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Abstract: Image filtering consists of modifying the original image by 
logically “reimaging” it with a mathematical imaging device in which spatial 
response can be controlled by the user. Image filtering is performed by a 
mathematical operation called convolution, which is simply the successive 
replacement of each point in the original image by a new value produced by a 
weighted combination of the original point and its surrounding neighbour 
points. Filtering generally requires definition of a filtering kernel or small 
matrix; often a few filtering kernels are predefined in imaging computer 

systems. The filtering kernel is generally square with a matrix size of 3×3 

pixels, 5×5 pixels or 7×7 pixels. We consider the use of two-dimensional, 
second-order derivatives for image enhancement. The approach basically 
consists of defining a discrete formulation of the second-order derivative 
and then constructing a filter mask based on that formulation. Ten spatial 
high-pass filters (masks) are developed, then implemented and tested in 
our laboratory by using programs that were written in Borland c++ and 
visual Fortran. The results of the application of the developped Laplacian 
and Laplacian high-pass digital filters (masks) on digital images (either 
edge detection, sharpening of high frequency regions (fine details) 
accentuation), comparing between the effect of different dimensions filters 

3×3 and 5×5 and milder high pass effect are presented and demonstrated. 
As the size of the filter (mask) gets larger and/or the weight of the center 
pixel of the kernel gets higher, the sharpenning effect becomes more and 
more. Second-order derivatives have a strong response to fine detail, such 
as thin lines and isolated points. 
 
Keywords: High-Pass Digital Filters, Laplacian Masks, Image Enhancement, 
Milder High-Pass Effect 

 

Introduction 

Image processing, with the intent of improving 

display information, was one of the first applications of 

the computer in nuclear medicine (Brown et al., 1971). 

Image filtering consists of modifying the original image 

by logically “reimaging” it with a mathematical imaging 

device in which spatial response can be controlled by the 

user. The difference between a logical and a real imaging 

device (e.g., scintillation camera) is that the response 

function of the logical device can have negative values, 

whereas that of the real device can only be positive. The 

practical result of this difference is that the logical 

imaging device used for image filtering can be specified 

to improve spatial resolution and make edge and count 

density transitions more obvious. Alternatively, the 

response can be specified so that filtering smooths the 

image and reduces the noise so that small differences in 

count densities can be more readily perceived by the 

viewer (Erickson, 1985). 
More information on general image processing may 

be obtained from different references (Gonzalez and 
Witz, 1977; Jain, 1988; Gonzalez and Woods, 2002) and 
more detailed descriptions of various nuclear medicine 
analysis techniques may be found in Gottschalk (1988; 
Erickson and Rollo, 1993). 

The term filtering is used to indicate operations that 
either smooth or sharpen images; that is, increase or 
decrease image blurring. In planar nuclear medicine 
applications, however, only smoothing is frequently 
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employed. While filtering can be described 
mathematically in complex terms, the actual operation is 
usually simple (Faber, 1994). 

Filtering generally requires definition of a filtering 
kernel or small matrix; often a few filtering kernels are 
predefined in imaging computer systems. The filtering 

kernel is generally square with a matrix size of 3×3 

pixels, 5×5 pixels or 7×7 pixels. The numbers contained 
in the matrix are called weights. In a sense, the kernel is 
placed so that its middle pixel is on top of one pixel in 

the image. The kernel will then cover a 3×3 (or 5×5, etc.) 
pixel region of the image (Faber, 1994). 

The high-pass filter accentuates high-frequency 
spatial components while leaving low-frequency 
components untouched. A common high-pass mask is 
composed of a 9 in the center location with -1s in the 
surrounding locations as shown below (L1 Mask): 

 
L1 Mask 
-1 -1 -1 
-1 9 -1  
-1 -1 -1  

 

We can see that the coefficients add to 1 and that 
smaller coefficients surrounded the large positive 
center coefficient. 

The principal objective of sharpening is to highlight 
fine detail in an image or to enhance detail that has 
been blurred, either in error or as a natural effect of a 
particular method of image acquisition. Uses of image 
sharpening vary and include applications ranging from 
electronic printing and medical imaging to industrial 
inspection and autonomous guidance in military 
systems (Gregory, 1994). 

The aim of the present study was to construct digital 
spatial high-pass filters (masks), applying these filters on 
digital images and comparing between the efficiency 
(enhancement the appearance of fine details in the 
image, tracing the borders (edges) of the small and large 
regions in the image), comparing between the effect of 

different dimensions filters 3×3 and 5×5 and milder high 
pass effect of these filters. 

Theory 

We consider in some detail sharpening filters that are 

based on first- and second-order derivatives, 

respectively. 
The derivatives of a digital function are defined in 

terms of differences. A basic definition of the first-order 
derivative of a one-dimensional function f (x) is the 
difference Equation 1: 

 

( 1) ( )
f

f x f x
x

∂
= + −

∂
 (1) 

We used a partial derivative here in order to keep 
the notation the same as when we consider an image 
function of two variables, f(x, y), at which time we 
will be dealing with partial derivatives along the two 
spatial axes. 

Similarly, we define a second-order derivative as the 
difference Equation 2: 
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In most applications, the second derivative is better 

suited than the first derivative for image enhancement 
because of the ability of the former to enhance fine detail. 
For this and for reasons of simpler implementation and 
extensions, we will focus attention initially on uses of the 
second derivative for enhancement. 

Use of Second Derivatives for Enhancement-the 

Laplacian  

We consider the use of two-dimensional, second- 
order derivatives for image enhancement. The approach 
basically consists of defining a discrete formulation of 
the second-order derivative and then constructing a filter 
mask based on that formulation. 

It can be shown (Rosenfeld and Kak, 1982) that the 
simplest isotropic derivative operator is the Laplacian, 

which, for a function (image) f(x, y) of two variables, 
is defined as: 
 

² ²
²
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f f
f

x y

∂ ∂
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∂ ∂
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In order to be useful for digital image processing, 

this equation needs to be expressed in discrete form. 
There are several ways to define a digital Laplacian 
using neighborhoods. Taking into account that we 
now have two variables, we use the following notation 
for the partial second-order derivative in the x-
direction Equation 4: 
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And, similarly in the y-direction, as: 
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The digital implementation of the two-dimensional 

Laplacian in Equation 3 is obtained by summing these 
two components Equation 6: 
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This equation can be implemented using the mask 
shown below (Laplacian digital mask L2 Mask): 

 
L2 Mask 
0 1 0 
1 -4 1 
0 1 0 

 

The diagonal directions can be incorporated in the 

definition of the digital Laplacian by adding two more 

terms to Equation 5, one for each of the two diagonal 

directions. Since each diagonal term also contains a -

2f(x, y) term, the total subtracted from the difference 

terms now would be -8f(x, y). The mask used to 

implement this new definition is shown in the following 

mask (L3 Mask): 

 
L3 Mask 
1 1 1 
1 -8 1 
1 1 1 

 

Because the Laplacian is a derivative operator, its use 

highlights gray-level discontinuities in an image and 

deemphasizes regions with slowly varying gray levels. 

This will tend to produce images that have grayish edge 

lines and other discontinuities, all superimposed on a 

dark, featureless background. Background features can 

be “recovered” while still preserving the sharpening 

effect of the Laplacian operation simply by adding the 

original and Laplacian images. It is important to keep 

in mind which definition of the Laplacian is used. If the 

definition used has a negative center coefficient, then 

we subtract, rather than add, the Laplacian image to 

obtain a sharpened result. Thus, the basic way in which 

we use the Laplacian for image enhancement is as 

follows Equation 6b: 

 
( , ) ( , ) ² ( , )g x y f x y f x y

if  the center coefficient of  the Laplacian mask is negative

= −∇
 (6a) 

( , ) ( , ) ² ( , )

         

g x y f x y f x y

if the center coefficient of the Laplacian mask is positive

= +∇
 (6b) 

 

All the constructed high-pass filters depend 
basically on Laplacian masks (L2 and L3 masks) and 
Laplacian image that is represented mathematically by 
Equation (6a). 

Simplifications  

In practice, Equation 6a is usually implemented with 
one pass of a single mask. The coefficients of the single 
mask are easily obtained by substituting Equation 5 for 

² ( , )f x y∇  in Equation 6a: 

 

( 1, ) ( 1, )
( , ) ( , ) 4 ( , )

( , 1) ( , 1)

( 1, ) ( 1, )
5 ( , )

( , 1) ( , 1)

f x y f x y
g x y f x y f x y

f x y f x y

f x y f x y
f x y

f x y f x y

+ + − 
= − + + + + − 

+ + − 
= −  + + + − 

 

 

Methods 

Image filtering is performed by a mathematical 

operation called convolution, which is simply the 

successive replacement of each point in the original image 

by a new value produced by a weighted combination of 

the original point and its surrounding neighbor points. 

Using larger filter functions, such as 5×5 or 7×7, will 

cause larger portions of the original image to have an 

effect on the value of the new image points (3). 

The counts (density) in the image pixels underneath 

each element of the 3×3 kernel are multiplied by the 

kernel weights and the results are all summed together. 

The image pixel beneath the center of the kernel is 

replaced by this summation. This operation is repeated 

for every image pixel. Figure 1 shows the process 

graphically for 3x3 filter function. In this process, each 

image pixel is replaced by a weighted average of itself 

and some of its neighbours in its immediate 

neighbourhood. 

 

 
 (A) (B) 
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 (C) (D) 

 

 
(E) 

 
Fig. 1. Sharpening high-passed spatial filtering operation. (A) The original image matrix. (B) The 3 x 3 sharpening kernel. (C) 

Centering the kernel over one pixel of the image. (D) Weighted average of the center pixel and its neighbours: each pixel 
under the kernel is multiplied by the kernel weight over it, and the results are summed together. (E) Steps in C-D repeated for 
each image pixel; this is the final high-passed spatial sharpened image 

 

The following spatial high-pass filters (masks) are 
developed or constructed, then implemented and 
tested in our laboratory by using programs that were 
written in Borland c++ and visual Fortran as shown in 
Appendices 1 and 2: 

 

Mask 1 
 -1 -1 -1 
(1/12) -1 20 -1 
 -1 -1 -1 

 

Mask 2 
 -1 -1 -1 
(1/24) -1 32 -1 
 -1 -1 -1 

 

Mask 3 
 -1 -1 -1 
(1/36) -1 44 -1 
 -1 -1 -1 

 

Mask 4 
0 -1 0 
-1 4 -1 
0 -1 0 

Mask 5 
 0 -1 0 
(1/28) -1 32 -1 
 0 -1 0 

 

Mask 6 

 1 -2 1 

(1/40)  -2 44 -2 

 1 -2 1 

 

Mask 7 

 1 -2 1 

(1/28) -2 32 -2 

 1 -2 1 

 

Mask 8 

 0 -2 0 

(1/42) -2 50 -2 

 0 -2 0 

 

Mask 9 

 -1 -1 -1 

(1/32) -1 40 -1 

 -1 -1 -1 
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Mask 10 
 0 1 1 1 0 
 1 -4 -2 -4 1 
(1/68) 1 -2 80 -2 1 
 1 -4 -2 -4 1 
 0 1 1 1 0 
 

Appendix 1 
 
// This program includes the implementation and testing  
// all the constructed high-pass Laplacian filters 
 
#include <graphics.h> 
#include <dos.h> 
#include <alloc.h> 
#include <stdio.h> 
#include <conio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <fstream.h> 
 
FILE *source,*dest; 
char far *buf; 
char file[20]; 
unsigned char ch; 
unsigned int c1,c2; 
int count = 0; 
long position = 0; 
unsigned size; 
int jj; 
const int im_size = 200; 

 

char matrix[im_size][im_size]; 
int i=im_size,j = 0; 
enum flag{T = 1,F = 0}flag = T; 
 
void Mask123( int i, int j); 
void Mask4(int i, int j); 
void Mask5(int i, int j); 
void Mask67( int i, int j); 
void Mask8 (int i,int j); 
void Mask9(int i,int j); 
void Mask10(int i,int j); 

 

void add_matrices(char a[][im_size],char 
b[][im_size],char c[][im_size]); 
//=============================== 
void main() 
{ 
// printf(“Enter The file to be shwon: “); 
// gets(file); 
 ofstream matrix3; 
 matrix3.open(“matrix3.dat”); 
 int gdriver = DETECT, gmode, errorcode; 
 int x = 0, y = 480, color, maxx, maxy, 

 maxcolor, seed; 
 
 /* initialize graphics and local variables */ 
 initgraph(&gdriver, &gmode, “c:\\borlandc\\bgi”); 

 

/* read result of initialization */ 
 errorcode = graphresult(); 
/* an error occurred */ 
 if (errorcode != grOk) 
 { 
 printf(“Graphics error: %s\n”, 
grapherrormsg(errorcode)); 
 printf(“Press any key to halt:”); 
 getch(); 
/* terminate with an error code */ 
 exit(1); 
 } 
 if ((source = fopen(“c:\\borlandc\\bmp\\ribs.bmp”,”rt”)) 
== NULL) 
 { 
 closegraph(); 
 fprintf(stderr, “Cannot open input file.\n”); 
 } 

 

 position = ftell(source)+118; 
 fseek(source, position, SEEK_SET); 
 while (! feof(source) ) 
 { 

 
 fread(&ch,sizeof(char) , 1, source); 
 count++;c1 = c2 = 0; 
 c1 = int(ch) >> 4; 
 ch = ch<<4; 
 c2 = int(ch) >> 4; 
 if(flag == T) 
 if(i>= 0 && j<= im_size) 
 { 
  matrix[i][j] = char(c1); 
  matrix[i][++j] = char(c2); 
 
  if(++j>= im_size) 
  {j = 0,i = i-1;flag=F;} 
  } 

 
// putpixel(x, y, c1); 
// putpixel(++x, y, c2); 
 ++x; 
 if(++x>getmaxx()) 
 {x=0;y--;flag = T;} 
} //while 
 
// copy the original matrix in a file called matrix3.dat 
// ---------------------------------- 
 for(j = 0;j<= im_size;++j) 
  for(i = 0;i<= im_size;++i) 
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  matrix3<<matrix[i][j]; 
 matrix3.close(); 
//------------------------------------ 
 
//getch(); 
ifstream matrix2; 
matrix2.open(“matrix3.dat”);//re-open file matrix3.dat in 
read mode 
 
cleardevice(); 
 for(j = 0;j<= im_size;++j) 
  for(i = 0;i<= im_size;++i) 
 putpixel(j+100, i+80, int(matrix[i][j])); 
 
  for(i = 0;i<= im_size;++i) 
 for(j = 0;j<= im_size;++j) 
 { 
  if(i<= 0) matrix[i][j] = 0; 
  if(j<= 0 || j>= im_size-1) matrix[i][j] = 0; 
  if(i>0 && j>0 && j<im_size-1) 
//======================================= 
 Mask123(i,j); 
 Mask4(i,j); 
 Mask5(i,j); 
 Mask67(i,j); 
 Mask8(i,j); 
 Mask9(i,j); 
 Mask10(i,j); 
//=============================== 
 if(matrix[i][j]<0 ) matrix[i][j]=0; 
 } 
// x = 100; 
// y = 0; 
 for(j = 0;j<= im_size;++j) 
 for(i = 0;i<= im_size;++i) 
 putpixel(j+320, i+30, int(matrix[i][j])); 
// putpixel(j+50, i+80, int(matrix[i][j])); 
// add the original matrix with the processed one and 
save 
// it in the matrix (matrix) 
 for(j = 0;j<= im_size;++j) 
  for(i = 0;i<= im_size;++i) 

 

  { matrix2>>ch; 

  matrix[i][j] = char(int(ch)-int(matrix[i][j])); 

 }; 

getch(); 

//cleardevice(); 

//=======================================

===================== 

 // draw the image of the produced matrix 

 //----------------------------------------- 

  for(j = 0;j<= im_size;++j) 

  for(i = 0;i<= im_size;++i) 
 putpixel(j+320, i+250, int(matrix[i][j])); 

//=======================================
====================== 
getch(); 
 matrix2.close(); 
 fcloseall(); 
 closegraph(); 
 exit(1); 
} ; 
//=======================================
======= 
// Functions Declaration 
//=======================================
======= 
void Mask1 (int i, int j) 
{ 
  matrix[i][j]= 
 (-1*matrix[i-1][j-1]-1*matrix[i-1][j]-1*matrix[i-

1][j+1] 
 -1*matrix[i][j-1]+20.0*matrix[i][j]-

1*matrix[i][j+1] 
 -1*matrix[i+1][j-1]-1*matrix[i+1][j]-

1*matrix[i+1][j+1])/12; 
//************************ Mask2 
//  (-1*matrix[i-1][j-1]-1*matrix[i-1][j]-1*matrix[i-

1][j+1] 
// -1*matrix[i][j-1]+32.0*matrix[i][j]-

1*matrix[i][j+1] 
// -1*matrix[i+1][j-1]-1*matrix[i+1][j]-

1*matrix[i+1][j+1])/24; 

 

//************************ Mask3 
//  (-1*matrix[i-1][j-1]-1*matrix[i-1][j]-1*matrix[i-

1][j+1] 
// -1*matrix[i][j-1]+44.0*matrix[i][j]-

1*matrix[i][j+1] 
// -1*matrix[i+1][j-1]-1*matrix[i+1][j]-

1*matrix[i+1][j+1])/36; 
 
void Mask4 (int i, int j) 
{ 
  matrix[i][j]= 
 4*matrix[i][j]-(1*matrix[i+1][j]-1*matrix[i-1][j] 
 -1*matrix[i][j+1]-1*matrix[i][j-1]); 
}; 

 
void Mask5 (int i, int j) 
{ 
  matrix[i][j]= 

 (+0*matrix[i-1][j-1]-1*matrix[i-1][j]+0*matrix[i-

1][j+1] 

 -1*matrix[i][j-1]+32.0*matrix[i][j]-

1*matrix[i][j+1] 

 +0*matrix[i+1][j-1]-

1*matrix[i+1][j]+0*matrix[i+1][j+1])/28; 
}; 
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// 
void Mask6 (int i, int j) 
{ 
  matrix[i][j]= 
  (1*matrix[i-1][j-1]-2*matrix[i-1][j]+1*matrix[i-

1][j+1] 
 -2*matrix[i][j-1]+44.0*matrix[i][j]-

2*matrix[i][j+1] 
 +1*matrix[i+1][j-1]-

2*matrix[i+1][j]+1*matrix[i+1][j+1])/40; 
 
// ************ Mask7 
//  (1*matrix[i-1][j-1]-2*matrix[i-1][j]+1*matrix[i-

1][j+1] 
// -2*matrix[i][j-1]+32.0*matrix[i][j]-

2*matrix[i][j+1]  
// +1*matrix[i+1][j-1]-

2*matrix[i+1][j]+1*matrix[i+1][j+1])/28; 
 
 }; 
//=======================================
======  
void Mask8 (int i, int j) 

{ 

  matrix[i][j]= 

  (0*matrix[i-1][j-1]-2*matrix[i-1][j]+0*matrix[i-

1][j+1] 

 -2*matrix[i][j-1]+50.0*matrix[i][j]-

2*matrix[i][j+1] 

 +0*matrix[i+1][j-1]-

2*matrix[i+1][j]+0*matrix[i+1][j+1])/42; 
}; 
//=======================================
====== 
void Mask9 (int i, int j) 
{ 
  matrix[i][j]= 
 (-1*matrix[i-1][j-1]-1*matrix[i-1][j]-1*matrix[i-

1][j+1] 
 -1*matrix[i][j-1]+40.0*matrix[i][j]-

1*matrix[i][j+1] 
 -1*matrix[i+1][j-1]-1*matrix[i+1][j]-

1*matrix[i+1][j+1])/32; 
}; 
//============== dimension 5x5 
void Mask10 (int i, int j) 
{ 
  matrix[i][j]= 
 (0*matrix[i-2][j-2]+1*matrix[i-2][j-

1]+1*matrix[i-2][j] 
 +1*matrix[i-2][j+1]+0*matrix[i-

2][j+2]+1*matrix[i-1][j-2] 
 -4*matrix[i-1][j-1]-2*matrix[i-1][j]-4*matrix[i-

1][j+1] 
 +1*matrix[i-1][j+2]+1*matrix[i][j-2]-

2*matrix[i][j-1] 

 +80*matrix[i][j]-
2*matrix[i][j+1]+1*matrix[i][j+2] 

 +1*matrix[i+1][j-2]-4*matrix[i+1][j-1]-
2*matrix[i+1][j] 

 -
4*matrix[i+1][j+1]+1*matrix[i+1][j+2]+0*matrix[i+2][j-
2] 
 +1*matrix[i+2][j-

1]+1*matrix[i+2][j]+1*matrix[i+2][j+1] 
 +0*matrix[i+2][j+2])/68 ; 
}; 
 

Appendix 2 
 
C PROSS77.For ===== PP14 input data ---- 

PP11 output data 
C 
C THIS PROGRAM CONVOLVES ANY 

OPERATOR OR FILTER 
C WITH A MATRIX (I,J) FOR ANY DIMENSION 

OF I AND J. 
C  
C IT WAS TESTED FOR (7,7) MATRIX. 
C 
  DIMENSION RR(7,7),DD(7,7) 
C  OPEN(8,FILE='LPT1:') 
 OPEN(3,FILE='c:\Issa\pp14.d',STATUS='OLD'

) 
 OPEN(4,FILE='c:\Issa\PP11.txt',STATUS='Old

') 
 READ(3,*)RR 
 WRITE(4,5)RR 
 WRITE(4,7) 
c FORMAT(/) 

 WRITE(*,5)RR 

 5  FORMAT(7(F7.1)) 

 WRITE(*,7) 

 7 FORMAT(/) 

C 

C  

 N=7 

 K=7 

 DO 27 I=1,N 

 DO 28 J = 1,K 
  DD(I,J) = (RR(I-1,J-1)-2*RR(I-1,J)+RR(I-1,J+1) 
 $ -2*RR(I,J-1)+44*RR(I,J)-2*RR(I,J+1) 
 $ +RR(I+1,J-1)-2*RR(I+1,J)+RR(I+1,J+1))/40  

 
28 CONTINUE 
27 CONTINUE  
c OPEN(1,FILE='c:\Issa\PP2.O',STATUS='OLD') 
 WRITE(4,5)DD 
 WRITE(*,5)DD 

 
C  
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  STOP 
  END 
 

Results 

The results (effects) of the application of the 

developped Laplacian and Laplacian high-pass digital 

filters (masks from mask1 to mask10) on digital 

images, either edge detection, sharpening of high 

frequency regions (fine details) accentuation, 

comparing between the effect of different dimensions 

filters (3×3 and 5×5) and milder high pass effect are 

indicated and demonstrated on Fig. 2 to 9.  

 

 
 (a) (b) (c) 
 
Fig. 2. (a) Original radiographic image; (b) Laplacian high-passed filtered image using mask1; (c) The resulting image (subtracting b 

from a) 

 

 
 (a) (b) (c) 

 
Fig. 3. (a) Original ribs photographic image; (b) Laplacian high-passed filtered image; using mask1 (c) The resulting image 

(subtracting b from a) 

 

 
 (a) (b) 

 
Fig. 4. (a) Original noisy chest x-ray with artefact; (b) The resulting Laplacian high-passed image using mask 5  



Issa A. Al-Shakhrah / American Journal of Engineering and Applied Sciences 2015, 8 (3): 360.370 

DOI: 10.3844/ajeassp.2015.360.370 

 

368 

 
 (a) (b) (c) 

 
Fig. 5. (a) Original noisy baby photographic image; (b) Laplacian high-passed filtered image using mask 5 (5×5 dimensions); (c) 

Laplacian high-passed filtered image using mask 10 (3×3 dimensions) 

 

 
 (a) (b) (c) 

 
Fig. 6. (a) Original noisy radiographic chest x-ray image; (b) Laplacian high-passed filtered image using mask 5 (5×5 dimensions); 

(c) Laplacian high-passed filtered image using mask 10 (3×3 dimensions) 

 

 
 (a) (b) (c) 

 
Fig. 7. (a) Original noisy chest radiographic image; (b) Laplacian filtered image using mask 4; (c) The resulting image (subtracting b 

from a) 

 

 
 (a) (b) (c) 

 
Fig. 8. (a) Original noisy baby photographic image; (b) Laplacian filtered image using mask 4; (c) The resulting image (subtracting b 

from a) 
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 (a) (b) (c) 

 
Fig. 9. (a) Original noisy lungs radiographic image; (b) Laplacian high-passed filter image using mask 3; (c) The resulting image 

(adding a to b), The resulting image shows a milder high-pass effect 

 

Discussion 

Computer processing is a prerequisite for display and 
quantification of all modern medical images. The 
outcome of clinical reading and diagnosis directly 
depends on the technique and type of processing 
performed. The appearance of images can be drastically 
changed, which may either enhance or degrade the 
presentation of important information. Complicated 
mathematical techniques can be applied to image data to 
provide either accurate or inaccurate quantitative 
measures of physiological function. To ensure that image 
quality is enhanced and quantified values are correct, the 
user must have a competent understanding of the 
processing techniques (Faber and Folks, 1994). 

General understanding of a processing technique 

includes the knowledge of what an operation really does, 

how it works and why it is important. The grasp of this 

information allows the user to adjust strategies to 

particular situations. Fully understanding the basis of 

processing procedures helps in solving problems and 

overcoming processing failures. 

In spatial high pass filters the mask coefficients 

add to 1. A large coefficient generally appears in the 

center of the mask, surrounded by smaller positive 

and negative coefficients. 

As the size of the filter (mask) gets larger and/or the 

weight of the center pixel of the kernel gets higher, the 

sharpenning effect becomes more and more (Fig. 5 and 6 

for 3×3 and 5×5 dimensions masks).  

Figure 4, high-passed Laplacian image, shows the 

result obtained using mask 5. The detail in this image is 

unmistakably clearer and sharper than in the original 

image. Adding the image to the Laplacian restored the 

overall gray level variations in the image, with the 

Laplacian increasing the contrast at the locations of gray-

level discontinuities. The net result is an image in which 

small details were enhanced and the back-ground 

tonality was perfectly preserved. Results like these have 

made Laplacian-based enhancement a fundamental tool 

used frequently for sharpening digital images. 

High-pass Laplacian can be applied for edge 

detection, this can be demonstrated by subtracting high-

passed Laplacian image from the original image (Fig. 2 

and 3). The results obtained from subtracting (using mask 

1) from the original image, for edge detection are similar 

to those that obtained by applying Robert Gradient 

http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm. In 

certain cases the results are better especially for images 

that have large regions of homogeneous intensities. 

The fact that the high-pass mask contains a large 

positive coefficient in the center surrounded by smaller 

coefficients gives us a clue about its operation. It tells us 

that the center pixel in the group of input pixels being 

processed carries a high influence, whereas the 

surrounding pixels act to oppose it. If the center pixel 

possesses a brightness that is vastly different from that of 

its immediate neighbours, the surrounding pixel effect 

becomes negligible and the output value becomes an 

accentuated version of the original center pixel. The 

large difference indicates a sharp transition in gray level, 

which in turn indicates the presence of high frequency 

components (Gonzalez and Woods, 2002). We would 

therefore expect the transition to be accentuated in the 

output image. On the other hand, if the surrounding pixel 

brightness are large enough to counteract the center 

pixel's weight, the ultimate result is based more on an 

average all pixels involved. 

It is interesting to note that if all pixel brightness in a 

3×3 group are equal, the result is simply the same value. 

This is equivalent to the low-pass filter's response over 

constant regions. This means that the high-pass filter 

does not attenuate low-frequency spatial components. 

Rather, it emphasizes high-frequency components while 

leaving low-frequency components untouched.  

Spatial high-pass filtering sharpens an image by 

accentuating high-spatial-frequency details. The 

convolution mask weighting coefficients are selected 

to vary the cutoff point where higher frequencies 

become accentuated. Additionally, high-pass filtering 

can render more visible any details that are obscured 
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by haziness and poor focus in the original image. 

Further, the resulting high-pass filtered image can be 

summed with the original image to create milder high-

pass filter effects (Fig. 9). 
High-pass filters are used to highlight high-frequency 

details within an image, such as lines, points and edges. 
Images that appear spatially dull or poorly defined can 
be sharpened with high-pass filtering techniques.  

Accentuating high-frequency image information 
with high-pass filtering can enhance the 
characteristics of high-frequency objects of interest. 
For example, an image of a spatially detailed object--
say, a noisy radiographic image and a noisy baby 
photograph can be enhanced by this way. If the 
Laplacian image is subtracted from the original image, 
by using mask 4, the high-pass effect will sharpen the 
lung and baby features (Fig. 7 and 8). 

Conclusion  

As the size of the filter (mask) gets larger and/or the 
weight of the center pixel of the kernel gets higher, the 
sharpenning effect becomes more and more. 

Second-order derivatives have a strong response to 
fine detail, such as thin lines and isolated points. 

Sharpening could be accomplished by spatial 
differentiation, fundamentally, the strength of the 
response of a derivative operator is proportional to the 
degree of discontinuity of the image at the point at which 
the operator is applied. Thus, image differentiation 
enhances edges and other discontinuities (such as noise) 
and deemphasizes areas with slowly varying gray-level 
values (Gonzalez and Woods, 2002).  

General understanding of a processing technique 

includes the knowledge of what an operation really does, 

how it works and why it is important. The grasp of this 

information allows the user to choose the suitable filters 

for particular situations. Fully understanding the basis of 

processing procedures helps in solving problems and 

overcoming processing failures. 
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