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Abstract: South Africa contends with the lack of access to secure 
affordable energy. This affects the country’s ability to provide reliable 
power to consumers. This paper investigates the source of energy ‘power 
mode’ such as electricity, gas, paraffin, solar and other (firewood and cow 
dung) and the effects of power usage in cooking, heating and lighting at 
household consumption level using three multivariate techniques, namely; 
Multivariate Analysis of Variance (MANOVA), discriminant analysis and 
factor analysis. These methods are used to determine the mostly used 
source of energy and usage based on the nine Provinces in South Africa. 
According to all the three techniques, electricity and paraffin were the most 
used type of energy source. However, electricity usage was ahead of 
paraffin. Rationalization and use of the power of the optimum of these 
powers are required. MANOVA was the preferred method in terms of ease 
of use and interpretation of the results. 
 
Keywords: Discriminant Analysis, Factor Analysis, Power Usage 

 

Introduction 

From 1994 of democratization, South Africa has been 
subjected to many challenges. Due to past apartheid 
policies, many areas endured a lack of access to basic 
services such as electricity. About two-thirds of South 
African population did not have access to electricity 
before 1994 (Ziramba, 2008).  

The South African government considers electricity 
provision as vital for developing the country. Therefore, 
South Africa’s electricity consumption has increased 
sharply since the early 1990s (Inglesi-Lotz and Blignaut, 
2011). Eskom, a company that generates about 95% of 
South Africa’s electricity and about 45% of electricity 
used in Africa, encouraged the reduction of energy usage 
at household level (Netshiava, 2014). 

Several studies (Altman et al., 2008; De Lange, 2008; 
Magadla and Holloway, 2011) have been done in the 
electricity sectors of South Africa since democratic rule 
in 1994. They all confirm that electricity demand is 
seasonal, is more costly for higher income and relatively 
more affluent communities and most electricity income 
is generated from industrial consumers, among others. 

Eskom has potential to increase power production 
because it generates, transmits and distributes electricity 

to industrial, mining, commercial, agricultural and 
residential customers (Prinsloo, 2009). Eskom requested 
a budget to build new stations around 2014, which was 
denied. In December 2007, this rejection decision was 
found to be an error. It later adversely affected the South 
African economy. Mining companies estimate that 
plentiful ounces of both gold and platinum production 
were lost annually. Preventing these losses would greatly 
improve the economy of South Africa. The sources of 
generating electricity power are coal, nuclear and solar 
energy, gas and paraffin (Amusa et al., 2009). 

Eskom management stirs consumers to conserve 
power during peak periods in order to reduce load 
shedding (Blignaut et al., 2005). Indeed, energy household 
consumption problems are, by definition, multivariate. 

The energy consumption has attracted interest in 
the energy literature over the past two decades 
(Amusa et al., 2009) in which electricity was found to 
be a vital energy source. 

Multivariate techniques are applicable in exploring 
the effects of factors with levels. In this study, these 
factors are concurrently used instead of their individual 
effects. The objective was to compare three methods in 
analysing two-way layout studies: Discriminant analysis, 
factor analysis and MANOVA. 
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To make fitting choices among these methods, 
researchers should know the statistical models 
underlying them (Bianco et al., 2009). Each statistical 
method presented the results using power consumption 
in the household. 

This paper investigates the source of energy ‘power 
mode’ such as electricity, gas, paraffin, solar and other 
(firewood and cow dung) and the effects of energy usage 
‘power usage’ in cooking, heating and lighting at 
household consumption level in South Africa using these 
three multivariate techniques (discriminant analysis, 
factor analysis and MANOVA). 

Previous statistics-based studies on electricity were 
not based on the above methods, but on other methods. 
They mainly used artificial neural networks and Kalman 
filter (Khosravi et al., 2013; Yamin et al., 2004; Zhang and 
Luh, 2005); fuzzy regression and logic (Gładysz and 
Kuchta, 2011); Markov regime switching models (Janczura, 
2014; Janczura et al., 2013; Janczura and Weron, 2009; 
2010; 2012; 2014); probability (Gneiting et al., 2007); 
structural methods (Lanne et al., 2010; Sinton and Levine, 
1994); times series and forecasting (Khosravi et al., 2013; 
Weron, 2014; Weron and Misiorek, 2008; Zhao et al., 
2008); among others. The methods were studied 
individually, for all consumers and no comparisons were 
made. In this study, the methods used (discriminant 
analysis, factor analysis and MANOVA) are studied for 
households, at individual levels and also compared. 
Hence, this study is an innovation. 

Model Description 

Data 

The experimental design was motivated through a 
survey of household power consumption in South Africa 
during 2007. The household expenditure dataset was 
used, which was obtained from the unit record file of 
Statistics South Africa (Stat SA). This was presented by 
two factors. The first factor was the ‘power usage’ with 
three levels. The three levels of power usage were 
known to be a source of power consumption that was 
apparent in several measures of the expenses in the 
household. Household energy consumption is considered 
as the energy consumed in homes to meet the needs of 
the residents themselves. 

The energy consumption of households is often 
called the residential energy consumed in household 
dwellings. It is thought that the power consumption 
might be different in either the rural areas compared to 
urban areas or from one Province to another. Another 
factor was the ‘province’ with nine levels, namely; 
Gauteng, Eastern Cape, Free State, KwaZulu-Natal, 
Limpopo, Mpumalanga, North West, Northern Cape 
and Western Cape. 

Using MANOVA, the factor energy source ‘power 
mode’ with five levels was used as the dependent 
variables and the two categorical factors ‘province’ and 
‘power usage’ were considered as independent variables. 
When using the discriminant analysis, the factor energy 
source ‘power mode’ was used as independent variable 
and the factor ‘province’ and ‘power usage’ was the 
dependent variables. The factor analysis used the factor 
energy source ‘power mode’ as the dependent variable. 
The statistical packages used to perform the three 
techniques were SPSS (IBM SPSS Statistics for 
Windows version 20.0) and SAS version 19.3 of 2012. 
These appear in Jackson (2015) and USI (2015) 

Statistical Methods 

Multivariate techniques are the most common 
applications in social science to identify and test the 
effects from the analysis. Use of multivariate techniques 
is unusual in identifying the effects of two factors such 
as ‘power usage’ with three levels and ‘province’ with 
nine levels based on the type of ‘power mode’. This 
study needed both to choose a number of group 
comparison of the ‘power mode’ and to study the nature 
of group differences between the two factors ‘power 
usage’ and ‘province’. 

Most statistical techniques require the variables to 
be measured quantitatively and in some cases to also 
be normally distributed (Frank, 2009; Jaynes, 2003; 
Leon-Garcia, 2008). In order to offset limitations that 
could be due to these confines, this study applied 
discriminant analysis, factor analysis and MANOVA. 

Discriminant Analysis 

According to Lawrence et al. (2006), Descriptive 
Discriminant Analysis (DDA) is often used to support a 
significant MANOVA to determine the structure of the 
linear combination of the dependent variables. DDA 
focuses on revealing major differences among the factors 
to answer questions: 
 
• Can a province be a useful factor to classify the 

energy consumption in the household? 
• Can the power usage be used as a factor to classify 

the energy consumption in terms of the utilization in 
the household? 

• What are the chances of making mistakes when 
using these factors? 

 
In the real data used, mistakes occur whenever a 

source of energy of type ‘power mode’ is classified into 
the wrong category expense in the household. Thus, an 
error will occur when, for example, household expenses 
for cooking is predicted to be caused by lighting or 
heating. Alternatively, a consumption of the energy in a 
particular ‘province’ is allocated to another ‘province’. It 
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is also noted that these two kinds of errors are probably 
not equally serious. 

Discriminant analysis is a multivariate technique 
useful to control the power consumption and classify 
expenses of the households into the appropriate effects 
either ‘Province’ or ‘power usage’. The independent 
variable that does not contribute a significant amount of 
prediction could be considered for deletion from the 
model (Abdi, 2007; Almeida, 2002; Ennett et al., 2001). 

Factor Analysis 

Factor analysis examined the pattern of correlations 
between the energy sources of the ‘energy source’ 
variables. Variables that are highly correlated, either 
positively or negatively, are likely to be influenced by the 
same factors, while those that are considered as relatively 
uncorrelated are likely to be influenced by different 
factors (O'Brien and Marakas, 2007; Vanlier et al., 2012). 

Factor analysis provides information regarding: 
 
• The number of different factors needed to explain 

the pattern of the relationship among variables 
• The nature of these factors 
• The level of quality of the way the hypothesised 

factors explain the ‘power mode’ 
• The amount of unique variance that each type of 

energy source variable includes? 
 

MANOVA 

The study assessed the differences across the 
combinations of the factor ‘power mode’ considered as 
dependent variable, as this constructed linear relationship 
between the five dependent variables using Multivariate 
Analysis of Variance (MANOVA). In addition, the 
MANOVA technique assessed the level of ‘province’ 
and ‘power usage’. In particular, MANOVA was used to 
identify which of ‘province’ and ‘power usage’ 
differentiated the most set of energy source ‘power 
mode’ by using a correlation matrix. 

The investigation of the relationships between the five 
‘power mode’ (electricity, paraffin, gas, solar and cow 
dung) at each level of factor ‘province’ and factor ‘power 
usage’ provided statistical guidance to reduce the 
dimension. The type of energy source that produced the 
most ‘power usage’ or ‘province’ separation was identified. 

The idea behind ‘factor’ is that there are two 
variables which affect the dependent variable called 
‘power mode’. The study was conducted on ‘province’ 
and ‘power usage’ and 27 independent observations were 
been detected at each of the (9×3) combinations of levels. 
The two-way layout was with one observation per cell for 
a variety of interaction effects. The experiment procedure 
considered the multivariate two-way model in which, in 
turn, the interaction of the factors was examined. 

The two-way fixed effects model for a vector 
response consisted of five (5) components and the k

th 
observation at level ‘I’ of factor ‘province’ and ‘j’ of 
factor ‘power usage’ was denoted by Xijk, i = 1, 2, ...., 9 
and j = 1, 2, 3 and k = 1, 2, ..., 27. The two-way fixed-
effects for a vector response consisting of five (5) 
complements, using adapted equations from Bökeoğlu and 
Büyüköztürk (2008), is given as: 
 

ijk i j ij ijkX µ α β γ ε= + + + +  (1) 

 

where, 
9

1 ii
α

=
∑  = 

3
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=
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=
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3

1 ijj
γ

=
∑ = 0 and 

the vectors are all of order 5×1 and εijk is assumed to be a 
(N5 (0, Σ)) random vector. µ represents an overall level, 
αi represents the fixed effect of factor ‘province’, βj 
represents the fixed effect of factor ‘power usage’ and γij 
is the interaction between factor ‘province’ and factor 
‘power usage’. The interaction term represented the joint 
effect of two or more treatments. Interaction terms were 
created for each combination of treatment variables. 

The expected response at the i
th level of factor 

‘province’ and the jth level of factor ‘power usage’, from 
McLachlan (2004), is therefore: 
 

( )ijk i j ijE X µ α β γ= + + +  (2) 

 
Considering that the two factors were both 

between the groups design, the appropriate model 
takes the form as defined in Equation 1. Addressing 
the questions posed earlier, a mathematical 
exploration of the model takes place below. 

According to Venables and Ripley (2002), measuring 
variation between groups: 
 

( ) ( )

( )

( )

. .

. .

ijk i j

ij i j

ijk ij

X X X X X X

X X X X

X X

= + − + −
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+ −

 (3) 

 
where, X  = the overall average of the observation 
vectors, 

i
X = the average of the observation vectors at ith 

level of factor ‘province’, 
. j

X = the average of the 

observation vectors at jth level of factor ‘power usage’ and 

ij
X  = the average of the observation vectors at the ith level 

of factor ‘province’ and at jth of factor ‘power usage’. 
The effects of two factors, ‘province’ and ‘power 

usage’ were examined simultaneously on 5-dependent 
variables ‘power mode’. 

The model consisted of two types of components: 
Main effects that described the impact of an individual 
variable value on the results and Interaction effects that 
consider combinations of variable values (Ash, 2011; 
Montgomery et al., 2006). 
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This study considered two factors case, ‘province’ at 
nine levels as the nine provinces of South Africa and 
‘power usage’ at the three levels in developing the 
model. Possible combinations of various levels of these 
two factors were assessed for their joint effect on power 
consumption. 

Following the tradition, when a number of group 
comparison strategies need to be chosen, first 
MANOVA was conducted and then ANOVA would 
follow at 5% level of significance if necessary. 
MANOVA on the multiple dependent variables ‘power 
mode’ was statistically significant (p-value <0.05). 
Then ANOVA became necessary. 

Statistical procedures of each model for analysing 
data were used when the experimental design included 
combinations of two-factors. The hypotheses of 
interest for a two-factor experiment concerned the 
main effects and the combined effect. The strengths 
and limitations of each approach were identified by 
using an application and comparison of method 
employing real data. 

Results 

A statistically significant multivariate effect showed 
that the independent variable ‘province’ and ‘power 
usage’ were associated with differences between the 
vectors or sets of means. Thus, the study presumed that 
factor effects existed. If effects existed, the next step in 
this process was to discover which specific dependent 
variables were affected.  

Main Effects of Province 

The main effects of Province accounts for about 
76.6% of the total variance as indicated in last column of 
the Table 1. As expected for Province, the study found 
that gas, solar and other (firewood or cow dung) did not 
differ in terms of Province (p-value >0.05) as shown in 
Table 2, whereas the consumption of electricity and 

paraffin differed in terms of Province (p-value <0.05) 
where Gauteng was the highest. 

Main Effects of Power Usage 

The main effects of power usage accounts for about 
75.8% of the total variance (Table 1). Second, the next 
question was of course to determine the importance of 
type of energy source ‘power mode’ to the overall effects. 

These estimated marginal means were displayed in 
Table 2. 

Table 2 indicates that the energy source ‘power mode’ 
differed significantly in terms of the type of utilization such 
as cooking, lighting or heating (p-value <0.05). It was noted 
that electricity scored the highest of the power usage group 
with a mean of 949850.444 as this indicated the strength of 
association between the types of energy source that 
contributed the most to the significant overall effects. 

Table 3 demonstrates that when ‘power usage’ was the 
dependent variable, electricity and paraffin did not differ 
in terms of the way that ‘power usage’ (cooking, lighting 
and heating) was used while other types of energy source 
differed (p-value <0.05). Two discriminant functions were 
obtained. However, the first function accounts for 71.2% 
of the variation of ‘power usage’. 
 
Table 1: Main effects, multivariate test 

    Partial 

Effect  F p-value eta squared 

Intercept Wilks’ Lambda 588.96 0.000 0.996 

Province Wilks’ Lambda 5.915 0.000 0.766 

Usage Wilks’ Lambda 7.533 0.000 0.758 

 
Table 2: Grand mean 

Dependent variable Mean 

Electricity 949850.4 

Gas 14809.6 

Paraffin 153307.4 

Solar 1584.3 

Other) 587388.7 

 
Table 3: Test for corrected model and main effects 

Source Dependent variable F P-value Partial Eta square 

Corrected Model Electricity 2827.744 0.000 0.994 

 Gas 61.988 0.000 0.795 

 Paraffin 157.135 0.000 0.908 

 Solar 13.970 0.002 0.466 

 Other 33.237 0.000 0.675 

Province  Electricity 170.676 0.000 0.988 

 Gas 2.514 0.055 0.557 

 Paraffin 11.699 0.000 0.854 

 Solar 1.264 0.327 0.387 

 Other 0.980 0.485 0.324 

Usage  Electricity 23.652 0.000 0.747 

 Gas 15.526 0.000 0.660 

 Paraffin 11.064 0.001 0.580 

 Solar 4.570 0.027 0.364 

 Other 5.343 0.017 0.400 
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A simultaneously discriminant analysis of 
‘province’ and ‘power usage’ was constructed to 
determine whether the five independent of type of 
energy source ‘power mode’ could predict the 
consumption of energy in the household. Table 4 
indicates that electricity and paraffin differed 
significantly in terms of the Province (p-value <0.05) 
while no difference was observed when using other 
type of energy source (p-value >0.05).  

The next question determined the discriminate 
function that explains the dependent variable ‘province’. 
Tables 4 and 5 showed that 96.4% of variation of the 
effects ‘province’ was explained by the discriminant 
function 1 through 5 (p-value <0.05). Two discriminant 
functions altogether account for about 99%. 

Table 6 exposes the superiority of Function 1 from 
the eigenvalue column. Out of the six Functions offered, 
the contribution of Function 6 is over 96% on the 
original data. On the canonical correlation, there is still a 
high contribution of over 93% from this Function alone. 

About the importance of the type of energy source in 
predicting the effects of ‘province’ electricity (1.680) 
was found to be the best in prediction Function 1.The 
other sources’ importance measures, which appear in 
Table 7, are: 
 
• Function 2: Electricity (1.218) 
• Function 3: Solar (1.134) 

• Function 4: Gas (0.748)  
• Function 5: Other (1.021).  
 

Table 8 shows that when ‘power usage’ was the 
dependent variable, electricity and paraffin did not differ 
in terms of the way that ‘power usage’ was used while 
other types of energy source differed (p-value <0.05). 
Two discriminant functions were obtained but the first 
function account for 71.2% of the variation of ‘power 
usage’ (Table 9). 

Alternatively, Lawrence et al. (2006) suggested that 
the smaller Wilks’s lambda signals a higher importance 
of the independent variable to discriminant function. 
 
Table 4: Test of equality of group means 

Dependent variable Wilks’ lambda p-value 

Electricity 0.044 0.000 

Gas 0.701 0.494 

Paraffin 0.289 0.001 

Solar 0.713 0.534 

Other 0.773 0.718 

 
Table 5: Wilks’ lambda 

Test of function Wilks’ lambda p-value 

1 through 5 0.002 0.000 

2 through 5 0.167 0.202 

3 through 5 0.473 0.713 

4 through 5 0.880 0.992 

5 0.982 0.987 

 
Table 6: Eigenvalues 

Fun Eigen-value % of variation Cum % Cancor 

1 74.607 96.4 96.4 0.993 

2 1.822 2.4 98.7 0.804 

3 0.863 1.1 99.8 0.681 

4 0.116 0.1 100.0 0.322 

5 0.018 0.0 100.0 0.134 

*Fun = Function, Eig = Eigenvalue, Cum = Cumulative, var = Variation, Can cor = Canonical correlation 
 
Table 7: Standardized canonical discriminant function coefficients 

 Function 

 -------------------------------------------------------------------------------------------------------------------------------- 

 1 2 3 4 5 

Electricity 1.680 -0.252 -0.098 -0.057 -0.081 

Gas -0.374 -0.421 0.967 0.746 -0.374 

Paraffin 0.668 1.218 -0.117 -0.009 0.035 

Solar -0.818 0.556 1.134 -0.376 0.009 

Other 0.702 -0.041 0.041 -0.078 1.021 

 
Table 8: Test of equality of group means 

Dependent variable Wilks’ lambda P-value 

Electricity 0.967 0.668 

Gas 0.538 0.001 

Paraffin 0.832 0.110 

Solar 0.741 0.027 

Other 0.691 0.012 
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Table 9: Wilks’ lambda 

Test of function Wilks’ lambda p-value % of var Cum % 

1 through 2 0.185 0.000 71.2 71.2 

2  0.553 0.011 28.8 100.0 

 
Table 10: Total variance: Principal component analysis 

 Initial eigenvalues   Rotation sums of squared loadings 

 ----------------------------------------------------------- ------------------------------------------------------------------ 

C Total % of var Cum % Total % of var Cum % 

1 2.515 35.923 35.923 2.157 30.819 30.819 

2 1.397 19.956 55.879 1.696 24.224 55.044 

3 1.248 17.829 73.707 1.306 18.664 73.707 

4 0.947 13.534 87.241 

5 0.487 6.956 94.197 

6 0.226 3.225 97.422 

7 0.180 2.578 100.000 

Key: C = Component 

 
Table 10 essentially employs the Kaiser-Guttmann 

criterion of eigenvalues greater than 1.0. The table 
shows that a three-factor solution accounted about 74% 
of the total variance. The selection of the number of 
factors is vital. Any factor with an eigenvalue less than 
1 is not as important. In practice, a robust solution should 
account for at least 50% of the variance (Fidell and 
Tabachnick, 2007). The present three-factor model was 
deemed the best solution because of its conceptual 
clarity and ease of interpretability. 

Discussion 

The study investigated whether or not the ‘power 
usage’ and ‘province’ had significant effects on one 
another. If these two factors do not interact, then their 
individual effects could be investigated separately. The 
three multivariate techniques indicated earlier were used 
and the results obtained were then compared to identify 
the best technique. 

A two-way between subjects MANOVA was 
conducted on the energy source factor ‘power mode’. 
This factor was significantly affected by the main effects 
of ‘power usage’ and ‘province’. Differences and 
similarities were found between the three techniques. 
The data involved more than one variable and all the 
techniques focused on terms such as correlation, linear 
combinations, factors and functions. 

The three techniques had analysed a complex array of 
variables, providing greater assurance to get conclusions 
with less error and more validity. These methods were 
linear combination of variables indicating whether the 
independent or dependent variables formed a linear 
combination of variables to interpret the data.  

The primary concern of multivariate techniques was 
first to predict outcomes based on prior information, 
such as being able to accurately predict group 
membership of a given number of variables.  

Secondly, the techniques were used to answer the 
question: 
 
• Which variables are the most important in the 

prediction of some outcome? 
 

The results from this investigation suggested that 
MANOVA was the best technique because of: 
 
• Its adaptability 
• Its ease of use and result interpretation 
• Its overall methodology 
 

When looking at the power consumption, however all 
the three techniques indicated that electricity and 
paraffin were the most used types (that is, source of 
energy) with electricity being the highest among the two. 
In terms of province, high consumption of type of source 
of energy was consistently high in Gauteng proportion in 
cooking compared to heating and lighting. 

Electricity showed to be playing a significant role in 
power source energy among the nine Provinces of South 
Africa. This is especially factual for those with more 
industries such as Gauteng Province with a large number 
of households. In terms of power usage, it was indicated 
that most of power energy was used for cooking which 
takes a lot of household’s expenses. 

The necessity of using the source of energy 
appeared to be supreme among all the three 
techniques. The initiatives campaign of using wisely 
the energy source (electricity) has to be supported by 
the government up to the lower level in the country. 
South African government considers electricity 
provision as very important for the growth and the 
development of the country (DME, 2003). For each 
technique there was variation in the way that energy 
source was frequently consumed. 
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Conclusion 

A correct model can be proposed to each of the three 
techniques. Details of the influences of each energy 
source type could enlighten more regarding the effects of 
power usage. The study recommends that another study 
should be undertaken after eliminating the type of energy 
source such as gas, solar and other (firewood and cow 
dung) from the analysis. 
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