

study affected the result. Other type estimates for the 

cumulative distribution function might change the 

result, as reported by Cowling et al. (2015) and 
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Mizumoto et al. (2015). The standard deviations m
(1)

, 

m
(3)

 and m
(4)

 are comparable with each other, while m
(2)

 

was larger than the others. 

Korea 2015 MERS-CoV Epidemic 

We used publicly available MERS-CoV data of 
confirmed MERS cases in the Republic of Korea from 
May 20 to December 23, 2015 (KICH, 2015), as well as 
some newspapers published in Korea. In the data set, 

patient comorbidity, date of confirmed infection and 
recovery, death or discharged are given. The first 
confirmed case of MERS was recorded on May 20, 2015 
and 185 more were confirmed through August 10, 2015. 
Among these, 36 died (19.4%), 141 were discharged 
(75.3%) and nine were still in the hospital (5.4%). 
Among the nine in-hospital patients, seven were without 
comorbidities and two were with comorbidities.  

 

Table 1. Means and standard deviations ( )k
d and m(k), k = 1,2,3,4 for R = 1000 simulations. The number of susceptibles in the group 

was 500. The number of the initial infectious patients was 1. The CFRs were given as 0.2 (0.1) 0.4 and the comorbidity 

ratios in the population were set as 0.1 (0.1), 0.3. For each comorbidity ratio, the death ratio of patients with comorbidity 

were set as 0.9 (0.1) 0.5.  

CMB   Death ratio 

--------------------------- ------------------------------------------------------------------------------------------------------------------------------ 

CFR Ratio1 no CMB2 CMB3 
1

π̂  
2

π̂  
3

π̂  
4

π̂  

0.20  0.10  0.12  0.90  0.053 (0.031)  0.066 (0.050)  0.057 (0.036)  0.052 (0.033) 
0.20  0.10  0.13  0.80  0.054 (0.032)  0.065 (0.050)  0.057 (0.036)  0.053 (0.033) 
0.20  0.10  0.14  0.70  0.053 (0.030)  0.065 (0.050)  0.057 (0.035)  0.052 (0.032) 
0.20  0.10  0.16  0.60  0.055 (0.033)  0.070 (0.055)  0.059 (0.038)  0.054 (0.035) 
0.20  0.10  0.17  0.50  0.054 (0.032)  0.066 (0.052)  0.058 (0.037)  0.053 (0.034) 
0.20  0.20  0.02  0.90  0.046 (0.022)  0.051 (0.034)  0.048 (0.025)  0.043 (0.025) 
0.20  0.20  0.05  0.80  0.048 (0.024)  0.055 (0.038)  0.050 (0.028)  0.046 (0.027) 
0.20  0.20  0.07  0.70  0.049 (0.025)  0.057 (0.041)  0.051 (0.029)  0.046 (0.028) 
0.20  0.20  0.10  0.60  0.051 (0.027)  0.058 (0.044)  0.053 (0.031)  0.048 (0.030) 
0.20  0.20  0.12  0.50  0.052 (0.029)  0.063 (0.047)  0.055 (0.034)  0.050 (0.032) 
0.20  0.30  0.03  0.60  0.044 (0.020)  0.049 (0.030)  0.046 (0.022)  0.041 (0.022) 
0.20  0.30  0.07  0.50  0.049 (0.026)  0.058 (0.042)  0.052 (0.029)  0.047 (0.030) 
0.30  0.10  0.23  0.90  0.069 (0.031)  0.080 (0.051)  0.072 (0.035)  0.067 (0.032) 
0.30  0.10  0.24  0.80  0.069 (0.028)  0.078 (0.048)  0.071 (0.032)  0.066 (0.029) 
0.30  0.10  0.26  0.70  0.068 (0.029)  0.080 (0.051)  0.071 (0.034)  0.066 (0.030) 
0.30  0.10  0.27  0.60  0.069 (0.031)  0.082 (0.054)  0.073 (0.036)  0.067 (0.033) 
0.30  0.10  0.28  0.50  0.071 (0.031)  0.086 (0.053)  0.075 (0.036)  0.070 (0.032) 
0.30  0.20  0.15  0.90  0.066 (0.027)  0.071 (0.043)  0.067 (0.030)  0.061 (0.029) 
0.30  0.20  0.18  0.80  0.067 (0.028)  0.075 (0.046)  0.069 (0.032)  0.063 (0.030) 
0.30  0.20  0.20  0.70  0.066 (0.030)  0.076 (0.048)  0.069 (0.033)  0.062 (0.031) 
0.30  0.20  0.23  0.60  0.069 (0.030)  0.078 (0.049)  0.071 (0.034)  0.065 (0.032) 
0.30  0.20  0.25  0.50  0.069 (0.031)  0.081 (0.052)  0.072 (0.035)  0.066 (0.033) 
0.30  0.30  0.04  0.90  0.062 (0.023)  0.061 (0.031)  0.062 (0.024)  0.054 (0.024) 
0.30  0.30  0.09  0.80  0.063 (0.025)  0.066 (0.037)  0.064 (0.027)  0.056 (0.027) 
0.30  0.30  0.13  0.70  0.064 (0.025)  0.069 (0.042)  0.065 (0.029)  0.057 (0.028) 
0.30  0.30  0.17  0.60  0.066 (0.027)  0.072 (0.045)  0.068 (0.031)  0.060 (0.030) 
0.30  0.30  0.21  0.50  0.069 (0.031)  0.081 (0.053)  0.073 (0.036)  0.065 (0.035) 
0.40  0.10  0.34  0.90  0.083 (0.029)  0.092 (0.050)  0.085 (0.032)  0.080 (0.030) 
0.40  0.10  0.36  0.80  0.085 (0.029)  0.093 (0.048)  0.086 (0.031)  0.082 (0.029) 
0.40  0.10  0.37  0.70  0.085 (0.030)  0.096 (0.050)  0.087 (0.033)  0.082 (0.031) 
0.40  0.10  0.38  0.60  0.086 (0.030)  0.096 (0.049)  0.088 (0.032)  0.083 (0.030) 
0.40  0.10  0.39  0.50  0.082 (0.029)  0.091 (0.047)  0.084 (0.032)  0.080 (0.029) 
0.40  0.20  0.27  0.90  0.081 (0.028)  0.084 (0.044)  0.081 (0.030)  0.074 (0.029) 
0.40  0.20  0.30  0.80  0.082 (0.029)  0.087 (0.046)  0.083 (0.032)  0.076 (0.030) 
0.40  0.20  0.33  0.70  0.084 (0.029)  0.090 (0.047)  0.085 (0.031)  0.079 (0.030) 
0.40  0.20  0.35  0.60  0.084 (0.028)  0.091 (0.047)  0.085 (0.030)  0.078 (0.029) 
0.40  0.20  0.37  0.50  0.085 (0.029)  0.093 (0.051)  0.086 (0.033)  0.079 (0.031) 
0.40  0.30  0.19  0.90  0.080 (0.028)  0.078 (0.042)  0.079 (0.030)  0.070 (0.030) 
0.40  0.30  0.23  0.80  0.080 (0.028)  0.081 (0.042)  0.080 (0.030)  0.071 (0.029) 
0.40  0.30  0.27  0.70  0.083 (0.030)  0.087 (0.046)  0.084 (0.032)  0.075 (0.032) 
0.40  0.30  0.31  0.60  0.081 (0.028)  0.086 (0.045)  0.082 (0.031)  0.073 (0.030) 
0.40  0.30  0.36  0.50  0.083 (0.029)  0.091 (0.048)  0.084 (0.032)  0.076 (0.031) 
1Comorbidity patient ratio in the population; 2Death ratio among patients without comorbidity; 3Death ratio among patients with 

comorbidity 
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Table 2. Number of patients, deaths and discharges by comorbidities. Ratios are in parentheses 

 Result 

 ---------------------------------------------------------   

Comorbidity Death  Discharge No. of patients 

Without  11 143 154  

  (0.071) (0.929) (1.000) 

With  27 5 32 

  (0.844) (0.156) 1.000  

Total 38 148 186  

 

 
 

Fig. 1. Plot of daily cumulative events 

 

 
 
Fig. 2. Histogram of days from onset to confirmation 

 

After July 5, 2015, the number of confirmed patients (186) 

did not change and the number of deaths (36) did not 

change between July 11 and October 25, 2015, at which 

time the number of deaths increased to 37. The first death 

was recorded on June 1, 2015; therefore, CFR estimates 

were obtained after that day. In the data reported, patients 

with number 25, 36 and 64 were discharged before or on 

the confirmed day. For the three cases, we use the 

confirmed day minus one day as a modification. Figure 1 

is a plot showing the cumulative number of patients or 

infectious patients, as well as the cumulative number of 

patients discharged from hospitals or recovered and 

cumulative death by comorbidity condition. 

Table 2 shows the number of deaths and discharges 

classified by comorbidities. After the epidemic was 

completed, among 186 confirmed patients, 38 died, 

giving a CFR of 20.4%. Additionally, 154 patients had 

no comorbidities, giving a death ratio of 7.14%. The 

number of patients with comorbidities was 32, giving a 

death ratio of 84.4%. 

Only 56 of the 186 records had information regarding 

the time from onset to confirmation. From these 56 

records, we calculated the median as 4 days and the 

mean as 5 days. Therefore, we used the median 4 days 

for death records that did not specify the time from onset 

to confirmation (Fig. 2). 

Figure 3 shows the estimates generated using 

1 2 3
ˆ ˆ ˆ, ,π π π and 

4
π̂ . 



Changhyuck Oh and Seonyeong Hwang / American Journal of Applied Sciences 2016, 13 (11): 1205.1213 

DOI: 10.3844/ajassp.2016.1205.1213 

 

1210 

 
 

Fig. 3. Daily estimates of MERS-CoV in Korea, 2015 

 

Daily estimates for the CFR using each estimator 

became stable after July 11, 2015, after which there were 

no changes in the number of confirmed patients and dead 

patients. The estimates generated using 
1

π̂  were 

underestimated in the early stage of epidemics and 

became stable after about 40 days after the first 

confirmed patient. The estimates generated by
2

π̂  were 

greatly overestimated in the early stage of the epidemics. 

Estimator 
3

π̂  proposed by Garske showed large 

fluctuations compared to the proposed estimator in the 

early stage. Estimator 
4

π̂  showed a very stable pattern in 

the early stages of the epidemic relative to other 

estimators and overall good performance.  

Discussion 

In this study, we proposed a new estimator for the 

CFR of MERS-CoV that considers the comorbidities of 

MERS-CoV patients. The estimator uses the same 

denominator of the naive estimator, but a different 

numerator in conjunction with the number of dead 

patients and patients with comorbidities. The developed 

estimator improves the underestimation problem of the 

naive estimator and the large fluctuation of the integral 

method in the early stage of the 2015 Korea-MERS-

CoV epidemic. Since doctors check comorbidities of 

patients upon diagnosis, it is assumed that this 

information will be available under normal conditions. 

The mean square errors of daily estimates of estimators 

considered were calculated as a measure of comparison 

of estimators used in simulation experiments. To the 

best of our knowledge, this is the first study to employ 

such a method of comparison. 

The data describing Korea MERS-CoV only included 

56 cases for which the onset times were recorded; 

therefore, onset times for other cases must be estimated 

for Garske’s estimator. This estimated time influences 

Garske’s CFR estimate. For Garske’s estimation, we 

used the Kaplan-Meier type estimator for the cumulative 

distribution function for censored data. However, 

Cowling et al. (2015) and Mizumoto et al. (2015) used a 

parametric estimation method for the cumulative 

distribution function. In a later study, comparison of 

estimators depending on the type used for the cumulative 

distribution function might be of interest.  

For patients with comorbidities, it is not clear 

whether some symptoms were from MERS-CoV or other 

diseases and therefore it is not possible to know the day 

of onset from MERS-CoV. 

The proposed estimator generated using information 

describing comorbidities of patients showed that it 

improved underestimation of the naive estimator and that 

it was more stable than Garske's estimator in the early 

stage of infection. Although we proposed this method of 

estimation of CFR for Korean MERS-CoV, it can be 

evaluated for application to other infectious diseases 

using the proper CFR of patients with comorbidities. 

Moreover, even though we used auxiliary variables 

describing comorbidities, other information such as 
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severity of condition might be applied to improve 

existing estimators.  

In the simulation, we used α = 0 and β = 0.6 for the 

proposed estimator, which assumes a CFR for patients 

without comorbidities of 0 and that of patients with 

comorbidities of 0.6. Even though these values are quite 

rough estimates for α and β, we obtained satisfactory 

results. However, we may use more accurate estimates 

for α and β if such information is available from 

previous pandemics.  

In this study, we investigated various methods of 

estimating the CFR of the MERS-CoV among confirmed 

or reported cases. We did not count patients who did not 

come to the hospital for confirmation. In a future study, 

we can evaluate methods to adjust the proposed 

estimator for situations in which the CFR for all MERS-

CoV patients, reported or not, is of interest.  

Conclusion 

The proposed estimator for the CFR of MERS in 

Korea 2015 using information of patients’ comorbidity 

conditions performed better than existing widely used 

estimators, two naïve and one integral method 

estimators. 

Appendix. Confidence Interval of 
4

π̂  

Binomial confidence intervals for the underlying 

probability of death can be calculated from either exact 

methods or a normal approximation, as appropriate.  

We first assume that given C(s), (R(s), D(s), Hs(s), 

Hu(s)) has a multinomial distribution, that is: 
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By the central limit theorem of Lehman (1999), we 

have, for given: 
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Let: 

 

2 3 4
p p pπ α β= + +  

 

Then, the variance of the estimator 
4

π̂  in (4) given 

C(s) = n is: 
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Therefore, we can estimate the variance as: 
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Let: 
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Thus, the variance of 

( , , ) ( ) ( ) ( )
s s s u

g D H H D s H s H sα β= + +  is given by: 
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From Serfling (1980) and Lehman (1999): 
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A confidence interval of π with 
4

π̂  can be given by: 

 

4

4 1 / 2

ˆ ˆ( )
ˆ

V
z

n
α
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π
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