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ABSTRACT 

The holistic approach is applied to several examples from the field of physics, engineering and 

systems engineering and its benefits are demonstrated. In all examples a holistic picture is used and 

studied while ignoring the various details of the discussed problems. Optimal control and optimal 

estimation approachs are used in the engineering examples. The results show that the holistic approach 

provides a deeper insight into the main phenomena while requiring much fewer computational 

resources  Moreover, in all cases the details may significantly be changed yet leading to similar 

observed phenomena. Whenever applicable, the holistic approach is highly recommended. 
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1. INTRODUCTION 

 A definition to systems engineering contributed by 

Simon Ramo is as follows: 
 

“Systems engineering is a discipline that 

concentrates on the design and application of 

the whole (system) as distinct from the parts. 

It involves looking at a problem with its 

entirety, taking into account all the facts and 

all the variables and relating the social to the 

technical aspects” (Haskins, 2007). 
 

 The holistic approach had been recognized in the 

physical sciences and in the various fields of 

engineering for many years, long before the birth of 

systems engineering. Although in all other fields it 

seems to be consequential-in systems engineering it is 

an essential property (hence it becomes part of its 

definition). One may say that the essence of systems 

engineering is its being holistic. The top-down 

approach also stems from viewing the system as a 

whole (Blanchard and Fabrycky, 1998). 

 What exactly is the meaning of the holistic 

approach regarding systems? One way to express it is 

that “the whole is not just the sum of its parts” 

(attributed to Aristotle) in the sense that emergent 

properties of a complex system cannot be 

reconstructed from its simplest components. This 

again is taken from the natural sciences as eloquently 

expressed by Anderson (1972). 

 “The ability to reduce everything to simple 

fundamental laws does not imply the ability to start 

from those laws and reconstruct the universe. The 

constructionist hypothesis breaks down when 

confronted with the twin difficulties of scale and 

complexity. At each level of complexity entirely new 

properties appear. Psychology is not applied biology, 

nor is biology applied chemistry. We can now see that 

the whole becomes not merely more, but very 

different from the sum of its parts”(Anderson, 1972). 

 Another way of interpreting the holistic approach 

is somewhat less drastic and associates it to the human 

cognitive capacities rather than to the objective world. 

In this sense we do not claim that emergent properties 

cannot be reconstructed from lower level properties 

but rather that it is much simpler for the human mind 

to understand a system by overlooking the various 

details and by concentrating on the holistic properties 

themselves. It also deepens the understanding in the 

sense of discriminating between the essential and the 

accidental. 
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 This study adopts the softer version of the two 

interpretations when dealing with systems engineering 

issues. Note that no claim is made regarding the other 

view (i.e., the view that emergent properties are not 

possessed by any one of the parts) with respect to 

natural sciences in general and this problem is beyond 

the scope of this study (e.g., see the discussion in 

(Hofstadter, 1999). 

 The purpose of the study is to demonstrate the 

holistic approach and its great benefits by several 

examples from physics, engineering and finally from 

system engineering. For the latter a systems 

engineering case study will be given for a multi sensor 

system and data fusion. 

2. CONSERVATION LAWS IN PHYSICS 

AND ENGINEERING 

 We begin this section by a very simple puzzle 

example: Suppose that you have two identical cups: one 

with a certain amount of liquid A, say coffee and the 

other with identical amount of liquid B, say milk. 

Assume equal specific density for A and B. Take one tea 

spoon of coffee and pour it into the milk cup. Then, after 

well stirring, take one tea spoon from the mixture and 

return it to the coffee cup. Repeat this process three 

times (same order of cups-do not switch). 

 Question: By the end of the process which cup has 

more foreign liquid Cup A (originally with coffee), or 

Cup B (originally with milk)?  

 There are two ways to approach the problem. The 

first (what most people follow-especially engineers) is to 

calculate at each step the various amounts in the cups 

using all the mixture rules. The other one is holistic and, 

as a matter of fact, is process independent. At the end of 

the process consider the two cups as in Fig. 1. Clearly the 

total liquids are of the same height h (equal amounts of 

total liquid; equal densities) because of the principle of 

mass conservation. Now if Cup A has x of the new liquid 

there must be (h-x) of the original one in this cup. Hence 

the amount that has been removed to Cup B must be x as 

well. One can appreciate the simplicity and clarity of the 

holistic approach. Not only it renders the solution simple, 

but it also provides an important insight into the results, 

enabling a generalization of the problem in hand. One is 

losing the picture when dwelling into the details even 

when the correct answer is obtained. 

 The second problem is taken from mechanics 

(Feynman et al., 1963). Consider a mass of 1 lb sitting in 

equilibrium on the inclined plane with a pulley which has 

a weight W on the other hand. Assume, for simplicity, that 

the inclined plane is a 3-4-5 Pythagorean triangle (Fig. 2). 

 
 (A)                                             (B) 

 
Fig. 1. The coffee and milk puzzle 

 

 

 

Fig. 2. Mechanical equilibrium 

 

 Question: What should be the value of W? 

 Here again one can solve the problem using 

equilibrium of forces in all directions. The pulley 

tension is one of the applied forces; the inclined plane 

reactions and gravity are the other applying forces. 

Conservation of energy however provides a much 

simpler approach. Due to equilibrium we can move 

the system up and down without doing any amount of 

work. Consider the situation where the 1 lb mass is at 

the bottom and another situation where this mass is at 

the top. Clearly we have moved the mass by 5 feet and 

at the same time, the mass W losses 5 feet of height-

thus 5W lb-ft is the corresponding loss in its potential 

energy. Our 1 lb mass gained 3 lb-feet of potential 

energy and from the conservation of energy we must 

have W = 3/5 lb.  

 Our third example is a vertical gyro (see a 

detailed description in (Merchav, 1996). A vertical 

gyro is a device used to measure the pitch (ө) and roll 
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angles (φ) of a vehicle (usually-an aircraft). This quite 

complicated device is depicted in Fig. 3. The spin of 

the heavy mass is rotating in the vertical direction. 

The potentiometer reading of inner gimbal provides 

the pitch angle measurement and that of the outer 

gimbal-the roll measurement. 

 In order to keep the spin in its vertical position, 

an erection mechanism is employed by which two 

small pendulums, attached to the inner gimbal, sense 

the spin deviation (caused by drift) and close circuits 

which activate two small electrical motors (T1 and T2) 

to correct the vertical drift at a certain precession rate 

say PR. When the mother vehicle is accelerating this 

erection mechanism is cut-off to avoid aligning the 

spin axis with the total instantaneous acceleration 

vector. 

 Evidently the whole gyro is quite a complex 

electro-mechanical system. In a specific project it was 

required to evaluate PR by a laboratory test. Since 

acceleration values higher than 1g (gravity) were 

needed it was proposed to use a centrifugal table as 

shown in Fig. 4. It was supposed that the spin-under 

the operation of the erection circuits-would align itself 

with the total acceleration namely the vector sum of 

gravity and Ω2
 R. 

 The test was performed in the laboratory but the 

observed phenomenon was a perfect alignment with 

the vertical (or very nearly to it). The next trial was to 

cut-off the erection circuits and to re-run the test 

(spinning the table by Ω): The result was virtually the 

same-a perfect (or nearly perfect) alignment with the 

vertical direction. 

 Question: What was going on? 

 Once again there could be two ways to address 

this question. The first one is to write down the 

dynamic equations (non-linear differential equations), 

to analyze them (especially is steady state) and from 

this analysis to get the explanation. The second one is 

holistic and immediate. Notice that for the spin to 

align itself with the instantaneous acceleration vector 

it must change its direction continuously due to the 

table rotation Ω. But conversation of angular 

momentum prohibits it-unless some appropriate 

external moments are applied which is clearly not the 

case here (albeit some small moments are obtained 

from the erection motors). 

 So we should not have expected the alignment 

with the acceleration vector. But the question remains 

why (in both cases of erection on and erection off) the 

almost perfect alignment with the vertical? To answer 

simply that it aligns itself with the table rotation 

vector is not enough-Earth rotates the Sun while 

keeping its spin axis in a fixed direction. The answer 

is again quite simple. Due to friction (and maybe 

mass-imbalance) we get the effect of gyro 

compassing. In a nut-shell gyro-compassing is 

obtained whenever there are external moments which 

disappear at a certain equilibrium point. When the 

spin axis of the table and the gyro spins axis are 

aligned, there is no relative movement of the gimbals, 

the moments then vanish and we have equilibrium. 

 Notice again how the holistic approach provides 

answers and insights for some very complicated 

problems. 

 

 

 
Fig. 3. Vertical gyroscope 

 

 

 

Fig. 4. Centrifugal table 
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3. SYMMETRY IN PHYSICS AND 

ENGINEERING 

 The last section dealt with holistic approach based 

on conservation laws (mass, energy and momentum). 

Another road for holistic interpretation and problem 

solving in sciences and Engineering is via symmetric 

properties of space and time. The following case 

study-taken from the author’s Ph.D. dissertation (Ben-

Asher, 1988)-exploits both symmetries. 

 Over the past two decades, time optimal attitude 

maneuvers for flexible spacecraft have become a topic 

of great interest. In particular, a system consisting of a 

rigid hub controlled by a single actuator, with one or 

more elastic appendages attached to the hub, was 

studied by several researchers who investigated the 

properties of minimum-time rest-to-rest rotational 

maneuvers (as well as other maneuvers). Minimum 

maneuvers have a bang-bang solution-the control is 

alternating between maximal and minimal value 

(maximal negative). This system represents, under 

certain assumptions, a satellite with a rigid hub and 

flexible solar panels modeled as Euler-Bernoulli 

beams (Fig. 5). Minimum time rotational maneuvers 

of satellites have important scientific and strategic 

applications. The dynamic equations can be shown to 

have the following form: 

 
2

2

12

2

n

(t) (t) Gu(t)

0

η +Ω η =

 
 ω Ω =
 
 

ω 

&&

O

 (1) 

 

 Here η = [η0, η1, η2,.. η3]
T
 is a vector of generalized 

coordinates and ωi is the i
th

 natural frequency. Notice 

that the first equation corresponds to the rigid mode 

motion (ω0 = 0) whereas the rest are equations for the 

first n flexible modes. The scalar u(t) is an external 

moment exerted on the rigid hub. 

 We pose the following optimal control problem: 

Find the time optimal control u(t); 0 ≤ t ≤ T and the 

corresponding state trajectories (t)η that the system is 

driven from the initial conditions: 

 

(0) [ ,0..0]

(0) [0,0..0]

η = −Θ

η =&
 (2) 

 

 To the final conditions at the origin: 

(T) [0,0..0]

(T) [0,0..0]

η =

η =&
 (3) 

 

 These boundary conditions express a rest-to-rest 

maneuver whereby the spacecraft is rotated by a 

positive angle Θ.  

 The problem was solved numerically for various 

degrees of freedom (Fig. 6-8). The solution is bang-bang 

with an increasing number of switching points (as 

function of the degree of freedom). 

 It was observed that a certain and very useful 

symmetric property is always valid, namely: 

 

u(t) u(T t)= − −  (4) 

 

 

 

Fig. 5. Flexible spacecraft 

 

 

 

Fig. 6. Rigid body 
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Fig. 7. One flexible mode 

 

 

 
Fig. 8. Two flexible modes 

 

 Moreover, if we change the cost from minimum 

time to minimum control effort i.e.: 

 
T

2

0

J u (t)dt= ∫  

 

 Then Equation 4 still holds (albeit the bang-bang 

structure is no longer the solution). 

 Question: why? 

 To answer this curious question one can use the 

detailed formulation of the Minimum Principle and 

workout through the resulting two-point boundary-

value problem (Singh et al., 1989). The computational 

effort is high and is dependent on the particular cost 

function. A different holistic approach was proposed 

in (Ben-Asher et al., 1992). This approach exploits the 

observation that this problem has both time and space 

symmetries. 

 First notice that if we rotate the spacecraft in the 

opposite direction, e.g., from: 

 

(0) [0,0..0]

(0) [0,0..0]

η =

η =&
 (5) 

 

 To: 

 

(T) [ ,0..0]

(T) [0,0..0]

η = −Θ

η =&
 (6) 

 

 We must obtain the same minimum time T by 

exerting the opposite control function: 

 

(t) (t)µ = −µ  (7) 

 

 Moreover, because Equation 1 is symmetric with 

time, we may reformulate our original problem using the 

reversed time: 

 

T tτ ≡ −  (8) 

 

 The dynamics equation then becomes: 

 
2

2

2

d ( )
( ) Gu( )

d

η τ
+ Ω η τ = τ

τ
 (9) 

 

 The boundary conditions are in reversed time 

Equation 5 and 6 (instead of Equation 2 and 3), hence, 

Equation 7 is our optimal control function: 

 

u( (t) u( (t))τ = − τ  (10) 

 

 Recalling that since we are still dealing with the 

original problem the value of the control at t must be 

u(t) (the control has the same value at time t, 

regardless of the way it has been obtained). 

Hence: 

 

u( (t)) u(t)τ =  (11) 

 

 From  Equation 8, 10 and 11 we arrive at: 
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u(T t) u(t)− − =  (12) 

 

 Notice that the observation in Equation 12 is for 

both costs. Notice also that had damping been included 

in Equation 1 and 9 is no longer valid as time symmetry 

is broken. 

4. A CASE STUDY IN SYSTEMS 

ENGINEERING USING THE HOLISTIC 

APPROACH 

 The common thread of the above case studies is 

the observation that working out the problem details-

even though may eventually lead to the problem 

solution-is a tedious process which can become 

redundant when the holistic view is adopted. 

Moreover, the latter provides a deeper insight into the 

physical phenomena rendering its use 

indispensible.The next case study demonstrates the 

same trends in a systems engineering problem 

regarding data fusion in ballistic missile and rocket 

defense systems. 

 This kind of defense systems uses phased array radars 

for various missions such as search, tracking, 

discrimination (i.e., target identification in cluster). 

(Naveh and Lorber, 2001). Missions “compete” over the 

same finite stockpile of sensor resources and have to be 

performed within certain time intervals. Mission 

performance level depends on the amount of sensor 

resources allocated to it and therefore can be optimized by 

specific allocations. 

 An interim problem of the general resource 

optimization is the radar tracking beam allocation 

problem. Classically, the objective of the sensor 

allocation process in tracking has been to minimize 

the uncertainty in the tracking estimation error of all 

relevant targets, using a given amount of radar 

resources. This problem has been addressed by  

(Israeli et al., 2009) where open-loop optimal 

strategies were obtained using direct optimization. 

The essentially bang-zero-bang structure of the 

solutions was investigated by extensive numerical 

solutions and the main features of the optimal 

strategies were characterized. Introducing Electro-

Optical Sensor (EOS) to the defense system calls for 

data fusion of the optical and radar sensors. The 

angular accuracy of the optical sensor is superior to 

the radar’s thus data fusion obtained by a common 

filter using both measurements should have superior 

performance relative to the radar in stand alone 

operation. A study similar to (Israeli et al., 2009) of 

finding optimal tracking policies in order to obtain a 

required accuracy with minimum amount of resources 

has been recently conducted. 

 One of the questions involved in this kind of research 

is where should be the best location for the EOS. 

 For a stand-alone EOS (i.e., target tracking is 

based on angular measurements as provided by this 

sensor-bearing only estimation) the answer had been 

known before. Figure 9 presents the time history for 

the obtained accuracy (in terms of the variance of the 

radial uncertainty as computed by an Extended 

Kalman Filter -EKF) for two representative cases 

(identical ballistic missile trajectory). The accuracy is 

given using certain distance units (DU) and as a function 

of time measured by certain Time Units (TU). Case A is 

for the EOS located on the ballistic plane at the impact 

point whereas Case B is with the EOS location shifted by 

250 DU off the ballistic plane (transversal). Case B 

provides much better results and so locating the EOS off 

the ballistic place is superior in this case. 

 Under data fusion a combined Extended Kalman 

Filter (EKF) was investigated for tracking the target 

(Bar-Shalom et al., 2001; Bryson and Ho, 1975). The 

covariance is propagated as given in Appendix A. 

Fixing the radar resources to its minimum values (u1)-

required for continuous tracking-we search for the 

minimum required EOS total resources (u2) to achieve 

a required accuracy at a certain time. 

 Several locations were considered as depicted in 

Fig. 10. The optimal tracking resources measured in time 

units of occupation needed for a given accuracy are 

given in Table 1. 

 As shown the effect of the EOS location is highly 

significant. Consider first the case Y = 0 where the two 

sensors (radar and EOS) are located in the ballistic 

plane. Decreasing the range from EOS to target along 

the same direction improves the data-fusion predicted 

accuracy thus decreases the EOS load. This 

phenomenon is well understood as the position errors 

grow with range. When we locate the EOS near the 

ballistic plane at Y = 100 DU this is still the case. 

However this phenomenon is reversed when we are 

way off the ballistic plane (last row). Moreover, the 

behavior along the columns is also surprising. Based on 

the EOS stand-alone performance of we might expect 

less resources when moving away from the ballistic 

plane, but this is clearly not the case here. For example 

the last column tells us that the resources are three 

folded when we move 250 DU away from the origin 

(co-location of sensors) in the Y direction and it gets 

even worse when we move forward. 
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 (A) (B) 

 
Fig. 9. EOS Stand-Alone Prediction Accuracy (A) EOS location [0,0] (B) EOS location [0,250 DU] 

 

 

 
Fig. 10. EOS Locations 

 

Table 1. EOS resources (occupation time) Vs. EOS location 

 X = 250 DU  X = 0 

Y = 0 2 TU 4 TU 

Y = 100 DU 2 TU 5 TU 

Y = 250 DU 25 TU 12 TU 

 

 Question: why?  

 Here again there could be two ways to approach 

the question. The first is a tedious study of all the 

details involved in the data fusion process. We may 

investigate the observability measures of the 

combined EKF and the influence of the location on its 

properties. We may go into an even lower level and 

ask the question of what the value of a single EOS 

measurement (1 TU) is and how it depends on the 

EOS location.  

 The other approach is holistic. We investigate the 

question of what is the best EOS location for a system 

working as a whole. Recall that the EOS provides 

angular measurement to the target with very high 

accuracy. The radar (as all tracking radars) is 

extremely accurate in range measurement but has 

relatively poor angular measurements. Thus, the best 

location for the EOS must be on the line-of-sight 

between the radar and the target where it optimally 

complements the radar at its weakest point. In our 

example it should be on the ballistic plane. Moreover, 

if the EOS is in the transverse point-such as X = 250 

DU, Y = 250 DU-then the joint performance is the 

poorest. The azimuth measurements of the EOS at this 

location are in fact redundant due to the excellent 

range measurements of the radar and all the benefits 

we get stem from the EOS elevation measurements-

hence the large amount of resources needed for the 

required performance. 

 We observe here an interesting property that the 

optimal setting of a subsystem if different when in stand-

alone position and in joint operation with another sub-

system. In particular, the property of “being in the best 

location” as part of the whole is very different than the 

same property in a stand-alone operation. 

5. CONCLUSION 

 Several case studies from physics, engineering 

and systems engineering have been presented. The 

main lessons learned is that working out the problem 

details may be a tedious process that can become 
superfluous if the holistic view is adopted. The deeper 

insight into the physical phenomena obtained by the 

holistic view renders its use indispensible. Moreover 

in many cases the details may significantly be 

changed yet leaving the main phenomena intact. 
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APPENDIX A: 

 In this appendix we will briefly present the 

Extended Kalman Filter used for data fusion in the 

fourth section (based on (Bar-Shalom et al., 2001; 

Bryson and Ho, 1975). 

 The point mass model of a ballistic target can be 

written as: 

1 D

2 D D

3 D

4 D

2 D
1

2
5 D

D
6 D

dx
f (x,y,h,v, , y ) v cos( )

dt

dy
f (x, y,h,v, , y ) y
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dh
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Where: 
x = Down range 
y = Cross range 
yD = Cross range rate 
h = Altitude 
v = Velocity 
γ = Dive angle 
m = Mass 
CD = Drag coefficient 
S = Reference area 
ρ = Density 
w1,w2 = Perturbation forces 
 
 The radar measures range, elevation and azimuth {Ψ 
Θ R} to the target and the EOS measures elevation and 
azimuth to the target {Ψ1 Θ1}. Denote g as the 
measurment vector [Ψ Θ R Ψ1 Θ1]. The following is the 
propagation of covariance matrix P: 
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 Note that here we are approximating the optimal  
allocations by using u1-radar partial allocation-and u2-EOS 
partial allocation-that are being kept constant for 1 TU. 


