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Abstract: The development of Computational Fluid Dynamics (CFD) compressible codes for 2D 
structured quadrilateral grid and 3D unstructured hexahedral grid is described. The high-speed flow in 
a nozzle blade cascade is predicted numerically by solving the 2D/3D Euler Equations in a coupled 
manner. The new finite volume CFD solvers employ second-order accurate central differencing 
scheme for spatial discretization and multi-stage Runge-Kutta technique for temporal integration with 
flow variables stored at the vertices. Artificial dissipations with pressure sensors are introduced to 
control solution stability and capture shock discontinuity. The predictions have been compared with 
experimental measurements and good agreement has been found.  
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INTRODUCTION 

 
 The computation of high-speed fluid flow has 
gained considerable interest among the CFD research 
community since the past few decades, which is likely 
to be pioneered by the aerodynamics community in the 
early sixties such as the early work published by[1] in 
computing high speed flow using the panel method. 
More recently[2] has extended the flow models to fully 
3D Navier-Stokes equations by solving the set of non-
linear governing equations in decoupled approach, 
which seems to be the contemporary solution technique 
for modern CFD. Nevertheless, it is well known that 
due to the stiffness of the flow governing equations at 
high Reynolds number, the solution algorithm is found 
to be destabilizing at stagnation flow regions when the 
governing equations are solved in decoupled manner as 
reported by[3] and coupled solution technique is thus 
more desirable in computing high-speed flow. In 
addition, the co-existence of subsonic and supersonic 
region in most of the high-speed flow cases such as 
flow over a converging-diverging nozzle and flow over 
a blunt body moving at supersonic velocity further 
complicates the solution process. It is mathematically 
known that the steady subsonic flow is governed by 
elliptic differential equations whereas the steady 
supersonic flow is described by hyperbolic differential 
equations. Hence, numerical difficulties exist when the 
differential equations are solved from elliptic to 

hyperbolic. The steady state solutions of subsonic and 
supersonic regions are therefore treated differently and 
then patched in the transonic region near the 
intersection of the two regions. In the mid-1960s, a 
breakthrough happens when[4] developed the time 
marching procedure. Instead of solving the steady flow 
governing equations, the equations are advanced in time 
until steady state is achieved. The idea is that unsteady 
Euler equations are always hyperbolic and hence no 
patching is required near the transonic region. Thus, 
this technique can be applied to mixed subsonic, 
supersonic and shocked flow cases without a prior 
knowledge of the flow regimes and the existence of 
shocks. Because of this advantage, time-marching 
procedure set together with coupled solution technique 
is now widely used for high-speed compressible flow as 
well as incompressible flow, with some minor 
modification. 
 Computational grids serve as the essential element 
in numerical computations. The process in generating 
the computational grid in a solution domain is known as 
meshing where the region is divided into many small 
distinct cells and the flow governing equations are 
solved over a period of time for each cell. There are two 
basic types of computational grid, known as structured 
grid and unstructured grid. A structured grid looks most 
generally like a twisted coordinate system with each 
node of a cell represented by an (x, y, z) notation, as 
denoted by[5-12]. It is a common practice to use 
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structured mesh in a relatively simple geometry because 
its generation process is easy, both in practicing and 
programming. The addressing issue in structured 
environment is straightforward due to the fact that 
nodes are arranged in an orderly manner. It does have 
some disadvantages nevertheless. For example, one is 
restricted to use curved rectangles and this deteriorates 
the quality of the rectangles particularly in the vicinity 
of corners and sharp edges. The widely used multi-
block structured grid approach solves this problem by 
simply decomposing the domain into several logical 
rectangular blocks as recommended by[13,14]. However, 
the procedure of blocking and structured meshing is a 
difficult task, as the flow domain becomes complicated 
enough where domain decomposition into blocks is not 
possible. It is for this reason that unstructured meshes 
are used in the current study.  
 Contrary to structured meshes, unstructured 
meshes can be in arbitrary shape and become 
increasingly difficult to work with. In putting the 
governing equations in discretized form, the trivial but 
essential information is the neighbouring cell of a 
computational mesh. This is easily addressed in 
structured environment, one can just move one element 
to the left (i-1) or right (i+1) in a typical 1-D 
computational problem. This becomes more 
complicated with unstructured grids, particularly the 
addressing issue; however, there is a payoff here. 
Unstructured grids can resolve corners and sharp edges 
easily and hence it becomes prominent to simulate 
practical flow, particularly as unstructured grid can be 
generated automatically by using the modern finite 
element generator in domain of arbitrary complexity as 
employed by[15]. While unstructured grid has achieved 
notable success in solving practical flow problems, it 
also provides flexibility for adapting to flow features 
such as shock waves and boundary layers, where flow 
gradient is significant, e.g.,[16,17].  
 In this study, the CFD solvers for structured 
quadrilateral (2D) and unstructured hexahedral (3D) 
will be developed and used to compute the high-speed 
compressible flow in a nozzle blade cascade using time-
marching method.  
 
Governing Equations: In this study, the 3D Euler 
equations will be given; its application to 2D problem is 
straightforward. The three-dimensional continuity, x-, 
y- and z-momentum and energy equations describing 
the flow of a compressible fluid expressed in strong 
conservation form may be written as:  
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w is known as the conserved variables, F , G  and  
H are the overall fluxes in x-, y- and z-direction, 
respectively. 
 
Numerical schemes: The flow domain is replaced by a 
finite number of grid points on a mesh system 
commonly known as quadrilateral mesh (2D) and 
unstructured hexahedral mesh (3D). The governing 
equations are solved simultaneously (coupled solution 
technique) in their integral form for each compact 
stencil of finite volumes, which can be expressed as: 
 

 0dAnH,G,F dW 
dt
d

d

=•><+Ω ��
ΩΩ

 (2) 

 
Or in its discretized form: 
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 The spatial integration is performed using second 
order accurate central discretization. A blend of second 
and fourth order artificial dissipations with pressure 
switch is added to the residuals prior to the time 
integration to remove wiggles from the solution. The 
temporal integration is done using the second order 
accurate, m-stage (m = 4 in the current study) Runge-
Kutta time stepping method proposed by[18], which can 
be written as follows: 
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α is the stage-coefficient taken to be [0.250, 0.333, 
0.500, 1.000]. To speed up the convergence, 3 types of 
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convergence acceleration schemes are employed: local 
time stepping, enthalpy damping and implicit residual 
averaging. At inlet boundary, the total pressure, total 
temperature and flow angle are fixed while the static 
pressure is extrapolated from the interior if the inflow is 
subsonic. Otherwise, all the variables will be specified. 
At exit, if the exit flow is subsonic, only the static 
pressure is fixed, while total pressure, total temperature 
and flow angle are extrapolated from the interior. If the 
exit flow is supersonic, all four variables are 
extrapolated from the interior. At the solid boundary, 
slip condition is used whereby the velocity fluxes 
normal to the solid boundary will be eliminated. 
 

RESULTS AND DISCUSSION 
 
2D flow simulation in a nozzle blade cascade: In this 
study, the blade-to-blade flow simulation in a nozzle 
blade cascade belonged to a stator of a low-pressure 
steam turbine will be presented. The geometry of the 
blade was generated using the in-house pre-processor of 
the current solver developed by[19]. The experimental 
measurements on the cascade were performed by[20], 
which include the surface pressure measurement, wake 
transverse and flow visualization by Mach-Zhender 
photography technique. 
 Three flow cases at overall inlet total to outlet 
static, Poinlet/Poutlet, pressure ratios of 1.49, 1.83 and 2.32 
will be examined. The overall pressure ratio of 2.32 
corresponds to supersonic outlet, while 1.83 
corresponds to transonic outlet. The flow conditions 
with subsonic outlet are represented by tests at an 
overall pressure ratio of 1.49.  
 The mesh illustrated in Fig. 1 consists of 33×230 
grids. For inviscid simulation, uniform mesh spacing is 
employed to maximize the allowable time-step. A 
comparison of measured and calculated values of blade 
surface static pressure for subsonic, transonic and 
supersonic outflows are presented in Fig. 2, 3 and 4, 
respectively. In general, the turbulent solver[11] 
performs slightly well in predicting the static pressure 
along the blade surfaces, except for the pressure values 
near the trailing edge, as compared to the current 
inviscid solver. However, by comparing to the 
experimental data, the effective strategy in capturing 
the shock wave seems to be the inviscid computation, 
which accurately represents the impinged shock waves 
at the suction side of the blade for transonic and 
supersonic outflow conditions. 
 
3D flow simulation in a nozzle blade cascade: The 
subsequent  validation  case  will be the extension of 
the  previous  2D blade-to-blade flow case to 3D. In this  

 
 
Fig. 1: H-mesh used in the nozzle blade cascade 
 

 
 
Fig. 2: Pressure plot for the nozzle cascade subjected to 

subsonic outflow condition 
 

 
 
Fig. 3: Pressure plot for the nozzle cascade subjected to 

transonic outflow condition 
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Fig. 4: Pressure plot for the nozzle cascade subjected to 

supersonic outflow condition 
 

 
 
Fig. 5: Mesh   for  the  3D  blade-to-blade  passage  of 

a   nozzle   blade   cascade   with  cutting  plane 
(z = 7.5mm) constructed for post-processing 

 
study, the calculation is repeated by using the newly 
developed 3D unstructured hexahedral solver as the 
objective here is to test the ability of the current 
numerical code in predicting 3D flow in a linear turbine 
cascade. 
 The original 2D flow domain was extruded in the 
z-direction to form an unstructured block consisting of 
30000 elements and 34606 nodes with the lowest and 
highest z-plane indicating the hub and casing, 
respectively. The extrusion was performed in layering 
basis to form ten layers of hexahedral cells in the span-
wise direction with no mesh refinement near the hub 
and casing. The hub and casing were set as inviscid 
walls. The mesh is as shown in Figure 5. 
 Similar to the 2D test case, three flow cases have 
been attempted at overall inlet total to outlet static, 
Poinlet/Poutlet, pressure ratios of 1.49, 1.83 and 2.32 which  

 

Fig. 6: Comparisons of measured and predicted static 
pressure distribution for the 3D nozzle cascade 
at subsonic flow condition 

 

 
 
Fig. 7: Comparisons of measured and predicted static 

pressure distribution for the 3D nozzle cascade 
at transonic outflow condition 

 
correspond to subsonic outlet, transonic outlet and 
supersonic outlet, respectively. Figure 6-8 show 
comparisons of predicted blade surface static pressure 
distributions and experimental measurement[20] for 
subsonic, transonic and supersonic outflow conditions, 
respectively. Again, considerably good agreement has 
been obtained. Under subsonic outflow condition, the 
first pressure rise immediately after the throat was not 
captured. However, the second pressure rise close to the 
trailing edge was well captured. In the case of transonic 
flow, the agreement was better with the sharp rise in 
pressure due to the normal shock wave, which was well 
represented by the current prediction. Similarly for the  
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Fig. 8: Comparisons of measured and predicted static 

pressure distribution for the 3D nozzle cascade 
at supersonic outflow condition 

 
supersonic outflow condition, where the rise in pressure 
due to the impingement of the trailing edge shock wave 
originated from the adjacent blade was predicted very 
well. However, the strength of this shock has been 
slightly under predicted. 
 

CONCLUSIONS 
 
 In the present research, two compressible flow 
solvers have been developed for 2D structured and 3D 
unstructured grid by solving the Euler Equations in 
time-marching coupled manner, which is suitable for 
computing high-speed compressible flow. It uses the 
second-order accurate cell-vertex finite-volume spatial 
discretization and Runge-Kutta temporal integration. 
The results have been compared with experimental data 
and good agreements have been achieved. However, the 
solution is susceptible to wiggles in certain flow region 
due to the embedded character of the current 
differencing scheme. In order to overcome this 
problem, high-resolution differencing scheme is 
currently being implemented on the flow solvers. 
Further development of the flow solvers will be the 
incorporation of implicit time marching scheme, 
multigrid convergence accelerator and pseudo-
compressibility factor to simulate incompressible flow 
using the present time-marching coupled solution 
technique. 
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