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Abstract: As motif discovery plays an important role in the understanding 

of the relationship of gene regulation, this paper puts forward a selection-

based MCL clustering refinement algorithm (SMCLR) aiming at solving 

the planted (l, d) motif search (PMS) problem. Firstly, we divide the DNA 

dataset into different subsets through selection of reference sequence and 

screen parts of eligible subsets by setting thresholds under selection project. 

Then MCL clustering algorithm is used for refinement. The experiment 

resulted on simulation data shows that SMCLR algorithm has higher 

prediction accuracy in a reasonable time than these existing motif discovery 

algorithms like Project, MEME, MCL-WMR and VINE. Moreover, the 

experiment resulted on real biological data demonstrates the effectiveness 

of SMCLR algorithm. 
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Introduction 

Motif discovery acts a pivotal part in understanding 

gene finding and gene regulation relationship, also is one 

of the most challenging problems in molecular biology and 

bioinformatics (Jones and Pevzner, 2004). Although many 

motif discovery algorithms have been proposed, Das and 

other scientists (Das and Dai, 2007) argue that DNA motif 

discovery would be a prevalent challenge in recent years. 

According to the combination method in algorithm 
design, the existing motif discovery algorithms can be 
divided into exact algorithms and approximate 
algorithms. The former (Marsan and Sagot, 2000; Eskin 
and Pevzner, 2002; Evans and Smith, 2003; Pisanti et al., 
2006; Pavesi et al., 2001; 2004; Davila et al., 2007; Dinh 
et al., 2011; Bandyopadhyay et al., 2012; Dinh et al., 
2012; Ho et al., 2009; Rajasekaran et al., 2005; Tanaka, 
2014) usually uses a consensus sequence (Hertz and 
Hartzell, 1990) to represent motif and finds the optimal 
solution by traversing the entire solution space. At present, 
the major method for exact algorithm research means to 
validate all l-mers (an l-length string) on the O(4-l) 
search space to output all the l-mers with the motif 
properties, which are the l-mers with a Hamming distance 
of d between motif in each sequence. Among these 
algorithms, a type of exact algorithms construct the input 
sequences into the suffix tree to expand the efficient 
pattern search, such as SMILE (Marsan and Sagot, 2000), 
MITRA (Eskin and Pevzner, 2002), CONSUS (Evans and 

Smith, 2003), RISOTTO (Pisanti et al., 2006) and Weeder 
(Pavesi et al., 2001; 2004). These algorithms first 
establish the suffix tree of the input sequences and then 
validate all l-mers patterns. They would quickly resolve 
PMS problem in short motif with suffix trees, but time 
performance is keenly sensitive to long motif. Another 
type of exact algorithms adopt the pattern-driven 
method, which are to establish candidate motif set 
according to input sequence and to verify the validity of 
each candidate motif, such as PMSPrune (Davila et al., 
2007), PMS5 (Dinh et al., 2011), PMS6 
(Bandyopadhyay et al., 2012), qPMS7 (Dinh et al., 
2012) and iTriplet (Ho et al., 2009). These algorithms 
first choose a reference sequence and then limit the search 
space with the combination of other sequences, reducing 
the total number of validated patterns. 

The approximate algorithm (Bailey et al., 2006; 
Boucher, 2007; Neuwald et al., 1995; Lawrence et al., 
1993; Buhler and Tompa, 2002; Fratkin et al., 2006; 
Boucher et al., 2007) usually uses the Position Weight 
Matrix (PWM) (Stormo et al., 1982) to represent motif 
and report the position weight matrix with the highest 
score by updating the position weight matrix 
iteratively. For example, typical motif discovery 
algorithms are MEME (Bailey et al., 2006), Gibbs 
Sampling (Neuwald et al., 1995; Lawrence et al., 
1993) and the extended related algorithms (Buhler and 
Tompa, 2002). MEME expands the EM algorithm, 
improves the capability of the EM algorithm in local 
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search and gets around the shortcoming that the EM 
algorithm may converge to local optimum. Gibbs 
sampling first randomly selects the starting position in 
each sequence to generate the initial state and then 
executes the two-step iteration of updating and sampling. 
In addition to statistical methods, other methods based 
on clustering algorithm are proposed such as Motif-cut 
(Fratkin et al., 2006) and MCL-WML (Boucher et al., 
2007). Motif-cut searches for the maximum density 
subgraph by looking for the maximum flow and the 
minimum cut in graphs to find motif. MCL-WMR 
adopts the Markov Cluster (MCL) clustering algorithm 
to search for the largest cluster in graph. 

It is very difficult to improve the performance of 

algorithms only by relying on exhaustive or local search 

strategies, but ideal result may be achieved by making 

high quality refinement at the basis of effective 

dimensionality reduction. Therefore, a selection-based 

MCL clustering refinement algorithm is proposed in this 

paper. Firstly, the l-mers in the input sequences are 

selected into a series of buckets by using the dimension 

reduction strategy and a number of qualified buckets are 

formed, each of which corresponds to a candidate motif 

set. Then, the MCL clustering refinement is used for each 

qualified bucket to obtain motif. For most planted (l, d) 

motif search (PMS) problem (Buhler and Tompa, 2002), 

the prediction accuracy of the SMCLR algorithm is 

improved to some extent and the experiment results on both 

simulation dataset and real biological dataset show that the 

SMCLR algorithm not only discovers the motifs as 

consistently as the published ones but also quite efficiently. 

Materials and Method 

Background 

Problem Definition 

Given a set of DNA sequences with a length of n and 

a nonnegative integer l, each input sequence contains a 

string of length l, which differs to the same string up to 

d positions. Planted (l, d) motif search (PMS) problem 

aims to find out the same string and its mutated string 

in each sequence. The formal definition of the problem 

is given below: 

PMS problem: S = {S1, S2,…,St}, t sets of DNA 

sequences with a length of n in alphabet {A，C，G，T} 

and two nonnegative integers l and d (0 ≤ d < l < n), are 

known. Planted (l, d) motif search is to find an l-mer M 

(a string with a length of l), so that each sequence Si 

contains an l-mer Mi, mutated from M at up to d 

positions. The l-mer M is called an (l, d) motif and the l-

mer Mi is called a motif instance of M. 

A motif is usually represented by a consensus 

sequence or a Position Weight Matrix (PWM). A 

consensus sequence is a character string with a length of 

l and each character is the most frequently exposed one 

in the corresponding column. A position weight matrix is 

a 4×l matrix, in which each element represents the 

frequency of the corresponding character in the 

corresponding column. Figure 1 depicts the construction 

process of consensus sequence and position weight 

matrix in the simulation data. 

We use the Information Content (IC) (Liu et al., 

2001) to evaluate the conservation of a motif.  
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where, pk,w is the probability of base k at the position w 

of the motif. pk, 0 is the probability of base k in the 

background sequence. Information content is a method 

of measuring the degree of conservatism of the motif 

using the background information of DNA sequence, in 

which the higher the value of IC, the greater the 

conservatism of a motif. 

 

 
  

Fig. 1: An example of the construction process of consensus sequence and position weight matrix 
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MCL Cluster (Markov Cluster) 

Markov Cluster (MCL) clustering (van Dongen, 

2000) algorithm is a kind of graph clustering algorithm 

with a relatively good clustering performance at present. 

Based on transition probability matrix without presetting 

the number of clusters, the MCL clustering algorithm 

simulates random walks upon the underlying graph 

through performing expansion operator and inflation 

operator on a probability matrix alternately until the 

matrix converges. The flowchart of the MCL clustering 

algorithm is shown in Fig. 2: 

 

(1) Data input: adjacent matrix A with self-loops, 

expand parameter e and inflation parameter r  

(2) Expand: 
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(4) Output the clusters by alternating expansion and 

inflation until convergence. 
 

Selection Project Strategy 

The selection algorithm (Tompa et al., 2005) 

iteratively removes k (0 ≤ k ≤ d) non-repetitive bases 

randomly from the l-mers with the bases left forming a set 

of (l – k)-mers. The selection remove in each time is 

accompanied by the generation of a selection function f, 

which would be applied to all the l-mers. The possible 

situation is shown as follows. The left (l – k)-mers would be 

the same after multiple l-mers going through selection 

remove. We put the l-mers with the identical bases in (l – k) 

positions into the same bucket. As long as it is possible 

to ensure that the l-mers in the same bucket have a great 

probability of being the motif instances, a qualified 

bucket can be produced.  

Selection Parameters Setting 

Setting proper selection parameters would ensure that 

the motif instances would be put into the same qualified 

bucket with a higher probability. The details of setting 

selection parameters are shown as follows: 

Selection Size k 

The value k affects the efficiency of the algorithm. 

The k value is greater, the shorter is the (l – k)-mer. In 

this condition, a lot of l-mers are selected into a bucket, 

discharging huge noise, which hinders the location of 

motif. On the contrary, the smaller the k value, the longer 

the (l – k)-mer. In this condition, as a small portion of l-

mers is selected into a bucket, the qualified buckets with 

limited number would impede local further refinement. 

Theoretically, the maximum number of buckets is 4
l - k

 

and the number of l-mers is t × (n – l + 1), so the amount 

of l-mers in a bucket on average from background 

sequence is: 
 

( 1)
( , )

4
l k

t n l
E l k

−

× − +

=  

 

where, t is the sequence number and n is the sequence 

length. For our expectation, the fewer the buckets from 

the amount of l-mers in background sequences, the 

better, where E(l, k) < 1.  

 

 
 

Fig. 2: The flowchart of MCL clustering algorithm 

Input:  A, e, r 

 

Expand:  M: = Mexp = Expand(M, e) 

Inflate:  M: = Minf = Inflate(M, r) 

 

If M is convergent 

 

Output:  Result 
 

Yes No 
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If E(l, k) ≤ 0.9, then: 
  

4

( 1)
log

0.9
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k l

× − + 
≤ −  

 
 

 
and in this paper, we set that: 
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Selection Number Num 

When we select the value num, we shall ensure that 

sufficient number of motif instances can be stored in the 

bucket where motif is contained. The probability of a 

motif instance being selected to a qualified bucket is: 
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If selection is performed once, the probability of no 

more than a motif instances from t motif instances being 

put into a qualified bucket is: 
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So when the selection is performed num times, the 

probability of a motif instance chosen to be put into a 

qualified bucket at least once is: 
  

( 1) 1 ( 0) 1 [ ( )]num
num
p p count p count p x a= ≥ = − = = − ≤  

 

In order to ensure that there are enough motif 

instances in qualified buckets, it can be set 

that ( 1) 0.95
num
p p count= ≥ ≥  and then: 

 
log(1 )

log( ( )

nump
num

p x a

−
=

≤
 

  

SMCLR Algorithm 

Motif discovery is to search a number of similar base 

fragments in a set of DNA data and to maximize the 

information content of the position frequency matrix 

composed by these base fragments. Based on this idea, 

we propose a selection-based MCL clustering refinement 

algorithm (SMCLR), which mainly refers to establishing 

qualified buckets and refining qualified buckets. 

By selecting reference sequence and using selection 

algorithm to construct a number of qualified buckets, we 

can reduce the solution space and only a limited number 

of conservative buckets are reserved as the initial state 

for further MCL clustering refinement. In order to make 

each qualified bucket converges to an optimal solution 

quickly and improve the predict accuracy, we apply MCL 

clustering algorithm to refine the qualified buckets. And 

then output the motif model with the maximum value of IC. 

The specific details of each section are as follows: 

Step1: Construct Qualified Bucket 

If we combine all the l-mers of the DNA dataset to 
construct buckets as the initial state, it will be time-
consuming with the generation of a large number of 
redundant background l-mers in the bucket, as there are 
(n – l + 1)

t
 possible alignments of all l-mer. Therefore, it 

is particularly important about how to select a good 
initial state for MCL refinement with a quick 
convergence to an optimal solution. In this paper, we 
construct a number of qualified buckets by selecting a 
reference sequence and adopting a selection project 
algorithm. The detailed procedure is as follows. 

 We select a reference sequence to divide the whole 

dataset into several independent subsets and expect to 

find the optimal solution of each subset. As there is no 

idea of which l-mer in a sequence being the motif 

instance, we choose a sequence as a reference one. In 

this reference sequence, all the l-mers are regarded as 

reference subsequences to look for motif instances that 

probably exist in other sequences. Generally, we select 

the first sequence S1 as the reference sequence, then all 

the l-mer x1j = S1,j S1,j+1…S1, j+l–1, j = 1, 2,…, n – l + 1 in 

S1 are regarded as reference subsequences. As the 

Hamming distance between two motif instances of the 

same motif must be less than or equal to 2d; that is to 

say, given a motif x and two motif instances x1，x2，the 

result that dH(x1, x2) ≤ 2d would be true. Let B(x1j, Si) i = 

2, 3,…, t represent the set of l-mers y in the i th sequence 

Si such that dH(x1j, y) ≤ 2d, that is: 
 

{ }1 1
( , ) : , ( , ) 2j i i H jB x S y y S d x y d= ∈ ≤  

  
A bucket C(x1j, S), j = 1, 2,…, n – l + 1 represents all 

the set of l-mer y in the whole sequences such that d 

dH(x1j, y) ≤ 2d, that is: 
 

1 1 1
2

( , ) ( , ) { }
t

j j j j
i

C x S B x S x
=

= ∪ ∪  

 
As is known for all, the reference subsequences x1j in 

the reference sequence, the true motif instances certainly 

exist in one of these n – l + 1 buckets C(x1j, S), but it is 

time-consuming to refine all the n – l + 1 buckets 

because most of these buckets have redundant 

background l-mers. Therefore, we set the threshold max-

size and min-size to filter the interference buckets and 

retain the buckets which contain sufficient motif 

instances but less background l-mers. Under the OOPS 

model, each sequence has exactly one motif instance, the 

total number of motif instances equals the number of 

sequences t. Let max-size = 4t/3，min-size = 2t/3, for 
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each bucket C(x1j, S) according to the number of l-mers 

in each bucket C(x1j, S), denoted as |C(x1j, S)|, it 

corresponds to three cases: (1) if |C(x1j, S)| < min-size 

holds, C(x1j, S) could be discarded; (2) if min-size < |C(x1j, 

S)| < max-size holds, C(x1j, S) is considered as a qualified 

bucket Cvalid(x1j, S); (3) if |C(x1j, S)| > max-size holds, then 

we use selection project strategy to construct qualified 

bucket Cvalid(x1j, S) from C(x1j, S), where the number of l-

mers satisfies min-size <| Cvalid(x1j, S)| < max-size.  

Step2: Refine Qualified Bucket  

We use MCL clustering algorithm and combine the 

sliding window mechanism as well as the dimensionality 

reduction strategy to refine the qualified buckets 

Cvalid(x1j, S). In the following, the details involved in 

MCL clustering algorithm are introduced. 

Similarity Measure 

We map each l-mer in the qualified bucket Cvalid(x1j, 

S) to a vertex on the graph G. In order to make the 

vertices corresponding to motif instances become more 

dense in the graph (as the MCL clustering always 

gathers the vertices with high similarity)，we design the 

similarity of l-mer x1and x2 as follows: 

 

1 2

1 2

1 21 2

1 2

( , )
( , ) 2

2 ( , )( , )

0 ( , ) 2

H

H

len x x
if d x x d

l len x xSim x x

if d x x d


≤

−= 
 >

 

  

where, 
1 2 1 2

( , ) ( , )
H

len x x l d x x= − . 

We set a threshold Tsim. If the similarity of two l-mer 

x1 and x2 is not more than Tsim, that is Tsim ≤ Sim(x1, x2), 

the corresponding vertices of the two l-mers are 

connected by an edge and the weight of the edge is 

Sim(x1, x2). Otherwise, the weight of the edge is zero. On 

this basis, an adjacent matrix A of the graph G is created. 

In this paper, we set Tsim = 0.5. 

Sparse and Reduce Dimension  

In order to overcome the overlapping of the motifs 

produced by MCL clustering, we introduce the sliding 

window scanning mechanism, with the size of the sliding 

window being set as l. Each row of adjacent matrix is 

sequentially scanned and for each l adjacent elements in 

every row, the number of the element not being zero is 

not greater than l, but if the number is greater than 1, 

then the element with the greatest weight among the l 

elements would be reserved. After sliding window 

scanning, the adjacent matrix is sparse. We further 

reduce the rank of the adjacent matrix, making the 

matrix of tens of thousands of ranks shrink to thousands 

of or even less. This process effectively compresses the 

solution space and improves the efficiency of clustering. 

First, we set a certain threshold for all the values of 

vertexes, so if the value of vertex is greater than or equal 

to this threshold, this vertex is reserved, or the vertex and 

all the associated edges will be directly removed. 

According to the rank of the initial matrix, the threshold 

is generally set to 5-20. The matrix with sparsity and 

reduced-dimension conducted is used as the initial 

matrix of the MCL clustering. After normalization, the 

iteration of Expand and Inflation shall be carried out 

until the matrix converges. After the MCL clustering 

refinement, the qualified bucket with the maximum 

information entropy is regarded as motif. 

Based on the two steps, the whole SMCLR algorithm 

is described as follows: 
 
SMCLR algorithm 

 Input: l, d, S = {S1, S2, ..., St} 

 Output: (l, d) motif Xmotif 

1:  for each l-mer x1, j in S1 do 

2:  C(x1, j, S) ← Φ  

3:  for i ←2 to t do 

4:  B(x1, j, Si) ← Φ 

5:  for each l-mer xi, k in Si do 

6:  if dH(x1,j, xi, k) ≤ 2d, then B(x1,j, 

Si) ←B(x1,j, Si) ∪ {xi, k} 

7:  C(x1,j, S)←C(x1,j, S) ∪B(x1,j, Si) 

8:  Set thresholds to generate qualified bucket 

Cvalid (x1,j, S) 

9:  Use MCL clustering to Cvalid (x1,j, S), compare IC  

10: get Xmotif from ICmax 
  

Lines 2 – 7 describe the process of constructing 
qualified buckets. Line 8 describes the filtration of the 
qualified buckets. Lines 9-10 describe the MCL 
clustering refinement of the qualified buckets and the 
verification of the motif with the maximum IC score. 

Results and Discussion 

We use simulated data and the real data to test the 
performance of SMCLR algorithm. The simulated data is 
used to verify effectiveness and efficiency of our 
algorithm and the real data to verify its validity. 
According to (Buhler and Tompa, 2002), we generate the 
simulated data as follows: Firstly, we randomly produce 
20 independent and identically distributed DNA 
sequences with a length of 600 and a motif M with a 
length of l; Secondly, we randomly select d different 
bases in M and replace the selected bases with other bases 
selected randomly and then generate 20 motif instances; 
Third, we plant the 20 motif instances in turn in the 
position randomly selected in the 20 DNA sequences. 

In this study, the nucleotide level performance 
coefficient (nPC) (Crooks et al., 2004) is used to 
evaluate the motif prediction accuracy: 
 

nTP
nPC

nTP nFN nFP
=

+ +
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 where, nTP is the number of nucleotide positions in 

both published motif sites and predicted motif sites; nFN 

is the number of nucleotide positions in published motif 

sites but not in predicted motif sites; nFP is the number of 

nucleotide positions not in published motif sites but in 

predicted motif sites. The range of value for nPC is from 0 

to 1, the greater the value, the higher the predicted accuracy. 

Results on Simulated Data 

For each specific (l, d) problem instance, the 

predicted accuracy comes from the average result of 10 

trials of simulated data experiments. We compare the 

performance of SMCLR algorithm with that of other 

widely used motif discovery algorithms, such as 

Projection, MEME, MCL-WMR and VINE.  

As shown in Table 1, for the problem instances like 

(11, 2), (12, 3) and (15, 4), the predict accuracy of 

SMCLR algorithm can achieve 98%, 97% and 96% 

respectively. The performance is close to optimal. For 

the challenging problem instances like (13, 4), (17, 5) 

and (18, 6), the predict accuracy achieves 91%, 92% and 

94%, which are superior to the results of Projection: 

65%, 91% and 80%; the results of MEME: 62%, 82% 

and 79%; the results of MCL-WMR: 71%, 80% and 

85%. VINE is nearly the best graph approximate 

algorithm for PMS at present, while the predicted 

accuracy of SMCLR algorithm is slightly higher than 

that of VINE. In terms of running time, MEME takes 

only a few seconds, while Projection requires much 

more, which takes over 20 min in problem instances (13, 

4), (17, 5) and (18, 6); and MCL-WMR is stable in time 

running in different (l, d) instances. VINE could finish 

its execution in 10 min. For different (l, d) instances, 

SMCLR algorithm could control its operation in a 

reasonable time. Taking problem instance (18, 6) for 

example, SMCLR algorithm only uses 4.8 minutes and 

only 1.8 minutes for problem instance (15, 4), so the 

SMCLR algorithm strikes a good balanced between the 

running time and the predicted accuracy for solving PMS. 

Results on Real Data 

Firstly, we test the validity of SMCLR algorithm on 

the following five real data: Preproinsulin, Dihydrofolate 

reductase (DHFR), c-fos, metallothionein and the Yeast 

ECB. These are widely used in the current motif 

discovery algorithms to identify the real motifs. The five 

datasets have the following features: long in sequence, 

few in the number of sequence and with each sequence 

coming from different biological species as well as at 

least one motif instance found in each sequence. In 

testing, l and d (d < l/2) are constantly changed to check 

whether the proposed algorithm can find the known 

motifs using the specific (l, d). The predicted motifs and 

their corresponding predicted accuracy of these five real 

data sets are shown in Table 2, which indicates that 

SMCLR algorithm can work well on these five datasets. 

The underlined part of each predicted motif represents 

the part overlapped with the published motif. Note that, 

many existing recognition algorithms (Pavesi et al., 

2001; Boucher, 2007; Lawrence et al., 1993; Buhler and 

Tompa, 2002) also test their validity on these five data 

sets. Since all of these algorithms (including SMCLR) 

show a good performance on these five data sets, here 

we do not make comparisons. In addition, Table 3 shows 

the sequence logos (Crooks et al., 2004) of the predicted 

motif, which graphically shows the degree of motif 

conservation measured by relative entropy. 

 

Table 1: The results of different algorithms on different (l, d) problem instance 

 nPC 

 ------------------------------------------------------------------------------------------------------------------------------------------ 

(l, d) Projection MEME VINE MCL-WMR SMCLR 

(11, 2) 0.91(10 s) 0.67 (5s) 0.95 (10s) 0.70 (12s) 0.98 (8s) 

(12, 3) 0.74 (6m) 0.84 (5s) 0.92 (7.1m) 0.83(6.8m) 0.97(2.3m) 

(13, 4) 0.65(43m) 0.62 (6s) 0.89 (6.8m) 0.71(9.7m) 0.91 (5.6m) 

(15, 4) 0.93 (8m) 0.89 (6s) 0.96(6.5m) 0.91(5.3m) 0.96 (1.8m) 

(17, 5) 0.91(21m) 0.82(6s) 0.90(4.3m) 0.80 (7.8m) 0.92 (3.6m) 

(18, 6) 0.80 (33m) 0.79 (6s) 0.93(6.7m) 0.85 (18m) 0.94 (4.8m) 

 
Table 2: Experiment result of SMCLR on real data 

Data set Predicted motif Published motif nPC (l, d) 

c-fos CCAAATTAG CCATATTAG 0.78 (9, 2) 

Preproinsulin GCCTCAGCCCCTT GCCTCAGCCCCCA 0.73 (13, 2) 

Yeast ECB TATTTCCCAATAAGGAA TTTCCCNNTNAGGAAA 0.65 (16, 3) 

DHFR  ATTTCGTGGCA TTTCGCGCCA 0.82 (11, 2) 

metallothionein CTCTGCGCGCCGCCC CTCTGCGCRCCGCCC 0.86 (15, 2) 
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Table 3: Sequence logos of the predicted motifs 

Data set Predicted motif 

Preproinsulin     

Metallonthionein    

c-fos     

DHFR    

Yeast ECB    

  

Table 4: The results for the five real data sets 

 nPC 

 ------------------------------------------------------------------------------------------------------------------------------------------ 

Data set MEME VINE MCL-WMR SMCLR 

CREB 0.89(1.72S) 0.42(44.20s) 0.78(16.08s) 0.82(18.04s) 

MEF2 0.84(1.98s) 0.63(36.70s) 0.74(15.72s) 0.78(76.42s) 

MYOD 0.68(2.30s) 0.57(30.08s) 0.60(12.24s) 0.79(32.27s) 

SRF 0.86(2.14s) 0.74(46.82s) 0.83(27.81s) 0.92(96.52s) 

TBP 0.78(40.08s) 0.68(78.24s) 0.70(84.49s) 0.76(11.05s) 

  

Secondly, we use another five real DNA data to test 

the prediction performance of SMCLR algorithm: 

CREB, MEF2, MYOD, SRF and TBP, which choose 

from ABS database and consist of sequences from 

different species of labeled regulatory binding sites. As 

is shown in Table 4, we give the performance coefficient 

(nPC) and the running time of MEME, VINE, MCL-

WMR and SMCLR. Through the test of these five sets of 

real data, it can be found that the prediction accuracy of 

SMCLR is better than that of MEME, VINE and MCL-

WMR on some data sets (i.e., MYOD and SRF), but 

worse than on the other data sets (i.e., CREB, MEF2 and 

TBP). That is to say the SMCLR algorithm can not only 

effectively solve the motif discovery problem of 

different length motifs in different length sequences, but 

also show good performance compared with the existing 

widely used motif discovery algorithm and improve the 

operation efficiently. And the phenomenon provides 

guidance for identifying motifs. The predicted motif of 

different algorithms can complement each other to help 

to improve the predict accuracy. 

Conclusion 

In this study, we propose a MCL clustering 

refinement algorithm based on selection project to 

discover TFBSs with high prediction accuracy in a 

relatively short time. Firstly, we divide the dataset into 

several subsets by selecting reference sequence and 

using selection algorithm. Then we use a powerful data 

clustering method MCL cluster to identify motifs. 

Experiment results on simulated data show that the 

proposed algorithm can effectively solve planted (l, d) 

motif problems in a reasonable time, superior to the 

compared algorithms in prediction accuracy. Moreover, 

for the experiments on real biological data, we use two 

groups of data sets: (1) The first group includes 

Preproinsulin, Dihydrofolate reductase (DHFR), c-fos, 

metallothionein and the Yeast ECB, which are used by 

many existing recognition algorithm to test their validity. 

For each of these data sets, SMCLR is able to find all or 

a large part of TFBSs. (2) the second group includes 

CREB, MEF2, MYOD, SRF and TBP, which consist of 
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sequences from different species of labeled regulatory 

binding sites. The validity of the proposed algorithm is 

tested on these fivereal data sets. 
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