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Abstract: Prediction of the properties other than moment carrying capacity of GFRP plated RC beams 
does not have any straight forward mechanism. This study presents a General Regression Neural 
Network (GRNN) based computational model for predicting the yield load, ultimate load, yield 
deflection, ultimate deflection, deflection ductility and energy ductility of such beams. Results from 
experimental investigations carried out on nine RC beams with steel ratios of 0.419, 0.603 and 0.905% 
plated 0, 3 and 5 mm thick GFRP laminates were used for generating the GRNN model. The 
predictions of the model closely agreed with experimental results. 
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INTRODUCTION 

 
 Fibre Reinforced Polymer (FRP) plating of 
reinforced concrete beams has become a common 
technique for repair and retrofit of RC structures. This 
investigation seeks to find out the yield load, ultimate 
load, yield deflection, ultimate deflection, deflection 
ductility and energy ductility of RC beams with steel 
ratio of 0.419, 0.603 and 0.905% and Glass Fibre 
Reinforced Polymer (GFRP) plating at 0, 3 and 5 mm 
thicknesses. The results obtained from experimental 
investigation were used as the basis for the generation 
of a General Regression Neural Network (GRNN) 
model.  
 Neural Networks were successfully used for 
several Civil Engineering problems to predict system 
behaviour. ANN was used for providing preliminary 
design of concrete box girders[2]. The neural networks 
served to filter the noisy data, extract knowledge and 
synthesize fitting candidates. Radial Basis network was 
chosen for the study after careful analysis of the 
comparative performance of several other alternative 
networks, including the traditional back-propagation 
networks. Fuzzy network was also employed to deal 
with integer data. The system provided several design 
configurations and overwriting of some design 
parameters to provide a flexible system of preliminary 
design for concrete box girders. 
 Neural network was employed for estimating creep 
and shrinkage deflections in concrete frames[3]. The 
ANN based approach was formulated as a 
computationally efficient but approximate alternative to 
replace the rigorous procedure used for computing the 

deflection due to creep and shrinkage. A sensitivity 
study was performed to identify influential parameters. 
The trained ANN was validated using data available 
from several buildings. 
 ANN was used for the assessment of the 
parameters controlling the longitudinal shear strength of 
furrowed steel plated composite slabs[4]. It was 
observed that training the ANN with the input 
parameters of pitch of ties to width of slab in the top 
portion and depth of the profile resulted in accurate 
prediction of the empirical factors used for determining 
the shear resistance of composite slabs. 
 
Research significance: The experimental work was 
aimed at investigating the combined effect of internal 
steel reinforcement and external FRP plating on the 
performance of reinforced concrete beams. The study 
parameters included yield strength, ultimate strength, 
yield deflection, ultimate deflection, maximum crack 
width, deflection ductility and energy ductility. The 
results obtained from the investigation were used for 
generating a GRNN model for predicting the general 
properties of GFRP plated RC beams. Prediction 
systems for properties like yield load, yield deflection 
and ductility are not commonly available. Hence, a 
computational model could make it easy to estimate the 
properties of GFRP plated RC beams. 
 

MATERIALS AND METHODS 
 
Material properties: The concrete used for the 
investigation had mix ratio of 1:1.54:3.01:0.5 (cement: 
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FA: CA: Water) and attained characteristic compressive 
strength of 23.54 MPa. The longitudinal steel 
reinforcement was provided using rolled tar steel rods 
having 415 MPa yield strength. The shear stirrups were 
fabricated using Fe250 grade steel with yield strength 
of 250 MPa. 
 The Glass Fibre Reinforced Polymer (GFRP) 
laminates had Woven Rovings fibres running in 
mutually perpendicular directions, with fibre density of 
450 gram per square metre. The properties of GFRP 
plates were ascertained from tests conducted in an 
independent laboratory. The 3 mm thick laminates had 
tensile strength of 140.40 MPa, ultimate tensile strain of 
0.0215  and  elasticity  modulus of 6855.81 MPa.  The 
5 mm thick GFRP laminate had tensile strength of 
178.09 MPa, ultimate tensile strain of 0.0198 and 
elasticity modulus of 8994.44 MPa. 
 Two part epoxy adhesive was used for bonding the 
plate on to the soffit of the beams. The adhesive was 
strong enough to resist interfacial shear stresses and 
ensure perfect composite action between the beam 
section and the GFRP plate up to the point of failure. 
 
Specimen details: Nine beams having dimensions of 
150×250×3000 mm were cast. Three steel 
reinforcement ratios were adopted at 0.419, 0.603 and 
0.905%. The steel reinforcement ratio was calculated as 
the ratio between area of longitudinal steel and the 
gross cross sectional area of the beam section. For each 
steel ratio, one beam was tested without any laminate, 
one beam with 3 mm thick GFRP laminate and the third 
with 5 mm thick GFRP laminate. The specimen 
designations and details are presented in Table 1. 
 
Testing of beams: The beams were tested under two 
point loading over a span of 2800 mm. The load was 
applied in increments of 2.50 kN, on two loading points 
located at 933 mm from each other. The centre point of 
loading system was coincident with the mid span of the 
beam. Figure 1 shows the loading and instrumentation 
setup for the beams. 
 
 

RESULTS AND DISCUSSION 
 
 The experimental results relating to the first crack 
load, yield load, ultimate load, first crack deflection, 
yield deflection, ultimate deflection, deflection ductility 
and energy ductility values for the beams are shown in 
Table 2 and Fig. 2-10. 
 The first crack loads were 29.43, 36.79 and 41.69 
kN (increase of 71.43, 114.29 and 70.00% over the 
corresponding reference specimens) for 3 mm thick 
laminates and 34.34, 49.05 and 53.96 kN (increase of 
 
Table 1: Specimen details 
Sl. No. Beam Steel reinforcement Thickness of GFRP 
 designation ratio (%) laminate (mm) 
1  B1 0.419 - 
2  B2 0.603 - 
3  B3 0.905 - 
4  B1F3 0.419 3 
5  B2F3 0.603 3 
6  B3F3 0.905 3 
7  B1F5 0.419 5 
8  B2F5 0.603 5 
9  B3F5 0.905 5 
 

 
 
Fig. 1: Loading and Instrumentation Setup

Table 2: Test results and discussion 
     Deflection Yield Ultimate Maximum 
 Beam First crack Yield Ultimate at first deflection deflection width Deflection Energy 
Sl. No. designation load (kN) load (kN) load (kN) crack (mm) (mm) (mm) (mm) ductility ductility 
1 B1 17.17 17.17 34.34 4.52 11.17 30.20 1.20 2.70 3.83 
2 B2 17.17 34.34 41.69 3.29 10.91 33.70 1.04 3.09 4.77 
3 B3 24.53 36.79 63.77 3.75 10.40 33.89 0.90 3.26 5.82 
4 B1F3 29.43 44.15 58.86 7.77 11.58 32.83 0.82 2.84 4.94 
5 B2F3 36.79 49.05 73.58 6.32 9.85 35.05 0.66 3.56 6.38 
6 B3F3 41.69 74.80 78.48 7.47 9.86 37.52 0.54 3.81 8.07 
7 B1F5 34.34 51.50 63.77 7.39 7.98 35.49 0.62 4.45 8.05 
8 B2F5 49.05 56.41 88.29 11.72 10.63 44.38 0.58 4.17 9.33 
9 B3F5 53.96 58.86 105.46 9.20 9.20 45.64 0.52 4.96 14.06
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Fig. 2: First crack loads 
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Fig. 3: Yield loads 
 

 
Fig. 4: Ultimate loads 

 
100.00, 185.71 and 120.00% over the corresponding 
reference  specimens)  for  5  mm  thick  laminates,  the 

 
 

Fig. 5: Deflection at first crack 
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Fig. 6: Deflection at yield 
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Fig. 7: Ultimate deflection 

 
triplet data being representative of steel reinforcement 
ratios  of 0.419, 0.603 and 0.905%. Increasing thickness 
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Fig. 8: Maximum crack width 
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Fig. 9: Deflection ductility values 

 
of GFRP plating resulted in increase in the first crack 
load. 
 The 3 mm thick GFRP plated beams of B1F3, 
B2F3 and B3F3 showed increase in yield load by 57.14, 
42.86 and 103.33% respectively. The 5 mm thick GFRP 
plated beams of B1F5, B2F5 and B3F5 showed 
increase in yield loads by 200.00, 64.29 and 60.00% 
respectively. 
 As the steel reinforcement ratio increased from 
0.419-0.603 and 0.905%, the ultimate load carried by 
control specimens increased from 17.17-34.34 kN 
(100.00%) and 36.79 kN (114.27%). Beams with 3 mm 
thick GFRP plating showed ultimate loads of 44.15, 
49.05 kN (11.10%) and 74.80 kN (69.42%) and those 
with 5 mm thick GFRP plating showed increase from 
51.50-56.41  kN  (9.53%) and  58.86  kN  (14.29%)  for 
increase in steel ratio from 0.419-0.603 and 0.905%. 
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Fig. 10: Energy ductility values 

 
 Ultimate load for 3 mm thick GFRP plated beams 
increased by 71.40, 76.49 and 23.07% when compared 
to the reference beams. The ultimate load for 5 mm 
thick GFRP plated beams increased by 85.70, 111.78 
and 65.38%. The results indicate that the application of 
GFRP provides effects similar to the provision of more 
percentage of internal steel reinforcement on strength.  
 The beams with 3 mm thick GFRP plating cracked 
at 171.90, 192.10 and 199.20% of the deflections of 
their corresponding control beams (B1, B2 and B3). For 
the beams B1F5, B2F5 and B3F5 (5 mm thick GFRP 
plating), first crack deflection was 163.50, 356.23 and 
245.33% of that for corresponding control specimens of 
B1, B2 and B3 respectively. 
 For 3 mm GFRP plated specimens of B2F3 and 
B3F3, the yield deflection showed a reduction of 9.72, 
5.19%, while it showed a marginal increase by 3.67% 
for B1F3. The 5 mm GFRP plated beams of B1F5, 
B2F5 and B3F5 showed a reduction of 28.54, 2.57 and 
11.54% in yield deflection.  
 The increase in ultimate deflection was observed to 
be 8.71, 4.01 and 10.71% for 3 mm thick GFRP 
laminated  beams  and  17.52,  31.69  and  34.67%  for 
5 mm GFRP plated beams. 
 The deflection ductility values of beams with steel 
ratio of 0.419% (B1 series) were 4.86 and 64.49% 
higher for 3 mm and 5 mm thick GFRP plating, those 
for beams with steel ratio of 0.603% (B2 series) were 
15.20 and 35.16% and those for beams with steel ratio 
of 0.905% (B3 series) were 16.77 and 52.24% for 3 mm 
and 5 mm thick GFRP plating respectively. 
The energy ductility values of 3 mm thick GFRP plated 
beams B1F3, B2F3 and B3F3, were 29.02, 33.60 and 
38.61% higher and those of 5 mm thick GFRP plated 
beams B1F5, B2F5 and B3F5 were 110.37, 95.43 and 
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141.63%, than the energy ductility values for the beams 
B1, B2 and B3 respectively. 
 
General Regression Neural Network (GRNN) 
model: Modelling with General Regression Neural 
Network (GRNN) is a flexible way for generalizing 
experimental results even when the number of data 
points available for training is very low. The difference 
between the traditional feed forward network and 
GRNN is that the feed forward network requires large 
number of input data for training, structure of the feed 
forward network requires many arbitrary modifications 
to achieve low error levels while GRNN becomes ready 
for prediction works as soon as data points fed, number 
of data points need not be too many, structure of the 
network for given data is well defined and the error 
levels are usually very low and do not depend upon the 
expertise of the GRNN developer. Hence, GRNN is 
highly suitable for generalizing the results obtained 
from experimental investigations. 
 
Basics of general regression neural network: GRNN 
belongs to the family of radial basis neural network. 
GRNN contains two processing layers, one radial basis 
layer and the next linear layer. Radial basis layer 
contains neuron count equalling the number of elements 
in the input vector. The linear layer consists of neurons 
equalling the number of results to be predicted by the 
GRNN. The implementation of the model was provided 
using MATLAB® software and a Graphical User 
Interface was also developed for easily accessing the 
prediction tool. Figure 11 shows the structure of 
GRNN. 
 The steel reinforcement ratio and the thickness of 
GFRP laminate were chosen as the input parameters for 
the GRNN model, which was named GFRPBeamNet. 
The predictions from the model were first crack load, 
yield load, ultimate load, deflection at first crack, yield 
deflection, ultimate deflection, maximum crack width, 
deflection ductility and energy ductility. A graphical 
user interface named GFRPBeamPrediction was 
provided for the model. 
 

 
 
Fig. 11: Structure of general regression neural network 
 

Modelling procedure: 
• The input values for each beam were organized in 

the form of percentage steel ratio and thickness of 
GFRP laminate. The input consisted of two rows 

• The experimental data presented in Table 2 was 
transposed into row wise representation to provide 
target and test values for the GRNN model. Two of 
the nine results were used for testing the model and 
the remaining seven results for generating the 
model. The input consisted of ten rows 

• The model was generated using the nntool (neural 
network tool) available in MATLAB® software 
and the input and target values for the training and 
testing were entered into the appropriate positions 

• The network was generated using the training input 
and target values (Fig. 12) 

• The network was exported to the MATLAB® 
workspace and saved into a disk file called 
GFRPBeamNet.mat 

• A Graphical User Interface called 
GFRPBeamProperties was created. It could predict 
the  desired  properties  for  given input values 
(Fig. 13) 

 
Error levels in GRNN model predictions: The 
performance of the GFRPBeamNet (GRNN model) was 
measured using root mean squared error for the training 
data as well as test data. Since the input and target 
values for the network are not normalized (values 
between 0 and 1), the errors reported are actual 
deviations.   These   values   could   be   normalized   by 
 

 
 

Fig. 12: Creation of neural network
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Table 3: Error values of GRNN prediction against training and testing data 
  RMS error for RMS error for Normalized RMS Normalized RMS 
Sl. No. Item training target testing target error for training target error for testing target 
1. First crack load (kN) 6.0454 4.8431 0.1779 0.1463 
2. Yield load (kN) 9.8073 5.3552 0.2066 0.1180 
3. Ultimate load (kN) 13.6156 6.2868 0.1993 0.0967 
4. Deflection at first crack (mm) 0.6373 2.5753 0.0961 0.3431 
5. Yield deflection (mm) 0.6357 1.3398 0.0635 0.1244 
6. Ultimate deflection (mm) 2.9250 3.3189 0.0817 0.0850 
8. Maximum width (mm) 0.1054 0.0084 0.1403 0.0104 
9. Deflection ductility 0.3242 0.3057 0.0887 0.0842 
10. Energy ductility 1.7638 0.8983 0.2414 0.1274 
 

 
 

Fig. 13: Prediction of properties 
 
dividing them with the mean values of appropriate 
target data. The Root Mean Squared (RMS) errors and 
their normalized values for the prediction parameters 
are presented in Table 3. 
 The error levels in prediction are in good 
agreement with the experimental results for all 
parameters. The normalized Root Mean Squared Error 
(RMSE) values should remain as close to 0 as possible, 
indicating that the network predictions agreed well with 
target values. 
 

CONCLUSION 
 
 The following conclusions are drawn on the basis 
of the experimental work and GRNN modelling carried 
out for this investigation. The results obtained from the 
experimental investigation corroborate the results 
previously published in the literature. The GRNN 
model can provide an easy and low error alternative to 
the traditional regression and finite element techniques 
of modelling: 
 
• The strength of GFRP plated beams was higher 

than corresponding unplated beams. The yield 

strength increased by a maximum of 76.49 and 
111.78% for 3 and 5 mm thick GFRP plating 

• The maximum deflection levels achieved by the 
GFRP plated beams were up to 10.71 and 34.67% 
higher for 3 mm and 5 mm thick GFRP plating, 
when compared to the unplated reference beams 

• The ductility values for beams increased by a 
maximum of 38.61 and 141.63% for 3 and 5 mm 
thick GFRP plating respectively 

• The General Regression Neural Network (GRNN) 
model can be used for predicting the properties of 
GFRP plated RC beams. The normalized RMS 
error values were in the range of 0.0635-0.2414 for 
training data and in the range of 0.0104-0.1274 for 
testing data. The Graphical User Interface is 
provided to the model suitable for easy prediction 
of the performance of GFRP plated beams 
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