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Abstract: Temporal consistency stands as a vital property in semantic video 
retrieval. Few research studies can exploit this useful property. Most of the used 
methods in those studies depend on rules defined by experts and use ground-
truth annotation. The Ground-truth annotation is time-consuming, labor 
intensive and domain specific. Additionally, it involves a limited number of 
annotated concepts and a limited number of annotated shots. Video concepts 
have interrelated relations, so the extracted temporal rules from ground-truth 
annotation are often inaccurate and incomplete. However, concept detection 
score data are a huge high-dimensional continuous-valued dataset and 
generated automatically. Temporal association rules algorithms are efficient 
methods in revealing the temporal relations, but they have some limitations 
when applied to high-dimensional and continuous-valued data. These 
constraints have led to a lack of research used temporal association rules. So, 
we propose a novel framework to encode the high-dimensional continuous-
valued concept detection scores data into a single stream of numbers without 
loss of important information and to predict the neighbouring shots’ behavior 
by generating temporal association rules. Experiments on TRECVID 2010 
dataset show that the proposed framework is both efficient and effective in 
encoding the dataset which reduces the dimensionality of the dataset matrix 

from 130×150000 dimensions to 130×1 dimensions without loss of important 
information and in predicting the behavior of neighbouring shots, the number 
of which can be 10 or more, using the extracted temporal rules. 

 

Keywords: Semantic Video Retrieval, Temporal Association Rules, Principle 
Component Analysis, Gaussian Mixture Model Clustering, Expectation 
Maximization Algorithm, Sequential Pattern Discovery Algorithm 

 

Introduction 

Tremendous growth in digital devices and digital 

media has led to the capture and storage of a huge amount 

of digital videos. As a result, an urgent need appears to 

manage, analyze, automate and retrieve videos efficiently. 

One of the most important subjects in video retrieval is 

semantic video retrieval. Semantic video retrieval searches 

and retrieves the videos based on their relevance to users’ 

requirements. Semantic video retrieval still represents a big 

challenge to researchers, as bridging the gap between the 

users’ views and the low-level features of videos represents 

a complicated problem and requires a tremendous amount 

of research. This is called the semantic gap; much research 

has been done on bridging the semantic gap using various 

methods and techniques, but it is still an open problem.  

Semantic video retrieval involves two aspects. One of 

them concerns with the concept presence detection 

according to the context concepts. The other aspect 

concerns with temporal concept mining, which predicts the 

temporal presence of certain concepts in neighboring shots, 

so it can enhance or refute the presence of these concepts.  

Temporal concept mining relies on the consistency of 

the video shots (Geng et al., 2012; Liu et al., 2008). 

Temporal concept rule mining may involve expert-made 

rules, be based on statistical dependency tests, or use 

information extracted from association rules. Temporal 

association concept rules are extracted from ground-truth 

annotation. However, ground-truth annotation involves a 

limited number of annotated concepts, a limited number of 

annotated videos, many missing values and binary values.  
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This paper models and automates a framework to 
reduce the volume of video concept detection score data 
and to extract a compact representation of the temporal 
concept rules. These rules predict the behavior of the 
neighboring shots based on the current and the previous 
shots’ behavior. 
The results of our method are tested on the CU-

VIREO374 concept detection scores (Jiang et al., 2008).  
The size of the detection score matrix may exceed 

150000×300, which considers huge high-dimensional 
matrix. Applying temporal association rule learning 
algorithms on such a large matrix involves many difficulties 
or is, in some cases, impossible. Some of these difficulties 
include a long processing time, high space requirements, 
the huge number of resulting association rules, rule 
redundancy and the selection of rule pruning criteria. 
Thus, most of the studies that apply temporal association 
rule learning algorithms either use a small set of the 
detection score data with specific concepts or use ground-
truth annotation. The major issue with using association 
rule learning algorithms is that the association rules cannot 
be applied on continuous values, i.e., the data should be 
binary. Although much research has been done on 
methods for discretizing or categorizing data to minimize 
the loss of information when converting data into the 
binary form, such methods also increase the data 
dimensionality and do not prevent data loss.  
To solve these difficulties, we apply Principle 

Component Analysis (PCA) in our method to compress 
the concept detection score matrix without loss of data. 
Principal component analysis represents a form of 
multidimensional scaling. It appears as a linear 
transformation of the variables into a lower dimensional 
space, which retains the maximal amount of information 
about the variables. It considers as a common technique 
for finding patterns in data of high dimension. It 
transforms the correlated video concepts to a new set of 
variables, the Principal Components (PCs), which are 
uncorrelated and ordered so that the first few principle 
components retain most of the variation present in all of 
the original variables (Bishop, 2006).  
Then, we cluster video shots using the selected 

uncorrelated principle components, which contain most 
of the data variation. More than 25 components can be 
selected. Therefore, there is an urgent need to apply a 
clustering algorithm that deals efficiently with high-
dimensional data. Our selected clustering technique is 
the Gaussian Mixture Model (GMM) and its parameters 
are estimated using the Expectation Maximization 
algorithm (EM). GMM (Bishop, 2006) is also useful for 
modeling the uncorrelated data. GMM is a parametric 
probability density function that is represented as a 
weighted sum of Gaussian component densities. GMMs 
are commonly used as parametric models of the 
probability distributions of continuous measurements or 
features. After the clustering phase, we will have a 

compact stream of cluster numbers or symbols of length 
N, where N represents the number of shots.  
To extract temporal concept rules, we apply the 

Sequential Pattern Discovery using Equivalence class 
algorithm (SPADE) (Zaki, 2001). SPADE was 
developed by Zaki in 2001. SPADE utilizes 
combinatorial properties to decompose the original 
problem into smaller sub-problems that can be 
independently solved in the main memory using efficient 
lattice search techniques and simple join operations. All 
sequences are discovered in only three database scans. 
This paper is organized as follows. In Section 2, the 

different approaches of video retrieval especially semantic 
video retrieval methods are reviewed. In Section 3, the 
proposed framework is presented in detail. Experimental 
results are reported in Section 4. Finally, Section 5 includes 
conclusion and outline some goals for future work. 

Related Work 

It is time consuming to upload huge amounts of 
multimedia content, especially videos, onto the web or even 
just to store them on storage media. Therefore, the videos 
need to automate, organize, manage and retrieve them. 
Content-based video retrieval methods extract the low 

level features from videos. Some of them concern with 
shot boundary detection, key frame extraction (Bhat et al., 
2014) and feature extraction and analysis (Asghar et al., 
2014). However, the extracted low level features do not 
cover all the user requirements that are represented in the 
user queries. 
Therefore, many semantic-based video retrieval 

methods have been proposed to bridge the semantic 
gap. However, this gap still represents a challenging 
problem. Semantic video retrieval concerns with 
deducing, reinforcing, or refuting the existence of 
specific concepts using the context information and 
concept relationships. These concepts are detected 
using concept detectors. User perspectives contain an 
infinite number of high level concepts and the concept 
detectors can’t be constructed for this huge number of 
high level concepts, for which constructing a concept 
detector is an expensive process. Thus, concept 
detectors are limited to a few selected concepts 
(Hauptmann et al., 2007a; 2007b; Wei et al., 2008). 
According to Hauptmann et al. (2007a) a limited 

number of reliable concept detectors are constructed in 
(Hauptmann et al., 2007a). It concludes that the video 
retrieval systems that use a few thousand concept detectors 
perform well, even though the individual concept detectors 
have low detection accuracies (Hauptmann et al., 2007b). 
The experiments on various concepts explain how to select 
the set of concepts for which to construct concept detectors 
(Lin and Hauptmann, 2006).  
A Large Scale Concept Ontology for Multimedia 

(LSCOM) is constructed and this effort is being led by 
IBM, Carnegie Melon University and Columbia 
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University with participation from Cyc Corporation 
(Naphade et al., 2006). The Disruptive Technology Office 
sponsored LSCOM, which was a series of workshops that 
brought together experts from multiple communities to 
determine multimedia concepts and their taxonomy 
(Naphade et al., 2006). 
The goal of LSCOM was to achieve a set of criteria 

such as utility, coverage, observability, and feasibility 
(Naphade et al., 2006). 
There are two main challenges in semantic video 

retrieval. The first challenge is to detect those concepts 
that do not have detectors and the second challenge is to 
improve the accuracy of concept detection. Researchers 
in semantic video retrieval have tried to solve these two 
challenges by modeling and representing the 
relationships using ontologies (Ballan et al., 2010), 
expert-made rules, association rules (Liu et al., 2008), 
graphs (Geng et al., 2012; Jiang et al., 2012), etc. 
Also, the inter-concept relationships are modeled 

using ontologies that are based on the principle that 
concepts do not appear in isolation but are correlated 
with one another and the concept detection is improved 
by utilizing such related concepts (Wei et al., 2008; 
Ballan et al., 2010). This is called Context-Based 
Concept Fusion (CBCF). 
A graph diffusion technique refines the annotation of 

semantic concepts (Jiang et al., 2012). Liu et al. (2008) 
try to exploit the inter-concept association relationships 
based on concept annotation of video shots to discover 
the hidden association rules between concepts. These 
association rules are generated using the Apriori 
algorithm and are used to improve the detection 
accuracies of concept detectors. Additionally, there are 
other research works that are concerned with association 
rules using (Yang and Hauptmann, 2006). However, they 
depend on the ground-truth data, in which few concepts 
are annotated and a limited number of video shots. 
Our work is concerned with temporal concept detection. 

The following are some research works concerning 
temporal concept detection. 
Temporally adjacent video shots usually share similar 

visual and semantic content (Lin et al., 2012). A 
thorough study of temporal consistency, defined with 
respect to semantic concepts and query topics using 
quantitative measures, is presented and its implications 
for video analysis and retrieval tasks are discussed. It is a 
preliminary analysis that focuses on the video temporal 
consistency issue and thus focuses on the consistency of 
adjacent shots, rather than shots in the same 
neighborhood (Lin et al., 2012). Therefore, the limitation 
of this work is its failure to consider the consistency of 
video data beyond the adjacent shots. A CBCF method 
called the Temporal Spatial Node Balance algorithm 
(TNSB) is presented, which depends on a physical 
model (Geng et al., 2012). This algorithm refines 
concept detection scores using a concept fusion task, 

which depends on the spatial and temporal relationships 
between concepts. Liu et al. (2008) tests whether there is 
temporal dependence among neighbouring shots using 
statistical measurements. 
Extracting temporal association rules from a huge 

high-dimensional dataset has some drawbacks, such as 
requiring a large amount of processing time, requiring a 
large amount of memory space and necessitating the 
extraction of a large number of association rules. Thus, 
most previous research (Liu et al., 2008) has been 
concerned with extracting temporal association rules 
from either the ground-truth annotations or a small set of 
concept detection scores. However, this leads to 
inaccurate temporal association rules due to incomplete 
and inaccurate data. Therefore, our proposed framework 
extracts the temporal rules from a large number of 
continuous high-dimensional data values. 

Proposed Framework 

The main goal of our proposed framework method is to: 
 

• Compress concept detection scores without loss of 
data, keep the inter-relationships between concepts and 
preserve temporal relationships between video shots 

• Extract temporal rules for predicting the next shot 
behavior, by which we mean that we predict the 
probability of all concepts existence in the shot by 
detecting the shot’s cluster, rather than predicting 
the existence of a specific concept, as was done in 
previous research (Liu et al., 2008) 

 
Our proposed method consists of the following steps, 

as showed in Fig. 1 (Geng et al., 2012): 
 

• Data Preprocessing 

• Data modeling using principle component analysis 
to reduce its dimensionality 

• Clustering shots with Gaussian mixture model and 
EM algorithm for parameter estimation 

• Temporal rules extraction process using spade 
algorithm 

 
We will explain each step in details in the following 

subsections. 

Data Preprocessing 

As shown in Figure (Geng et al., 2012), the 
preprocessing steps are as follows. This step includes 
loading data and sorting rows according to video numbers 
and shot numbers to assist in temporal rule detection in the 
future steps. This step includes the following: 
 

• Load detection scores from the files, where each file 
represents the concept detection values for 

unorganized video shots, into an M×N matrix 
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• Append two columns to the matrix S, the entries of 
which are the name and shot numbers for each video 

• Sort the matrix S according to the video numbers 
and shots numbers 

 

Data Dimensionality Reduction Using Principle 

Component Analysis (PCA) 

In this stage, we transform and represent our data using 
principle component analysis. The principle component 
analysis identifies and finds patterns to reduce the 
dimensionality of the dataset with minimal loss of 
information. PCA reduces the dimensionality of our dataset, 
which consists of a large number of interrelated concepts 
(old variables), while retaining as much of the variation as 
possible. PCA projects/transforms our concept space of 
dimension N onto a new smaller subspace of uncorrelated 
principle component variables, which are constructed as 
linear combinations of the original concepts (variables), 

with dimension L, where L≤N (Bishop, 2006). 
C represents the concepts’ detection score matrix, M 

represents the number of video shots and N represents 
the number of concepts, as shown in Equation (1): 
 

1,1 1,

,1 ,

N

M M N

c c

c c

 
 
 
 
 

⋯

⋮ ⋱ ⋮

…

  (1) 

 
For i = 1,..,M shots, PCA transforms j = 1,..,N 

concepts (c1, c2,..,cN) into K = 1,..,P new uncorrelated 
variables (Z1, Z2,.., ZP) called principle components, as 
shown in Equation (2): 
 

1 11 1 12 2 1

1 2
1 2

P P

P P P P P

Z e C e C e C

Z e C e C e PC

= + + +

= + + +

  (2) 

 
Where: 
ZK = Value or score of principle component K (of 

reduced dimension) 
Cj = Value of the original (j) concept, of the original 

dimension 
eik = Weights or coefficients that indicate how much 

each original concept contributes to the linear 
combination used to form principle component K 

 
The matrix notation is shown in Equation (3): 

 
\ \

k k
Z e C=   (3) 

 
Where: 

\

k
e  : The transposed eigenvector of the correlation matrix 

corresponding to its kth largest eigenvalue uk  
\C  : The transposed vector of p concepts 

 
 

Fig. 1: Framework components 

 

The eigenvector gives a direction of the data and the 
corresponding eigenvalue represents the variance of the 
data values in that direction. All the eigenvectors of our 
concept detection matrix are perpendicular. Thus, the 
eigenvectors will be ordered according to their eigenvalues, 
from highest to lowest. Then, we will represent the data 
according to the new axes (p eigenvectors) obtained in 
Equation (3). We then represent the data according to the 
selected components (new axes) by the following general 
formula in Equation (4): 
 

\ \
Z e C=   (4) 
 
The correlation matrix (Cor) is calculated from the 

covariance matrix, where the correlation between cx and 
cy measures the strength and direction of the linear 
relationship between two numerical variables X and Y. 
The correlation equation is shown in Equation (5): 
 

( , ) ( , ) /Cor X Y Cov X Y x yσ σ=   (5) 

 
Where: 
Cor(X,Y) = The correlation between concept Cx and 

concept Cy 
Cov(X,Y) = The covariance between Cx and Cy 

σX = The standard deviation of concept Cx 

σY = The standard deviation of concept Cy 
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Cov(X,Y) is the covariance between cx and cy, which 
is calculated as shown in Equation (6): 
 

1

( )( )

( , )
1

M

i X i Y

i

x y

Cov x y
M

µ µ

=

− −

=

−

∑
 (6) 

 
Where: 

µX = The mean values for concept Cx 

µY = The mean values for concept Cy 

Xi = The detection value of concept X for shot i 
Yi = The detection value of concept y for shot i 
M = Number of video shots 
 
The standard deviation is calculated as shown in 

Equation (7): 
 

2

1

( )

1

M

i X

i

X

x

M

µ

σ
=

−

=

−

∑
 (7) 

 
Where: 

σX = The standard deviation for concept X 
xi = The detection score for shot i and concept X 

µX = The mean value for concept X 
M = The number of shots 
 
The correlation coefficient has several advantages 

over the covariance for determining the strengths of 
relationships: 
 
• The covariance can take any value, while the 

correlation is limited to values between -1 and +1. 

• Because of its numerical limitations, the correlation 
is more useful for determining how strong the 
relationship is between two variables: 
 
–The correlation does not have units. The 
covariance always has units 
–The correlation is not affected by changes in the 
centers (i.e., means) or scales of the variables 

 

Shots Clustering using Gaussian Mixture Models 

and Expectation Maximization Algorithm 

In this stage, the dimension-reduced data are clustered 
using Gaussian Mixture Models (GMM) (Bishop, 2006) 
and EM algorithm for parameter estimation. 

Gaussian Mixture Models for Data Clustering 

The dimension-reduced data that were obtained using 
PCA have many dimensions, the number of which may 
exceed 25 and most of the standard clustering algorithms 
may not work with high-dimensional data due to the 
curse of dimensionality (Bellman, 1957), causing the 
distance measure to become meaningless. This problem led 

to new clustering algorithms for high-dimensional data, 
such as subspace- and model-based clustering algorithms. 
The Gaussian distribution or normal distribution is 

one of the most important probability distributions for 
continuous variables. It estimates uncertainty and 
requires only two parameters, the mean and variance. 
Therefore, it is preferable to other distributions and the 
symmetry of its bell shape makes it preferable to most of 
the popular models. The central limit theorem tells us 
that the expectation of the mean of any random variable 
converges to a Gaussian distribution (Rice, 2006). 
GMM is a model-based clustering algorithm in which 

each cluster can be mathematically represented by a 
parametric Gaussian distribution. GMM is a parametric 
probability density function represented as a weighted 
sum of Gaussian component densities. GMM latent 
variables or parameters are estimated from training data 
using the iterative Expectation-Maximization (EM) 
algorithm or Maximum A Posteriori (MAP) estimation 
from a well-trained prior model. 
The Gaussian probability density function of a single 

dimension (univariate) is shown in Equation (8): 
 

2

2

( )

2 2
1
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2

x

g x e

µ

σµ σ

πσ

−

−

=   (8) 

 
Where: 

µ = Mean or expected value of the distribution 
X = Random variable 

σ2 = Variance 

σ = Standard deviation 
 
The multivariate Gaussian probability density 

function is a generalization of the one-dimensional 
(univariate) normal distribution to higher dimensions, as 
shown in Equation(9): 
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  (9) 

 
Where: 
x = D-dimensional continuous-valued data vector 

µi = D-dimensional mean vector 

∑i = D×D covariance matrix 
∑i = Determinant of ∑i 
D = Number of dimensions 
 
As stated before, a Gaussian mixture model stands as 

a weighted sum of M component Gaussian densities; it is 
shown in the following equation: 
 

1

( | ) | ,
M

i i

i i

p x w g xλ µ
=

 
=  

 
∑ ∑   (10) 
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Where: 

λ = GMM variants wi, µi, ∑i i = 1,..,M 
Wi = Mixture weights for i = 1,..,M 

∑i = Covariance matrix 

µi = Mean value of concept i 

g(xµi, ∑i) = Component Gaussian densities, for i = 1...M 
 
Each component Gaussian density is a D-variate 

(multivariate) Gaussian function. The mixture weights 

satisfy the constraint
1

1

M

i

i

W

=

=∑ . 

Expectation Maximization Algorithm 

There are many latent parameters variables, such as 
mean vectors, covariance matrices and mixture weights 
from all component densities, in the Gaussian mixture 
model. These parameters are collectively represented by 

λ as shown in Equation (10). 
The Expectation Maximization (EM) algorithm 

estimates the parameters in Equation (10). The EM 
algorithm is a powerful method for finding maximum 
likelihood solutions for models with latent variables. The 
EM algorithm is an iterative method to find maximum 
likelihood or Maximum a Posteriori (MAP) estimates of 
parameters in statistical models. The EM iteration 
alternates between performing an Expectation (E) step 
and a Maximization (M) step. The basic idea of the EM 
algorithm is, beginning with an initial model, to estimate 
a new model. The new model then becomes the initial 
model for the next iteration and the process is repeated 
until some convergence threshold is reached. During 
each EM iteration, there are set of re-estimation formulas 
are used, which guarantee a monotonic increase in the 
model likelihood values, as found in (Jiang et al., 2008). 

Temporal Rules Extraction 

In the final stage, the temporal rules are extracted from 
the stream of cluster numbers that resulted from the 
Gaussian mixture model clustering algorithm being applied 
to the data that were dimension reduced using PCA. 
The SPADE algorithm is used in this stage. The 

SPADE (Sequential Pattern Discovery using 
Equivalence classes) algorithm is one of the Sequential 
Pattern mining algorithms. The sequential pattern mining 
problem was first addressed in (Zaki, 2001). 
The SPADE algorithm uses a vertical id-list database 

format, in which we associate with each sequence a list 
of objects in which it occurs. Then, frequent sequences 
can be found efficiently using intersections on id lists. 
The method also reduces the number of database scans 
and therefore also reduces the execution time. 
The first step of SPADE computes the frequencies of 

1-sequences, which are sequences with only one item. 
This is done in a single database scan. The second step 
consists of counting 2-sequences. This is done by 

transforming the vertical representation into a horizontal 
representation in memory and counting the number of 
sequences for each pair of items using a dimensional 
matrix. Therefore, this step can also be executed in only 
one scan. Subsequent n-sequences can then be formed by 
joining (n-1)-sequences using their id lists. The size of 
an id list is the number of sequences in which an item 
appears. If this number is greater than minsup, the 
sequence is a frequent one. The algorithm stops when no 
more frequent sequences can be found. The algorithm 
can use either a breadth-first or a depth-first search 
method for finding new sequences (Zaki, 2001). 

Experimental Results and Discussion 

Experimental Setup 

The proposed framework is performed on an Intel 
core(TM) i7-2630 QM CPU @ 2.00 GHZ 2.00 GHZ 
processor with 6 gigabyte RAM on a 64-bit operating 
system (Windows 7). 
All our proposed framework components are 

implemented using R (Team, 2014). 

Dataset 

The dataset used in our proposed framework is the 
CU-VIREO374 TV10 set of detection scores (Liu et al., 
2008). It contains 130 concepts, detected for 150,000 
video shots; Table 1 contains a sample of these data, 
sorted according to video number and shot number. The 
CU-VIREO374 TV10 detection score dataset consists of 
the latest detection scores provided by CU-VIREO374. 
This dataset is based on models retrained on the 
TRECVID 2010 development set. The annual NIST 
TRECVID video retrieval benchmarking event provides 
benchmark datasets for performing system evaluation. It 
uses multiple bag-of-visual-words local features 
computed from various spatial partitions and it 
incorporates the DASD algorithm (Jiang et al., 2012). 

The used Dataset Versus other Datasets 

The detection score datasets can be obtained from 
Mediamill-101, Columbia374, Vireo374, or CU-
VIREO374. However, Media Mill-101 includes 101 
more concept detectors than TRECVID 2005/2006. 
Columbia374 and Vireo374 include 374 detectors for 
374 semantic concepts selected from the LSCOM 
ontology (Naphade et al., 2006). Columbia374 depends 
on three types of global features and Vireo374 
emphasizes the use of local key point features. As they 
work using on the same concepts, their output format is 
unified and the detection scores of both detector sets are 
fused to generate the CU-VIREO374 detection scores 
(Jiang et al., 2008). CU-VIREO374 appears the most 
suitable dataset for our framework because it detects up 
to 374 concepts for a huge number of video shots (up to 
175,000 video shots). 
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Table 1: Sample data of CU-VIREO374 TV10 sorted according to video and shot number (Jiang et al., 2008) 

 
 

Compressed Dataset 

The CU-VIREO374 TV10 dataset contains the 

detection scores for 130 concepts for 150,000 video 

shots. This dataset is loaded into a matrix of size 

150000×132. The entries of the additional two columns 
contain the video number and the shot number in the 

specified video. These columns are very important for 

temporal rule detection in the final step. The allocated 

memory for the original dataset matrix is 161,23,5784 

bytes and contains 19,138,416 elements. This matrix is 

unsuitable for use with sequential pattern mining 

algorithms such as the SPADE algorithm. Thus, we have 

to compress this dataset without losing the relationships 

between concepts. 

Therefore, we transform the CU-VIREO374 TV10 

dataset into a compressed dataset using principle 

component analysis. Principle component analysis 

reduces the dimensionality of the CU-VIREO374 TV10 

data, which contain a large number of concepts, by 

representing them with a small selected number of 

variables without losing the important data. Principle 

component analysis represents our data with new 

dimensions, called principle components. The number of 

produced principle components is equal to the original 

number of concepts. These principle components are 

sorted according to the variance of the data. Thus, the 

first set of components contains the most important 

information about our data. In our implementation, we 

select the first 25 principle components, which contain 

92% of the variance of our data, as shown in Table 2. 
Our new compressed dataset is represented using 

the first 25 principle components, as shown in Table 
3. Table 3 shows the first 11 PCs for the first 13 shots. 

The size of the new compressed matrix is 150,000×25 

and it consists of 3,750,000 elements and allocates 
37,118,776 bytes. 

Clustered Data 

Each video consists of a consistent set of shots and 

each shot consists of a set of concepts; each concept is 

detected by a concept detector. Therefore, each shot is 

associated with a set of standardized concept detection 

scores. We cluster shots using a Gaussian mixture model 

clustering algorithm (Berge et al., 2012) and each shot is 

grouped into a cluster. The dimension reduced data will 

be categorized into 20 clusters using the Gaussian 

mixture model clustering algorithm. Each cluster 

represents the shots behavior category. Finally, we 

obtain a stream of cluster numbers; Table 4. 

Temporal Rules 

In this final step, we extract temporal rules from the 

clustered data. The SPADE algorithm is used to extract 

temporal rules. The SPADE algorithm parameters are 

support = 0.09 and max window size = 10. The matrix 

input into the SPADE algorithm is as shown in Table 5. 

In Table 5, sequence id represents the video number; 

event id represents the shot number in the current video; 

size represents the number of items; and items represent 

the cluster number of the current shot. The extracted 

temporal rules are shown in Table 6. The first temporal 

rule is 20->16->20 this rule indicates that if we have two 

consecutive shots in the video and their clusters numbers 

are as the following 20 and 16, then the fourth shot 

cluster is 20 the temporal rules help in concludes the 

missing shot behavior by deducing its cluster number 

according to the suitable rule then we take the cluster 

center values to be the missing shot PCs values. 
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Table 2: The first 31 principle components 

 

 

Table 3: The first 11 principle components of the first 18 shots 
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Table 4: Clustered shots 

 
 
Table 5: The prepared temporal data to SPADE algorithm 

 

Table 6: The generated temporal rules 

 
 

Conclusion and Future Work 

The proposed framework aims to reduce the huge 

size of the concept detection score matrix without loss of 

concept relationships and to produce a helpful set of 

temporal rules for the shots. The resulting temporal rules 

aim to predict neighbouring shots, the number of which 

may be 10 or more, according to the maximum window 

size parameter value in the SPADE algorithm. Using the 

resulting temporal rules, we can predict the clusters 

values of future shots representing the shot behaviour. 

These rules refine our clustered dataset to be more 

accurate and helpful in semantic video retrieval. 

Additionally, they help in deducing missing shots. 

Although principle component analysis is efficient in 

reducing data dimensionality without loss of information 

on the relations between the variables in the dataset, the 

resulting principle components are incomprehensible to 

the normal user. Thus, in future work, we will use big 

data processing techniques to extract more 

comprehensible temporal rules that are more easily 

understood by the unqualified user. 



Shaimaa Toriah Mohamed et al. / American Journal of Applied Sciences 2018, 15 (1): 60.69 

DOI: 10.3844/ajassp.2018.60.69 

 

69 

Acknowledgement 

Praise to Allah in completing this research paper.  

Author’s Contributions 

The main contribution of this research is presenting a 
new framework to generate temporal rules for semantic 
video retrieval. 

Ethics 

The authors declare that the present article is a novel 
work and an outcome of original research and exhaustive 
work in the field of semantic video retrieval. The 
Authors also declare that there are no ethical issues that 
may arise after the publication of this manuscript. 

References 

Asghar, M.N., F. Hussain and R. Manton, 2014. Video 
indexing: A survey. Framework. 

Ballan, L., M. Bertini, A. Del Bimbo and G. Serra, 2010. 
Video annotation and retrieval using ontologies and 
rule learning. IEEE Multi. Media, 17: 80-88. 

Bellman, R., 1957. Dynamic Programming Princeton 
University Press Princeton. New Jersey Google 
Scholar. 

Berge, L., C. Bouveyron and S. Girard, 2012. R: 
Package for model-based clustering and 
discriminant analysis of high dimensional data. J. 
Stat. Software, 46: 1-29. 

Bhat, S.A., O.V. Sardessai, P.P. Kunde and S.S. Shirodkar, 
2014. Overview of existing content based video 
retrieval systems. Int. J. Adv. Eng. Global Technol. 

Bishop, C.M., 2006. Pattern Recognition and Machine 
Learning. Springer. 

Geng, J., Z. Miao and H. Chi, 2012. Temporal-spatial 
refinements for video concept fusion. Proceedings 
of the Asian Conference on Computer Vision, 
(CCV’ 12), Springer, pp: 547-559. 

Hauptmann, A., R. Yan, W.H. Lin, M. Christel and H. 
Wactlar, 2007a. Can high-level concepts fill the 
semantic gap in video retrieval? A case study with 
broadcast news. IEEE Trans. Multimedia, 9: 958-966. 

Hauptmann, A., R. Yan and W.H. Lin, 2007b. How 
many high-level concepts will fill the semantic gap 
in news video retrieval?” Proceedings of the 6th 
ACM International Conference on Image and Video 
Retrieval, (IVR’ 07), pp: 627-634. 

Jiang, Y.G., A. Yanagawa, S.F. Chang and C.W. Ngo, 
2008. CU-VIREO374: Fusing Columbia 374 and 
VIREO374 for large scale semantic concept 
detection. Columbia University Advent Technical. 

Jiang, Y.G., Q. Dai, J. Wang, C.W. Ngo and X. Xue et al., 
2012. Fast semantic diffusion for large-scale 
context-based image and video annotation. IEEE 
Trans. Image Processing, 21: 3080-3091. 

Lin, L., M.L. Shyu and S.C. Chen, 2012. Association 
rule mining with a correlation-based interestingness 
measure for video semantic concept detection. Int. J. 
Inform. Decision Sci., 4: 199-216. 

Lin, W.H. and A. Hauptmann, 2006. Which thousand 
words are worth a picture? Experiments on video 
retrieval using a thousand concepts. Proceedings of 
the IEEE International Conference on Multimedia 
and Expo, (CME 06). pp: 41-44. 

Liu, K.H., M.F. Weng, C.Y. Tseng, Y.Y. Chuang and M.S. 
Chen, 2008. Association and temporal rule mining for 
post-filtering of semantic concept detection in video. 
IEEE Trans. Multimedia, 10: 240-251. 

Naphade, M., J.R. Smith, J. Tesic, S.F. Chang and W. 
Hsu et al., 2006. Large-scale concept ontology for 
multimedia. IEEE Multimedia, 13: 86-91. 

Rice, J., 2006. Mathematical statistics and data analysis. 
Nelson Educ. 

Team, R.C., 2014. R: A language and environment for 
statistical computing. Foundation Stat. Computing.  

Wei, X.Y., C.W. Ngo and Y.G. Jiang, 2008. Selection of 
concept detectors for video search by ontology-
enriched semantic spaces. IEEE Trans. Multimedia, 
10: 1085-1096. 

Yang, J. and A.G. Hauptmann, 2006. Exploring temporal 
consistency for video analysis and retrieval. 
Proceedings of the 8th ACM International 
Workshop on Multimedia Information Retrieval, 
(MIR’ 06), pp: 33-42. 

Zaki, M.J., 2001. SPADE: An efficient algorithm for 
mining frequent sequences. Machine Learning, 42: 
31-60. 


