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Abstract: Enzymatic hydrolysis process to transform lignocellulosic 

cellulose into sugar in a bioreactor tank involves different controlling 

factors such as advection, diffusion and fragmentation of cellulose 

chains. Although it has been observed experimentally that enzymatic 

hydrolysis is strongly influenced by the environmental effects in a tank, 

these effects have not been adequately quantified. In this study, a 

current kinetic model for enzymatic hydrolysis of cellulose was 

extended by coupling the Population Balance Equations (PBE) with 

advection and diffusion terms to model the spatial evolution of the 

system. The mathematical model was solved using the DAE-QMOM 

technique. The aim of this study was to simulate the effect of diffusion 

and advection on the fragmentation of cellulose chains during 

enzymatic hydrolysis in one-dimensional domain. This study 

demonstrated the applicability and usefulness of a commercial software 

(COMSOL Multiphysics) for finding the solution of PBE-advection-

diffusion in cellulosic hydrolysis problem. The key implication of this 

work is that advection is a significant phenomenon which could in-

crease the number of cellulose particles. Also, diffusion alone cannot 

increase hydrolysis rate, but the combination of advection and diffusion 

increases hydrolysis rate. 
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Balance Equations 

Mathematics Subject Classification 2000: 22E46, 53C35, 57S20 

 

Introduction 

Bioethanol production from lignocellulosic biomass 

consists of three fundamental processes: Pretreatment, 

enzymatic hydrolysis and fermentation. In the 

enzymatic hydrolysis phase, enzymes break cellulose 

chains into sugar in the form of cellobiose and glucose. 

The enzymatic hydrolysis process in transforming 

lignocellulosic cellulose into sugar in a bioreactor tank 

involves different kinds of controlling factors such as 

advection, diffusion and fragmentation of cellulose 

chains. During the hydrolysis process, certain amount 

of enzymes will be added to the biomass suspension in 

the tank and the solution will be stirred by an impeller 

in the reactor. In other words, cellulose particles are 

advected (by the velocity terms) and diffused. Both 

advection and diffusion move the particles from one 

place to another, but each accomplishes this differently. 

Advection goes by following the streamline, while 

diffusion will diffuse regardless of the stream direction. 

The basic formulation for studying the evolution of 

cellulose chains during hydrolysis was proposed by 

(Griggs et al., 2012) using the Population Balance 

Equations (PBE). PBE is considered to be a statement 

which describes the changes in cellulose chains length 

distribution. PBE employs continuous distribution which 

tracks the evolution of the spectrum of chain lengths. In 

PBE, one independent variable represents time and the 

other represents property coordinate, which is the 

particle size. They typically describe the temporal 

evolution of the population distribution function. 
In the present study, we coupled PBE with advection 

and diffusion terms to model the spatial evolution of a 
system. In other words, we took into account the fact that 
particles move through space due to diffusion and 
advection. To the best of our knowledge, there is no 
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kinetic model for cellulosic hydrolysis process which 
takes into consideration both advection and diffusion 
simultaneously. However, in the context of PBE, much 
research has been conducted to study the PBE-advection-
diffusion model for other problems, for instance, 
coagulation of nanoparticles (Wang et al., 2012), 
fluidization (Mazzei et al., 2009) and antisolvent 
crystallization (Woo et al., 2006). Based on their 
findings, moment-based techniques such as MOM, 
QMOM, DQMOM and TEMOM came into view as 
promising choices of PBE-advection-diffusion coupling. 

The aim of this paper was to simulate the effect of one-

dimensional diffusion and advection on the fragmentation 

of cellulose chains during enzymatic hydrolysis. Hence, a 

better understanding on the dynamic process in cellulosic 

hydrolysis process could be obtained. Moreover, this 

paper will demonstrate the applicability and usefulness 

of DAE-QMOM to solve PBE-advection-diffusion in 

cellulosic hydrolysis problem. 

Mathematical Modeling 

The current kinetic model of enzymatic hydrolysis of 

cellulose by (Griggs et al., 2012) was extended to study 

the effect of advection and diffusion to cellulose 

particles. The DAE-QMOM technique, which originally 

solves the pure PBE problem developed by (Gimbun et al., 

2009) was tested to solve the coupled PBE-advection-

diffusion model for cellulosic hydrolysis. In this study, 

PBE, which describes how the particles size distribution 

changes as time progresses due to polymer breakage 

during cellulosic hydrolysis, was coupled with 

advection-diffusion. In this case, there are two physics 

under study; one is PBE and the other one is the 

advection-diffusion equation. In mathematical modeling, 

we believe that, the more physics is correlated to the 

process we coupled, the more realistic the model is. 

In describing the state of the particles, there are 
two types of coordinates involve: Internal and external 
coordinates. Internal coordinate represents the length 
of cellulose particles, whereas external coordinate 
represents the spatial location of the particle. 
Together, internal and external coordinates create the 
state space of the particles. In the PBE-advection-
diffusion model for enzymatic hydrolysis of cellulose, 
we allowed for spatial variation in all components of 
the well mixed PBE model i.e.: 
 

( ) ( ), , ,p X t p X x t→  (2.1) 

 

where, x denotes spatial coordinates and X is the 

cellulose particle length. The transport equations for the 

cellulose particles are governed by: 
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where, p is the population distribution of enzyme-

accessible cellulose chains of length X, pB is the 

population distribution of CBH-threaded cellulose chains 

of length X and R is the radius of cellulose particles. 

Here v = v(x, t) is the particle velocity and Dp and 
Bp

D  

are the diffusion coefficients for p and pB of length X, 

respectively. The second term on the right-hand-side of 

Equation 2.2-2.4 describes the loss or gain of particles 

due to advection, while the third term denotes the 

influence of diffusion on the particles. The source terms 

fp, fpB and fR represent the reaction terms due to the 

breakage process of cellulose chains and are given by 

(Griggs et al., 2012). 

In order to describe the particle field in time and 

space, moment operators were utilized. The k-th order 

moment p
(k)

 and ( )k

B
p of the particle distributions are 

defined as: 
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And: 
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By multiplying both sides of Equation 2.2-2.3 with X
k
 

and integrating over all particle lengths, a system of 

transport equations for p
(k)

, ( )k

B
p  and R is obtained. Thus, 

the transport equations for the k-th order moment of one-

dimensional domain are expressed as: 
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where, the length-independent diffusivity of the particle 

is κp and 
Bp

κ for p and pB, respectively. According to 

the definition of moments, p
(0)

 is the total number of 

enzyme accessible cellulose particles and (0)

B
p  is the 

total number of CBH-threaded cellulose particles. 
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Furthermore, p
(1)

 is the total number of monomeric 

glucans for enzyme accessible cellulose particles and 
(0)

B
p is the total number of monomeric glucans for CBH-

threaded cellulose particles. 

The QMOM technique (McGraw, 1997) was used to 

close the moment equations such that: 
 

( ) ( ) ( ) ( )
1

, , ,
qn

kk

i i

i

p x t w x t x tξ
=

=∑  (2.10) 

 
And: 

 

( ) ( ) ( ) ( )
1

, , ,
qn

kk

B i i

i

p x t e x t L x t
=

=∑  (2.11) 

 

where, nq is the order of the quadrature formulation, ξi 

and Li are particle length and wi and ci are quadrature 

weights for p and pB, respectively. 

By combining the partial differential equations from 

the moment transport equations and the algebraic 

equations from the QMOM definitions, we obtained a 

Differential Algebraic Equations (DAE) system, which 

can be written as: 
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This combination of QMOM and DAE in solving 

population balance equation has been proposed by 

(Gimbun et al., 2009). 

Next, we introduced the dimensionless variables as 

follows: 
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where, t is time, l is the characteristic length (length of 

the domain), u is the characteristic velocity, p
(0)

(0) is the 

initial total number of enzyme accessible cellulose 

particles and R0 is the thickness of single cellulose 

chains. Several parameters were grouped together to 

form dimensionless parameters. 

Therefore, the transport equations became: 
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where, a
*
, b

*
, c

*
, d

*
, e

*
 *

pκ  and *

B
pκ are dimensionless 

parameters. 

1D PBE-Advection-Diffusion Model 

Computational programs were used using a finite 

element based software, i.e., COM-SOL for one-

dimensional domain. The length of the computation 

domain was chosen as [0,1]. Initially, the particles 

concentrated in the range of x = (0.25, 0.6) and (0.75, 1) 

while the other domain was free of particles. We 

enforced no flux boundary conditions on the left-end and 

right-end. Throughout the investigation, the parameters 

were taken as Kd = 1 mol/m
3
, p

(0)
(0) = 100 mL = m

3
, R0 = 

1 nm, 
1 3 1 1

3 1 1

1 , 1 ,

2 , 32.5

CHBH EG

h h

CBH EG CBH

f T T

k hr k m mol hr

k m mol hr E E

− − −

− −

= =

= = =

ɶ

mol = m
3
, ρ 

= 0.8 mol = m
6
, n = 1 and L = 0.1 m. We set nq = 2 for 

the DAE-QMOM formulation. We assumed that the 
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initial k-th moments for k = 0, 1, 2 of p and pB with 

their quadrature length and weight and also the initial 

value for radius R was [5.0183, 1.0794, 0.3722, 

0.2058, 5.0183, 1.0794, 0.3722, 0.2058, 100], 

respectively. 

The evolution of particle moments in the PBE-

advection-diffusion model with zero diffusion coefficient 

and advection velocity is shown in Fig. 1. The result 

shows that the total number of cellulose particles and the 

total number of monomeric glucans, which are 

represented by p
(0)

 and p
(1)

 respectively, increased due to 

particle breakage. On the other hand, (0)

B
p and (1)

B
p  

decreased because the CBH1-threaded cellulose chains 

were transformed into enzyme-accessible cellulose 

chains by the action of EG1 enzyme. 

Moreover, all curves in Fig. 1 eventually stopped 

increasing or decreasing at certain time and became a 

straight line. This behaviour indicates that, at certain 

time, all cellulose chains reached the minimum length 

and all cellulose cylindrical particles reached its 

minimum radius owing to the depletion of insoluble 

substrate during the hydrolysis process. In this 

situation, both enzymes (CBH1 and EG1) stopped their 

activities of cutting the cellulose chains. Next, we 

describe the reaction-diffusion process of cellulosic 

hydrolysis in 1D domain before expanding the model to 

include the advection term. 

Case I: 1D Reaction-Diffusion Only 

In Fig. 2, the evolution of the total number of CBH1-

threaded cellulose chains, (0)

B
p  and the total number of 

enzyme-accessible cellulose chains, p
(0)

 undergoing the 

process of one-dimensional diffusion and reaction are 

illustrated. Initially the particles concentrated 

heterogeneously i.e., in the range of (0.25, 0.5) and 

(0.75, 1), while other places were free of particles. It is 

apparent from both graphs in Fig. 2 that diffusion caused 

the particles to move from high to low concentrations so 

that the domain were filled up with the species over 

time. After a sufficiently long time, the whole domain 

would be filled homogenously. 

We can see the difference between the two graphs: 

(a) (0)

B
p  and (b) p

(0)
 in Fig. 2. pB was lost by degradation 

and reached a steady state, brought about by the 

combination of fragmentation and diffusion. On the 

contrary, there is a clear trend of increasing p
(0)

. The 

spatial evolution of p
(0)

 increased with respect to time due 

to particle breakage by the enzymes and, also, from 

CBH1-threaded cellulose chains. This is because, CBH1-

threaded chains were transformed into enzyme-accessible 

cellulose chains, p
(0)

 by the action of EG1 enzyme. 

Also, we studied the effect of diffusion on the 

distribution of (0)

B
p  and (b) p

(0)
. In order to reveal the 

effects of diffusion on the particle moments evolution, 

simulations for various diffusion coefficients D = 0.5, 

1, 2 at t = 40 were performed as demonstrated in Fig. 

3. As the diffusion coefficient increased, the 

distribution became less fluctuating. The difference 

between different diffusion coefficients mainly 

focused on the neighborhood of the interface; not in 

increasing the generation of shorter chains. Diffusion 

took place and moved the particles, but did not 

significantly alter the solution. 

Case II: 1D Reaction-Diffusion-Advection 

Next, we studied the effect of advection on reaction-

diffusion patterns. Here, we considered v, which exhibits 

advection in addition to diffusion through the 

surrounding medium. The evolution of particle moments 

p
(0)

 and (0)

B
p with reaction, diffusion and advection in 1-D 

domain are shown in Fig. 4. Initially, cellulose particles 

concentrated at (0.25, 0.5) and (0.75, 1). The results for 

p
(0)

 and (0)

B
p  show similar pattern at earlier period during 

the reaction due to diffusion and particle breakage by the 

action of enzymes. However, there is a slight difference 

between p
(0)

 and (0)

B
p  at longer period during the reaction 

where p
(0)

 shows higher value than (0)

B
p  due to the 

reaction and advection effects. This is because, the 

CBH1-threaded chains, pB generates enzyme-accessible 

cellulose chains, p by the action of EG1 enzyme. The 

value of p
(0)

 and (0)

B
p  in the neighborhood of the 

interface in the right zone was greater than that in other 

places which was brought about by the presence of 

advection velocity. 

In order to reveal the effects of advection to 

reaction-diffusion on particle moments evolution, 

simulations for various velocities i.e., v = 0, 3, 5 are 

performed at time t = 40. The spatial distribution of 

p
(0)

 and (0)

B
p  at t = 40 is presented in Fig. 5. The 

advection takes place and accelerates the movement 

of particles and significantly alters the solution. The 

particle moments have a larger value at bigger v 

throughout the domain, which indicates a significant 

contribution of advection velocity to the reaction-

diffusion system. The fundamental new phenomenon 

resulting from the inclusion of advection is that the 

pattern of solution is spatially distributed dynamically 

with increasing number of cellulose particles. The 

results from this study showed an agreement with the 

analysis reported in our previous paper (Jamil and 

Wang, 2016) in terms of the generation of shorter 

cellulose chains throughout the hydrolysis process. To 

summarize, advection is a significant phenomenon 

which could increase the number of cellulose 

particles. Diffusion alone could not increased the 

hydrolysis rate, but the combination of advection and 

diffusion increase the hydrolysis rate. 
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Fig. 1. The evolution of particle moments of PBE-advection-diffusion equation with zero diffusion coefficient and advection velocity 
 

 
 (a) (b) 
 

Fig. 2. The evolution of particle moments for (a) pB and (b) p with diffusion coefficient D = 1 at velocity v = 0. 
 

 
 (a) (b) 
 

Fig. 3. The distribution of (a)p(0)
B and (b) p(0) for different diffusion coefficient in 1-D at zero velocity at time t = 40 
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 (a) (b) 

 
Fig. 4. The evolution of particle moments for (a) pB and (b) p with diffusion coefficient D = 1 at velocity v = 5 

 

 
 (a) (b) 

 
Fig. 5. The distribution of (a)p(0)

B and (b) p(0) for different velocity in 1-D at diffusion coefficient D = 1 at time t = 40 

 

Conclusion 

In the present study, we extended the Griggs kinetic 

model for cellulosic hydrolysis by adding diffusion and 

advection terms into the system. This model was 

developed to study the effect of advection, as well as the 

diffusion process as a drift phenomenon on cellulose 

particles in a one-dimensional domain. The key 

implication of this work is that advection is a significant 

phenomenon which could increase the number of 

cellulose particles. Diffusion alone could not increase the 

hydrolysis rate, but the combination of advection and 

diffusion increased the hydrolysis rate. By incorporating 

the advection and diffusion effects on cellulose chain 

length evolution, an improved understanding of cellulose 

depolymerization can be achieved. In this study, we 

succeeded in carrying out an important coupling of PBE-

advection-diffusion model for enzymatic hydrolysis of 

cellulose for the first time. 

Acknowledgment 

The author gratefully acknowledged the financial 

support received from Universiti Malaysia Pahang 

(RDU 150399). 

Author’s Contributions 

Norazaliza Mohd Jamil: Did the research, analysed  

and interpreted the result, prepared the manuscript and 



Norazaliza Mohd Jamil and Qi Wang / American Journal of Applied Sciences 2016, 13 (7): 870.876 

DOI: 10.3844/ajassp.2016.870.876 

 

876 

responsible for the manuscript correction, proof reading 

and paper submission. 

Qi Wang: Designed the research plan and organized 

the study, assisted in research work, provided the 

intellectual input and designs in the study and reviewed 

it critically for significant intellectual content.  

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that all of 

the other authors have read and approved the manuscript 

and no ethical issues involved. 

References 

Gimbun, J., Z.K. Nagy and C.D. Rielly, 2009. 

Simultaneous quadrature method of moments for the 

solution of population balance equations, using a 

differential algebraic equation framework. Indust. 

Eng. Chem. Res., 48: 7798-7812. 

 DOI: 10.1021/ie900548s 

Griggs, A.J., J.J. Stickel and J.J. Lischeske, 2012. A 

mechanistic model for enzymatic saccharification of 

cellulose using continuous distribution kinetics I: 

Depolymerization by EGI and CBHI. Biotechnol. 

Bioeng., 109: 665-675. DOI: 10.1002/bit.23355 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jamil, N.M. and Q. Wang, 2016. The 

nondimensionalization of equations describing 

enzymatic cellulose hydrolysis. World Applied Sci. 

J., 34: 158-163. 

Mazzei, L., D.L. Marchisio and P. Lettieri, 2009. Direct 

quadrature method of moments for the mixing of 

inert polydisperse fluidized powders and the role of 

numerical diffusion. Indust. Eng. Chem. Res., 49: 

5141-5152. DOI: 10.1021/ie901116y 

McGraw, R., 1997. Description of aerosol dynamics by 

the quadrature method of moments. Aerosol Sci. 

Technol., 27: 255-265. 

 DOI: 10.1080/02786829708965471 

Wang, W., Q. He, N. Chen and M. Xie, 2012. A simple 

moment model to study the effect of diffusion on the 

coagulation of nanoparticles due to Brownian 

motion in the free molecule regime. Thermal Sci., 

16: 1331-1338. DOI: 10.2298/TSCI1205331W 

Woo, X.Y., R.B. Tan, P.S. Chow and R.D. Braatz, 2006. 

Simulation of mixing effects in antisolvent 

crystallization using a coupled CFD-PDF-PBE 

approach. Crystal Growth Des., 6: 1291-1303. 

 DOI: 10.1021/cg0503090 


