

© 2016 Harouna Naroua and Lawaly Salifou. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

American Journal of Applied Sciences

Original Research Paper

On the Computerization of African Languages

Harouna Naroua and Lawaly Salifou

Département de Mathématiques et Informatique, Université Abdou Moumouni, Niamey, Niger

Article history

Received: 29-07-2016

Revised: 12-11-2016

Accepted: 15-11-2016

Corresponding Author:

Harouna Naroua

Département de Mathématiques

et Informatique, Université

Abdou Moumouni, Niamey,

Niger

Email: hnaroua@yahoo.com

Abstract: In this article, a computer tool for processing African languages

has been designed. It is intended to be a contribution to the automatic

processing of African languages. The current study is focused on West

African languages where five main languages from Niger, two from Mali and

one from Burkina Faso are considered. After a brief review of African

languages processing, we designed a tool which uses minimum resources and

operates essentially on a dictionary and the characteristics of the language

alphabet. The dictionary is represented using a trie data structure. For the

sake of application, the designed tool operates as a spell checker. To detect

and correct spelling errors, the edit distance and the specificities of the

language are used. Although they do not have processing tools, it was shown

that existing tools for computerized languages can be adapted to African

languages efficiently. To extend the designed tool to any African language,

we only need to provide an appropriate dictionary and alphabet.

Keywords: Computerization, Natural Language Processing, Spell Checker,

African Language, Computer Resource

Introduction

The importance of Automatic natural language

processing cannot be overemphasized. It has many
industrial applications such as spell checking, parsing,

text indexing and retrieval of information from the

Internet, voice recognition and synthesis, vocal
control of domestic robots, automated response

systems and machine translation (Kukich, 1992;
Pierre, 2006). Applications such as text editing are

used by millions of people every day. They are

present in all computer systems, internet search
engines and electronic gadgets. To make their use

more effective, processing tools like spell checking
and grammar correction are integrated to these

softwares and the main objective is to assist the user.
While spell checking is concerned about detecting and

correcting single word errors, parsing is concerned

about grammatical errors detection and correction
through a rigorous syntax analysis. Though syntax

analyzers are more important, the first step towards
the development of such programs is that of spell

checkers where three different techniques are used

which are non-word error detection, isolated-word
error correction and context error detection and

correction (Kukich, 1992). Such programs are
generally designed for a given language. Though

different processing techniques exist for other

languages like English and French, African languages

do not yet have processing tools.

Review of African Languages Processing

Africa is a continent with a very high linguistic

diversity. Estimated at about 1500-2000 languages, four

main groupings can be distinguished which are Afro-

Asiatic, Nilo-Saharian, Niger-Saharian and Khoisan (see

the AG Bell Association web site). All African

languages are considered official languages of the

African Union. Representing one third of the world's

languages (Van Der and Gilles-Maurice, 2003), African

languages are an important and irreplaceable component

of the linguistic heritage of humanity and its

ecolinguistic diversity. According to Osborn (2006), it is

clear that African languages are not yet widely used in

the content of computing applications or on the internet.

He observed that African languages are represented on

the web but not prominently as media of communication.

A significant number of sites that treat African languages

were given by Diki-Kidiri and Edema (2003) but with

minimal content in the languages themselves.

The existence of resources is the first step in the

computerization of a language (Chanard and Popescu-Belis,

2001). The majority of well-resourced languages have

well-formed corpuses but this is not the case for African

Harouna Naroua and Lawaly Salifou / American Journal of Applied Sciences 2016, 13 (11): 1228.1234

DOI: 10.3844/ajassp.2016.1228.1234

1229

languages. Despite the existence of different projects

aimed at the computerization of African languages such

as Pal and DILAF, the resources of these languages are

still very scarce. Nevertheless, important resources like

bilingual and editorial dictionaries exist and can be used

in favour of African languages computerization.

Although they have a lot of differences, we believe in the

possibility of using the little resources they have in

common to develop processing tools. From a vocal point

of view, different tones can be found in the words of

African languages. For example, Hausa words have high

tones and low tones and one can observe a flexion of

gender and number (Mijinguini and Naroua, 2012).

Many African languages are currently used by major

radio stations of the world such as BBC (UK), CRI

(China), Deutsche Welle (Germany), IRIB (Iran), Radio

Moscow (Russia), RFI (France) and VOA (USA).

Unfortunately, the presence of African languages on

Internet is very precarious even though they represent

30% of the languages of the world (Van Der and Gilles-

Maurice, 2003). The current researches on African

languages choose oral and written corpuses as a

transitional alternative or build a corpus from the Web

(Gilles-Maurice, 2002).

Another difficulty to overcome in the computerization

of African languages is text entry. In fact, computer

keyboards are designed for well-resourced languages and

are not compatible with African languages. To enter texts

in languages like Hausa, Fulfulde and Bambara requires

special softwares. Unfortunately, this is the case for all

African languages due to the presence of special

characters. An evaluation of keyboard layouts for five

languages from Niger (Fulfulde, Hausa, Kanuri,

Songhai-Zarma, Tamasheq) recommended LLACAN

which covers all the symbols of the alphabets of those

languages, produces valid Unicode code and requires

less buttons to press (Enguehard and Naroua, 2008).

The ability of processing a language with the famous

word processing softwares like MS Word and OpenOffice

Writer is another important issue. Various techniques have

been developed for well-resourced languages for various

purposes. However, all existing techniques are limited and

inadequate in the case of African languages. Despite the

scarcity of linguistic resources, it is possible to develop

computer tools for African languages and improve them

over the time with the possibility to create extensions for

some popular softwares.

Spell Checking Techniques

The main objective of spell checkers is to detect and

correct errors. Their task is composed of three sub-tasks:

Detecting errors, generating possible corrections and

ranking suggested corrections. To achieve this, various

techniques were invented. Each technique is related

either to non-word error correction, real-word error

correction, or both. Spelling errors may be typographical,

cognitive or phonetic. Typographical errors occur when

the keys are pressed in the wrong order. Cognitive errors

arise from ignorance of the correct spelling of the word.

Phonetic errors are special cases of cognitive errors. A

phonetic error refers to a wrong word that is pronounced

the same way as the correct word. It was shown that in

typed texts, 1 to 3% of the errors are spelling errors

(Daniel and James, 2000). Damerau (1964) stated that

80% of these errors are related to insertion, deletion,

substitution, or transposition.

Error detection is to find incorrect words in a text. A

wrong word is then marked by the application in charge

of spell checking. If the word is really wrong, an error is

said to be detected. Many authors have made important

contributions in this area like (Damerau 1964; Cyril,

1967; Peterson, 1980; Zamora et al., 1981; Laurent,

2001; Suzan, 2002; Pierre, 2006). The main techniques

used for non-word error detection in a text are either

based on analysis of n-grams, or dictionary lookup

(Kukich, 1992). The techniques based on n-grams are to

analyze each n-gram of a given input word and check its

validity in a precompiled table. These techniques usually

require a dictionary or corpus that’s large enough to

determine the statistics table of n-grams (Kukich, 1992).

A dictionary is a collection of correct or acceptable

words. The techniques based on the use of a dictionary

or lexicon involve taking a word as input and verifying

its existence in the dictionary. Any word that is not in the

dictionary is then considered wrong (Kukich, 1992). A

detection algorithm based on dictionary lookup is given

by Peterson (1980). Some of the data structures used in

spell checking are hash tables, binary search trees, tries

and finite automata. One of the famous algorithms in this

area is that of Aho and Corasick (1975). The algorithm is

to move through an abstract data structure called

dictionary that contains the words to search by reading

the text characters one by one. The data structure is

implemented efficiently, which ensures that each

character of the text is read only once. Generally, the

dictionary is represented using a trie. A trie may be seen

as a representation of the transition function of a

deterministic finite automaton. The algorithm has a

linear complexity in the size of the text and search

strings. Comparatively, techniques using n-grams

derived from a dictionary provide less accuracy than

those using all the information in the dictionary. But, the

latter ones are time consuming depending on the data

structure used to represent the dictionary. A comparative

study showed that the hash table provides better

performance than the AVL tree, the Red-Black tree and

Skip list (Mark, 2009). A comparison of five data

structures was performed for the Punjabi dictionary

(Lehal and Singh, 2000). It concerned binary search tree,

Harouna Naroua and Lawaly Salifou / American Journal of Applied Sciences 2016, 13 (11): 1228.1234

DOI: 10.3844/ajassp.2016.1228.1234

1230

trie, ternary search tree, multi-way tree and reduced

memory method tree. As a result, the binary search tree

was found to be the most suitable data structure in terms

of memory usage and time. But it is limited when it

comes to suggest a list of candidates for the correction or

find all words that differ by one or two characters. This

limitation may be avoided by the use of a trie which

offers almost the same time complexity with a binary

search tree. Hash table and trie are shown to be the most

suitable data structures for dictionary representation.

Error correction refers to the fact of equipping spell
checkers with the ability to correct detected errors. This
is to find words in the dictionary that are similar in some
ways to the misspelled word. The minimum edit distance
or simply edit distance is until now the most widely used
technique in the spelling errors correction. It has been
applied in almost all spell checking functions in text
editors and command language interfaces. The first
spelling correction algorithm based on this technique
was proposed by Damerau (1964). Almost at the same
time, Levenshtein also developed a similar algorithm.
Several other algorithms on edit distance were born
thereafter. The edit distance is defined as the minimum
number of edit operations required to transform a word
to another (Kukich, 1992). These operations are
insertion, deletion, substitution and transposition. In
most cases, correcting a spelling error requires the
insertion, deletion or substitution of a single character, or
the transposition of two characters. When a wrong word
can be transformed into a dictionary word by inverting
one of these operations, the dictionary word is
considered a plausible correction. Damerau’s algorithm
(Damerau, 1964) for edit distance detects spelling errors
by comparing words of four to six characters with a list
of most frequently used words. When there are multiple
candidate words for a given edit distance on a detected
word, the first word in the dictionary appearing in
alphabetical order is chosen. Levenshtein’s algorithm is
in the field of dynamic programming and seems to be the
most widely used in edit distance computing. Each edit
operation is assigned a cost, usually 1 for deletion and
insertion and 2 for substitution and transposition. Given
a dictionary of n words, the correction algorithms based
on edit distance generally require n comparisons for each
wrong word. To reduce the search time, reversed edit
distance technique is used. Another approach used to
reduce the number of comparisons involves sorting or
partitioning the dictionary according to certain criteria
such as alphabetical order, word length, or words
occurrences. Many other techniques are also used in
spelling errors correction like similarity keys, rules
system, n-grams, probabilistic techniques and neural
networks. However, the most widely used technique in
errors correction remains edit distance (Hsuan, 2008). It
has a time complexity of O(nm), with n and m the
respective sizes of the two compared words. A technique
developed by Horst (1993) combining automata and edit

distance was used to quickly find the closest correct
word to a wrong word. It has a linear complexity in time
relative to the length of the wrong word, regardless of
the dictionary size. But the space complexity of the
method is exponential.

Design of a Spell Checker for African

Languages

Despite their low level of computerization, African

languages have important linguistic resources like bilingual

and editorial dictionaries. Although they have a lot of

differences, we believe in the possibility of using the little

resources they have in common to develop processing tools.

Eight West African languages from three different countries

are considered in the current study. Five main languages

from Niger, two from Mali and one from Burkina Faso are

considered. The five languages of Niger are: Fulfulde (ful),

Hausa (hau), Kanuri (kau), Songhai-Zarma (son) and

Tamashek (tmh). The two languages from Mali are:

Bambara (bam) and Soninke (snk) and the one from

Burkina Faso is Dyoula (dyu). Though they all use the

Latin alphabet for their transcription, each of these

languages has its own special characters as shown in

Table 1 (Enguehard and Naroua, 2008).

From the literature collected, we believe that the

construction of a spell checker will be a step forward

towards the computerization of African languages.

However, the checker should use minimum resources

and efficiently consider the specificities of the concerned

languages. Our methodology consists of designing a

general tool that uses resources that can easily be

obtained from the considered languages despite of their

differences with regards to special symbols. Taking into

account the linguistic resources available to us, a

technique based on a dictionary was found to be more

suitable for the design of the spell checker. Although the

meaning of a word is contextual, we assume that error

detection is independent of the context. An erroneous

word is identified by a simple dictionary lookup where

the following operations are allowed:

• Add a word to the dictionary

• Check if a word is in the dictionary

• Delete a word from the dictionary

To achieve this, a number of classes are necessary. The

class diagram of the entire process is shown in Fig. 1.

The words are represented in form of nodes. Each

node has as many links as there are characters in the

alphabet. Each valid character string is assigned a value.

This may be of any type. It can be used to store

information on every word in the dictionary such as

definition, grammatical class, translation into another

language, etc.

Harouna Naroua and Lawaly Salifou / American Journal of Applied Sciences 2016, 13 (11): 1228.1234

DOI: 10.3844/ajassp.2016.1228.1234

1231

Fig. 1. Global class diagram

Table 1. Special characters used in the alphabets of the studied languages

Name Sign Languages Unicode

Latin letter e with tilde ẽ son U+0065 U+0303

Latin letter i with tilde ĩ son U+0069 U+0303

Latin letter o with tilde õ son U+006F U+0303

Latin letter r short stroke overlay r ̵ kau U+0072 U+0335

Latin letter u with tilde ũ son U+0075 U+0303

Latin letter a with tilde ã son U+00E3 or U+61 U+303

Latin letter a with breve ă tmh U+0103 or U+61 U+306

Latin letter ENG ŋ bam, ful, son U+014B

Latin letter s with caron š tmh U+0161 or U+73 U+30C

Latin letter k with hook ƙ hau U+0199

Latin letter y with hook ƴ ful, hau U+01B4

Latin letter turned e ǝ kau, tmh U+01DD or U+259

Latin letter g with caron ǧ tmh U+01E7 or U+67 U+30C

Latin letter j with caron ǰ tmh U+01F0 or U+6A U+30C

Latin letter b with hook ɓ ful, hau U+0253

Latin letter open o ɔ bam U+0254

Latin letter d with hook ɗ ful, hau U+0257

Latin letter gamma ɣ tmh U+0263

Latin letter epsilon ɛ bam U+025B

Latin letter n with retroflex hook ɲ bam, son U+0272

Latin letter d with dot below ḍ tmh U+1E0D or U+64 U+323

Latin letter l with dot below ḷ tmh U+1E37 or U+6C U+323

Latin letter s with dot below ṣ tmh U+1E63 or U+73 U+323

Latin letter t with dot below ṭ tmh U+1E6D or U+74 U+323

Latin letter z with dot below ẓ tmh U+1E93 or U+7A U+323

The R attribute of the class Trie is the number of

symbols or letters of the alphabet. The characters are

represented by indices of next array (Node []).

Unfortunately, representing characters by indices of next

array will set a large value for R. This will inevitably

lead to a waste of memory space and additional checks

to prevent foreign words from being added to the trie. To

avoid this problem, a trick is to find a mapping function

Harouna Naroua and Lawaly Salifou / American Journal of Applied Sciences 2016, 13 (11): 1228.1234

DOI: 10.3844/ajassp.2016.1228.1234

1232

between indices of the next array and letters of the

alphabet (Robert and Kevin, 2011). That is why the

alphabet attribute is present in the class Trie. It is of type

String but it may also be an array of characters. Two

additional methods, toChar and toIndex assure the

conversion from indices to characters and vice versa.

The charAt and the indexOf methods of the String class

can be effectively used and to make the trick more

flexible, we can totally delegate this task to an interface

Alphabet that defines toChar and toIndex. The

KeysThatMatch is another interesting method. Indeed, it

allows to search the trie for words that match a given

pattern. The patterns used are those with a wildcard, for

example a dot ('.'). It is this possibility that we use to

implement the reverse editing distance. The

KeysThatMatch method uses a data structure List (a

linked list of Strings) to keep the search results. The List

class has methods to add an item, to verify the existence

of an item and to delete an item. Tags may be used to

take care of the contextual meanings of a word. It may

be very useful for applications like syntax analyzers.

To abstract the implantation of the real dictionary,

add flexibility, simplify maintenance and facilitate

scalability of the spell checker, an abstract dictionary is

represented by a class (TrieBasedDico) that implements

Dico interface (or abstract class). It defines the methods

(add, remove, contains) needed to operate on a

dictionary. TrieBasedDico class is designed by

composition from Trie class.

The list of candidate words for the correction of an

erroneous word is determined in several steps. Once a word

is identified as being erroneous, the procedure for

determining the type of the error follows. We defined three

types of errors (inspired by our research on OpenOffice):

• IS_NEGATIVE_WORD: Error caused by the

presence of a number or a character not belonging to

the alphabet in the word. The word is called negative

• CAPTION_ERROR: Case Error. This is when a

word that should be written with the first letter

capitalized is written entirely in lowercase

• SPELLING_ERROR: represents all other types of

spelling errors

The types of errors are short integers encapsulated as

static fields in the LySpell class. The corrector has two

methods for the determination of errors. First, the

getSpellFailure method which analyzes a given word

and returns -1 if the word is correct or one of the three

types of errors mentioned above otherwise. Then isValid

method that checks whether a given word is valid

according to the result returned by getSpellFailure and

spellchecking settings. If getSpellFailure returns a value:

• Equal to -1, the word is valid and is Valid returns true

• Other than -1, the correction parameters are taken

into account to determine the validity of the word.

For example when you choose not to correct words

with numbers and the erroneous word contains

digits, isValid returns true. This method can be

exploited to correct spelling as you type

currentLanguage represents the language being

supported by the spell corrector. It is an instance of

Language class. Searching suggestions is performed by

propose which is an instance of a class that implements

the interface Proposer.

The method getProposals provides correction

suggestions for an invalidated word by isValid depending

on the type of error detected by getSpellFailure.

The processed language is represented by the

Language class. After several attempts, we decided that

the dictionary is an attribute of the language and not the

reverse. The local attribute of the Language class stores

information about the processed language. It is of type

Locale (representation of a language in Java) and

provides among others: A two-letter ISO 639-1 code of

the language, a two-letter ISO 3166 code of the country

as well as the complete names of the language and the

country. We use this data for naming resources and for

user display. The properties attribute is of type Map

(mapping key/value) and stores other properties of the

language that we use to design the checker and which are

not provided by Locale. They are currently the alphabet

of the language, the special characters in the alphabet,

the characters that look like special characters and the

punctuation symbols that we divided into two parts:

Word separators and end of sentence signs. All the

characters of the alphabet are coded in Unicode. The

class in charge of finding suggestions implements

Proposer interface which defines two methods:

isNegativeWord and propose. The

TrieBasedDicoProposer class uses some features of the

alphabet to find candidate words which are found using

the reverse edit distance as follows:

• All words having an edit distance equal to 1 with the

wrong word are generated by applying edit

operations such as insertion, deletion, substitution

and transposition. A total of 60n+28 words are

generated for a wrong word of length n

• Each previously generated word is searched in the

trie. If it is there, then it is retained as a possible

correction of the erroneous word

The research is conducted by a private method called

proposeByReverseEditDistance. This method is actually

based on keysThatMatch. It takes an argument of type

TrieBasedDico and a word or a pattern and returns the

result as an array of Strings. Methods that perform

Harouna Naroua and Lawaly Salifou / American Journal of Applied Sciences 2016, 13 (11): 1228.1234

DOI: 10.3844/ajassp.2016.1228.1234

1233

editing operations on a given word are provided by the

StringTools class which consists of tools shared by

different classes. The minimum edit distance is used to

rank the suggested words. Those who are closest to the

wrong word are placed at the top of the list. To

implement that, a comparator was designed.

Implementation

In this article, a software tool has been proposed for

processing eight West African languages from three

different countries. It has been designed as a spell

checker for which only a dictionary and the alphabet of a

language are needed as linguistic resources. A prototype

of the designed software tool has been implemented in

Java under Linux environment. For the sake of

application, a dictionary (Mijinguini, 2003) and the

official alphabet of the Hausa language of Niger are

used. The developed tool was tested as a standalone

program through a text editor designed for that purpose

and as an extension for the OpenOffice suite. Figure 2

and 3 respectively show the dialog box for spell

checking and error correction in OnpenOffice writer.

However, in OpenOffice, the Hausa options are only

Nigeria and Ghana and we are limited to select one of

them. From the results, we observe that:

• It is possible, from minimum language resources

and proven techniques to develop automatic

processing tools for African languages

• Only a dictionary as language resource and the

alphabet of an African language are needed to

develop a spell checker

• The specificities of the African languages can be

efficiently handled

• Although they contain special characters, the

dictionaries of African languages can efficiently be

represented by tries

Fig. 2. Dialog box for error correction

Fig. 3. Error correction

Conclusion

This work is a contribution to the automatic

processing of African languages. Although it may be

necessary to improve the performance of the designed

tool, we believe that the results we have obtained will

add value to the computerization of African languages

and contribute to their effective use in institutions of

education and on media.

Acknowledgement

The authors would like to thank Université Abdou

Moumouni of Niamey for the financial support.

Funding Information

The study was supported by the research grant

offered by Université Abdou Moumouni of Niamey.

Author’s Contributions

The authors have equally contributed to the research

work and writing of the article.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all

authors have read and approved the manuscript and no

ethical issues are expected to arise after its

publication.

Harouna Naroua and Lawaly Salifou / American Journal of Applied Sciences 2016, 13 (11): 1228.1234

DOI: 10.3844/ajassp.2016.1228.1234

1234

References

Aho, A.V. and M.J. Corasick, 1975. Efficient string

matching: An aid to bibliographic search. Commun.

ACM, 18: 333-340. DOI: 10.1145/360825.360855

Chanard, C. and A. Popescu-Belis, 2001. Encodage

informatique multilingue: Application au contexte

du Niger. Les Cahiers du Rifal, 22: 33-45.

Cyril, N.A., 1967. String similarity and misspellings.

Commun. ACM, 10: 302-313.

 DOI: 10.1145/363282.363326

Damerau, F.J., 1964. A technique for computer detection

and correction of spelling errors. Comm. ACM, 7:

171-176. DOI: 10.1145/363958.363994

Daniel, J. and H.M. James, 2000. Speech and Language

Processing: An Introduction to Natural Language

Processing, Computational Linguistics and Speech

Recognition. 1st Edn., Prentice Hall, Englewood

Cliffs, Inc., ISBN-10: 013122798X, pp: 934.

Diki-Kidiri, M. and A.B. Edema, 2003. Les langues

africaines sur la Toile. Cahiers du Rifal, 23: 5-32.

Enguehard, C. and H. Naroua, 2008. Evaluation of

virtual keyboards for West-African languages.

Proceedings of the Sixth International Conference

on Language Resources and Evaluation, May 28-30,

Marrakech, Morocco, pp: 1-5.

Gilles-Maurice, D.S., 2002. Web for/as Corpus: A

perspective for the African languages. Nordic J. Afr.

Stud., 11: 266-282.

Horst, B., 1993. A fast algorithm for finding the nearest

neighbor of a word in a dictionary. Proceedings of

the 2nd International Conference on Document

Analysis and Recognition, Oct. 20-22, IEEE Xplore

Press pp: 632-637.

 DOI: 10.1109/ICDAR.1993.395657

Hsuan, L.L., 2008. Spell checkers and correctors: A unified

treatment. MSc. Thesis, University of Pretoria.

Kukich, K., 1992. Techniques for automatically

correcting words in text. ACM Comput. Surveys,

24: 377-439. DOI: 10.1145/146370.146380

Laurent, B., 2001. Production de logiciels et

d'utilitaires pour le traitement informatique de

langues africaines dans un contexte de NTIC

multilingues. Proceedings of the 2nd World

Congress of Community Networks, (CCN’ 01),

Buenos Aires, Argentine, pp: 1-13.

Lehal, G.S. and K. Singh, 2000. A comparative study
of data structures for Punjabi dictionary.
Proceedings of the 5th International Conference
on Cognitive Systems, Reviews and Previews,

(ICC’ 99), pp: 489-497.
Mark, P.N., 2009. A comparison of dictionary

implementations.
Mijinguini, A., 2003. Dictionnaire Elémentaire Hausa-

Français. 2nd Edn., Editions GG, Niamey, Niger,
pp: 752.

Mijinguini, A. and H. Naroua, 2012. Règles de
formation des noms en haoussa. Proceedings of the
Conférence Conjointe Traitement Automatique des
Langues Africaines, (ALA’ 12), JEP-TALN-
RECITA, pp: 63-74.

Osborn, D.Z., 2006. African languages and information

and communication technologies: Literacy, access
and the future. Proceedings of the 35th Annual
Conference on African Linguistics: African
Languages and Linguistics in Broad Perspectives,
(CAL’ 06), Cascadilla Proceedings Project,
Somerville, MA, USA, pp: 86-93.

Peterson, J.L., 1980. Computer programs for detecting
and correcting spelling errors. Comm. ACM, 23:
676-687. DOI: 10.1145/359038.359041

Pierre, M.N., 2006. An Introduction to Language
Processing with Perl and Prolog: An Outline of
Theories, Implementation and Application with

Special Consideration of English, French and
German. 1st Edn., Springer Science and Business
Media, Berlin, ISBN-10: 3540343369, pp: 515.

Robert, S. and W. Kevin, 2011. Algorithms. 4th Edn.,
Addison-Wesley Professional,

 ISBN-10: 0132762560, pp: 992.

Suzan, V., 2002. Context-sensitive spell checking based
on word trigram probabilities. MSc. Thesis,
University of Nijmegen.

Van Der, A.V. and D.S. Gilles-Maurice, 2003. The
African languages on the internet: Case studies for
hausa, somali, lingala and isiXhosa. Cahiers Du

Rifal, 23: 33-45.
Zamora, E.M., J.J. Pollock and Z. Antonio, 1981. The

use of trigram analysis for spelling error detection.
Inform. Process. Manage., 17: 305-316.

 DOI: 10.1016/0306-4573(81)90044-3
AG Bell Association.

http://www.nationsonline.org/oneworld/african_lang
uages.htm

