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Abstract: The objective of this study is to derive an analytical solution of one dimensional heat 
conduction equation applied in a hollow cylinder, which is subjected to a periodic boundary condition 
at the outer surface while the inner surface is insulated. The material is assumed to be homogenous and 
isotropic with time-independent thermal properties. Because of the time-dependent term in the 
boundary condition, Duhamel’s theorem is used to solve the problem for a periodic boundary 
condition. The periodic boundary condition is decomposed by Fourier series. The obtained temperature 
distribution contains two characteristics, the dimensionless amplitude and the dimensionless phase 
difference. These results were plotted with respect to Biot and Fourier numbers. The agreement 
between our results and the former work that was related to one dimensional solution of infinite, solid 
cylinder, under simple harmonic condition was realized to be very good. 
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INTRODUCTION 

 
 There were a lot of researches for calculating the 
temperature field in various shapes using different 
boundary and initial conditions. In 1947, Hessler[1] 
obtained unstable temperature field in a long solid 
cylinder, solid sphere and infinite flat plate, with 
homogenous boundary condition. Also, Özisik[2] 
determined the unstable temperature field in hollow and 
solid cylinder under the periodic boundary condition. 
Trostel[3] gained stresses field created by different 
temperature distribution. VDI[4] presented the 
calculation of periodic boundary condition which is 
simulated by harmonic oscillation of ambient 
temperature. 
 

MATHEMATICAL MODEL 
 
 The heat conduction equation for a cylinder, 
without heat source and homogenous properties is 
expressed as: 
 

   
2

2
2

1 1
a t r r r
∂θ ∂ θ ∂θ

=∇ θ= +
∂ ∂ ∂

   (1) 

 
 The outer boundary condition is general and the 
inner one is insulated:  
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g0 (t) is considered to be a periodic function which is 
decomposed using Fourier series: 
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ANALYTICAL SOLUTION 

 
 With considering Eq. 2 the problem can’t be solved 
directly. So the Equation should be solved with 
assumption that, the boundary condition is time-
independent. In this situation the boundary and initial 
conditions are:  
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 It is assumed that there are two solutions for 
solving the problem; the first one is for steady state 
condition θ0 (r) and the second one for unsteady state 
condition θ1 (r, t): 
 
   0 1(r, t) (r) (r, t)θ = θ + θ    (6) 
 
 The differential heat conduction equation in steady 
state condition is: 
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 Where the boundary conditions are given by Eq. 4 
and Eq. 5. The transient differential equation is: 
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 And these conditions must be satisfied:  
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    (r,0) 0θ =   (10) 
 
    0 1(r) (r,0)θ = −θ   (11) 
 
Steady state problem: With solving Eq. 7, the 
differential equation in radial direction is obtained:  
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Solution for Eq. 12 becomes:  
 
   1 2R(r) C C log(r)= +   (13) 
 
 So, general solution in this state is: 
 
   0 0(r) gθ =   (14)  
 
Transient problem: Applying separation of variables 
method for solving Eq. 8: 
 

   21R R R
r

′′ ′+ = −µ   (15) 

 
   2T a

T
′
= − µ  (16) 

 Solutions for above differential equations 
respectively, are:  
 
   2 0 2 0R (r) A J ( r) B Y ( r)= µ + µ   (17) 
 
    2a t

0T(t) A e− µ=   (18) 
 
 By assuming two new coefficients: 
 
    0 2 1A A C=   (19) 
 
    0 2 2A B C=   (20) 
 
 So, transient state solution is: 
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1 1 0 2 0(r, t) e C J ( r) C Y ( r)− µθ = µ + µ   (21) 
 
 By considering Eq. 9: 
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   1 0 j i 2 0 j iC J ( r ) C Y ( r ) 0′ ′µ + µ =   (23) 
 
 For having solution, the determinant of Eq. 22 and 
Eq. 23 must be zero: 
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 From Eq. 24 the µj coefficients are found. On the 
other hand, From Eq. 23 the relationship between C1, 
C2 is obtained:  
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 So, the solution in radial direction is: 
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 Then, the solution for transient temperature 
distribution is:  
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 For simplifying, the transient solution we assumed:  
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 Then, the transient state solution is:  
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 By applying Eq. 11 the coefficient Cj is found:  
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 Using the orthogonality of eigen function j( r)Φ µ : 
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 For obtaining jC the both side of Eq. 30 must be 
multiplied by jr ( r)Φ µ  and integrate from ri to ro: 
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 So, the transient temperature distribution is: 
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 Finally, the temperature distribution becomes: 
 
    0 1(r, t) (r) (r, t)θ = θ + θ   (35) 
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 The temperature field under time varying boundary 
condition:  
 Equation 36 expresses the temperature field under 
time-independent boundary condition. The g0 is 
independent on time. In the case that the boundary 
value depends on time, it has the variation in the form: 
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  (37) 

 
 It can be considered the changing occurs at time τ 
is constant. Thus the temperature distribution after time 
t-τ seconds after starting the influences can be 
expressed in:  
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 Thus, the temperature field can be obtained by 
summation of dg0 during dτ and the influence of g0 (0). 
The following equation is proven by the method of 
integration by parts:  
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 Using of Eq. 39, the temperature field can be 
obtained in the form: 
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 The first term of Eq. 40 is zero because it includes 
the expansion of constant function 1 in terms of j( r)Φ µ , 
therefore the simplified form of Eq. 40 becomes:  
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 Then, the temperature distribution field becomes:  
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 For simplifying Eq. 42 and plotting the result, we 
must rewrite our result in dimensionless form. With 
assuming dimensionless numbers below: 
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       Where, r, t,  m, Bi, Fo are dimensionless radius, 
dimensionless time, dimensionless thickness, Biot and 
Fourier numbers, respectively. 
 Then jT (t)  and jD  become:  
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 In Eq. 47 when ( )t →∞  the steady state 
temperature is obtained: 
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 Then, the temperature distribution field becomes:  
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 Therefore, the final result becomes: 
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 Ajn is the ratio of the oscillation amplitude of 
temperature distribution field in the hollow cylinder and 
the ambient temperature with the same frequency and 
ϕjn is the phase difference. By calculating and plotting 
Eq. (55), the maximum of the amplitude of summation 
of harmonic waves and the phase difference can be 
obtained. 
Obtaining an expression for heat flux: The heat flux 
per meter passes from the outer surface of hollow 
cylinder is: 
 
   dQ C( (r,0) (r, t))dA= ρ θ − θ   (56) 
 
Where dA is: 
 
     dA 2 rdr= π   (57) 
 
Then Q (t) becomes: 
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        The dimensionless form of Q (t) becomes:  
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       With substitution of (r, t)θ  in Eq. 59:  
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RESULTS AND DISCUSSION 
 

 As it was explained, the temperature distribution 
field in hollow cylinder recognized with two 
characteristics. The dimensionless amplitude A and the 
dimensionless phase difference ϕ. It could be possible 
that with these two quantities, we can understand the 
temperature field oscillates with what phase difference 
and the ratio of amplitude, with respect to ambient 
temperature in hollow cylinder. In Fig.1-Fig.10 the 
variation of A and ϕ with respect to dimensionless 
number M and Bi/M is considered. M is proportional to 
frequency of oscillations of temperature and inverse 
square of Fourier number (Fo). Also Bi/M takes effect 
from environmental condition, period of oscillation and 
thermo physic characteristic of hollow cylinder. The   
g0 (t) is an arbitrary function, which is expanded by 
Fourier series. For special case, the dimensionless 
amplitude   and    dimensionless    phase    difference 
for   function  0 0 ,max 0 0

tg (t) ( )A Sin(2 )
T∞= θ + θ − θ π + ϕ    is 

calculated and compared with VDI [4] for solid, infinite 
cylinder. Comparison between our result and VDI [4] 
show a very good agreement as shown in Figs. 1 and 2. 
 
The effect of dimensionless number (M) on A and ϕ 
of temperature field: In Fig. 1 and Fig.2 it is assumed 
that r 1= , m = 0. In Fig.1 dimensionless amplitude is 

presented. For small values of M (small frequencies of 
ambient temperature) the rate of energy storage in 
hollow cylinder is low and the rate of heat conduction is 
high conduction is high. So, the dimensionless 
amplitude A is 1. Also in Fig. 2 the phase difference is 
zero. 
 

 
 
Fig. 1: Comparison between the result of the 

dimensionless amplitude, A of temperature field 
of a solid cylinder [4] and our result 

 
 

 
 
Fig. 2: Comparison between the result of the 

dimensionless phase difference, ϕ of 
temperature field of a solid cylinder [4] and our 
result 

 
 
Fig. 3: Dimensionless amplitude, A when r 1= , m = 0.5 



Am. J. Engg. & Applied Sci., 1 (2): 141-148, 2008 
 

 146

 
 
Fig. 4: Dimensionless phase difference, ϕ when r 1= , 

m = 0.5 
  

 
 
Fig. 5:  Dimensionless   amplitude,   A   when   r 0.7,=  

m = 0.5 
 
As M increases, the frequency of oscillations of 
ambient temperature become greater, the rate of energy 
storage becomes higher, the rate of heat conduction 
becomes lower, so, A decreases. In this state the 
dimensionless phase ϕ is negative. For great enough 
values of M, A becomes constant and it shows in large 
frequencies and fast oscillations of ambient temperature 
the minimum and maximum of oscillations in hollow 
cylinder  become constant and only a thin  boundary of 
cylinder follows the ambient temperature. 

  
Fig. 6: Dimensionless phase difference, ϕ when r 0.7= , 

m = 0.5 

 
 
Fig. 7: Dimensionless amplitude, A when r 1= , m = 0.3 
 
The effect of dimensionless radius ( r ) on A and ϕ of 
temperature field: In Fig. 3 and Fig. 4 A and ϕ of 
hollow cylinder, is plotted respectively. The assumed 
m, is 0.5 and r  is 1. But in Fig. 5 and Fig. 6 m is 0.5 
and r  is 0.7. Comparison between Fig. 3 and Fig. 5, 
show that with moving toward the center of hollow 
cylinder, A decreases in same M. From Fig. 4 and Fig. 
6, it is clear that ϕ becomes lower in same M. these 
effects are more dominant as M increases. 
 
The effects of dimensionless thickness (m) and (M) 
on A and ϕ of temperature field: In Fig. 7 and Fig.8 m 
is 0.3 and r  is 1. In Fig 9 and Fig.10 m is 0.99 and r  is 
1. Comparison between Fig. 7 and Fig. 9 show that with 
decreasing the thickness of hollow cylinder (increasing 
of m), A in various Bi/M and same M, tends to 1. Also, 
from Fig. 8 and Fig.10 it is clear that, with decreasing 
the thickness of hollow cylinder ϕ tends to zero. These 
effects are more obvious when Bi/M increases. In Fig. 
11 and Fig.12 M is 2 and r  is 1. In Fig. 13 and Fig.14 
M is 4 and r  is 1. Comparison between Figs.11 and 13, 
show  that, if M increases, A, in various  Biot  numbers  
 

 
 
Fig. 8: Dimensionless phase difference, ϕ when r 1= , 

m = 0.3 



Am. J. Engg. & Applied Sci., 1 (2): 141-148, 2008 
 

 147

 
 
Fig. 9: Dimensionless    amplitude,   A   when    r 1= , 

m = 0.99 
 

 
 

 
Fig. 10: Dimensionless phase difference, ϕ when r 1= , 

m = 0.99 
 
and same m, decreases, Also, comparison between Figs. 
12 and  14  show  that,  as  M  increases,  ϕ, in various 
Biot numbers and same m, decreases . Also, it is clear 
that, if m increases, A tends to 1 and ϕ tends to zero. 
 
The effect of dimensionless time ( t ) on 
dimensionless heat flux: In Figs. 15-18, dimensionless 
heat flux with respect to dimensionless time is plotted. 
These figures show that, as Biot number increases, the 
value of dimensionless heat flux increases. In half a    
period   the value of dimensionless heat flux is positive 
 

 
 
Fig. 11: Dimensionless amplitude, A when r 1= , M = 2 

 
 
Fig. 12: Dimensionless phase difference, ϕ when r 1= , 

M = 2 
 

 
 
Fig. 13: Dimensionless amplitude, A when r 1= , M = 4 
 

 
Fig. 14: Dimensionless phase difference, ϕ when r 1= , 

M = 4 
 

 
 

Fig. 15: Q( t ) / Q(1) when M=2, m = .5 
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Fig. 16: Q( t ) / Q(1) when M = 4, m = 0.5 
 

 
 

Fig. 17: Q( t )
Q(1)

 when m = 0.8, M = 2 

 
and in another half is negative. In Fig. 15 and Fig. 16 m 
is 0.5. In Fig. 17 and Fig. 18 m is 0.8. With comparison 
between Figs. 15 and 16, as M increases, the 
dimensionless heat flux, decreases. This effect is 
obvious in Figs. 17 and 18. Also, comparison between 
Figs.15 and 17 show that, as dimensionless thickness 
(m) increases, the value of Q( t )

Q(1)
increases. 

 
Fig. 18: Q( t )

Q(1)
when m = 0.8, M = 4 

CONCLUSION 
 The effects of various agents, such as M, m, r  on 
A, and ϕ  discussed and the significant results obtained. 
These results represent in Fig.1-Fig.14. Also, in Figs. 
15-18 the dimensionless heat flux plotted. Comparisons 
between Figures aid us to find more information about 
variation of these agents under time dependent periodic 
boundary condition. 
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