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Abstract: The reliability of a multi-state network is defined as the 

probability that the network can successfully send d (demand) units of 

data from the source to the sink. To predict the value of maximum 

demand (dmax) that could be accommodated by a network, a cut-set based 

approach is presented in this study. The presented approach is simple and 

easy to implement. The proposed method was applied to many examples 

studied in literature to illustrate its efficiency. The results show that the 

reliability value at maximum demand (
maxd

R ) is less than any Rd. 
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Introduction 

In the case of existing multi-state components with a 

limited number of different states, each state has a 

different capacity and probability, the network is 

considered as a multi-state network. Given the demand 

(d), the reliability (Rd) is defined as the probability of the 

network capacity level greater than or equal to d. Various 

algorithms were presented to evaluate Rd, (Lin et al., 

1995; Lin, 2001a). All of these methods assumed that all 

minimal paths (Chen and Lin, 2012; Yeh, 2016) to be 

known in advance. Other methods are presented to 

improve searching the d-MPS with knowing MPS in 

advance or without (Yeh, 1998; 2002; 2018; Lin, 2001a; 

Bai et al., 2015; Chen, 2014; Chen and Lin, 2016; Lin and 

Chen, 2017; 2019; Xu et al., 2019). Also, many 

algorithms presented to evaluate Rd in terms of Minimal 

Cuts (MCS) vectors to a given demand d, d-MCS based, 

(Jane et al., 1993; Lin, 2001b; 2003a; Jane and Laih, 

2010; Yeh et al., 2015). The idea was to find all d-MCS 

prior to calculating network reliability between the 

source and the sink nodes. The condition is that all MCS 

(Abel and Bicker, 1982) are known in advance. In 

addition, some researchers presented methods to search 

the d-MCS, (Yeh, 2005; 2008; Chaturvedi and Mishra, 

2009; Forghani-Elahabad and Mahdavi-Amiri, 2014). 

The enumeration of d-MPS was considered as an NP-

hard problem and developing an efficient algorithm that 

depends on the network maximum flow to enumerate all 

d-MPS without prior knowledge of MPS.  

Therefore, evaluating the system reliability of multi-

state network using d-MPS or d-MCS depends on the 

demand value. Consequently, this paper focuses on 

determining the maximum demand accommodated by a 

multi-state network to save the effort in searching d-MPS 

or d-MCS. In addition, it helps the decision-maker or 

network administrator to accept or refuse the required 

demand. Furthermore, it helps the designer and 

researcher to manipulate the problem of transmitting the 

maximum demand over the network to increase its 

performance. This paper presents an algorithm based on 

the Cut-set of both the source and the sink nodes to 

determine the maximum demand.  

This paper is structured as follows. Section 2 presents 

notations and assumptions. Section 3 presents preliminaries 

to evaluate Rd. Section 4 describes the proposed algorithm. 

Section 5 provides illustrative examples and studied cases. 

Section 6 offers our conclusions. 

Reliability Evaluation Algorithm 

The reliability of a stochastic flow network Rd under 

the demand d is evaluated in terms of d-MP based on the 

following: 

 

1. Deduce the flow vector F = (f1,f2,…,fnp) according to 

(Lin et al., 1995; Lin, 2001b), that satisfies:  

 

 
1

| , 1,2, ,
np

i

j i j

j

f a mp M i m


     (1) 

 

1

np

j

j

f d


  (2) 



Moatamad Hassan and Hani Abdou / American Journal of Engineering and Applied Sciences 2020, 13 (3): 445.450 

DOI: 10.3844/ajeassp.2020.445.450 

 

446 

j jf L  (3) 

 
2. Generate the capacity vector X = (x1,x2,…,xm) from 

F = (f1,f2,…,fnp) by using the following equation: 
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3. Assume that the generated lower boundary vectors 

are X1, X2,…,Xq, then Rd is given by: 
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Is evaluated by inclusion-exclusion or RSDP    

(Zuo et al., 2007) used here.  

Algorithm Based on Cut-Sets to Determine 

dmax 

Begin 

 STEP 1. Detect the source and sink nodes 

 STEP 2. Determine the cut-set for both the source 

and the sink nodes as: 
 

   

   

|

|

e e

e e

mc s a a connects the source node s

mc t a a connects the destination node t




 

 
 STEP 3. Find the sum of the maximum capacity for 

mc(s) and mc(t) as: 
 

 s e e

e

M a mc s and    

 t e e

e

M a mc t    

 
 STEP 4. Determine the value of dmax as: 
 

 max ,s td Minimum      

 

 Where,  is an integer and 0    |s-t| 

 STEP 5. If  = 0, then set dmax = Minimum (s, t) 

and evaluate 
maxd

R  as: 

 
sec 2. 6.descriped in tion otherwisegotoStep  

 

 STEP 6. For  = |s-t| down to 0 do 

 STEP 6.1. Set dmax = Minimum (s, t) +  
 STEP 6.2. Check if there is at least one solution 

using section 2, then print out dmax and 

maxd
R  and go to End. 

 STEP 6.3. End do 

 STEP 6.4. Print out dmax and 
maxd

R  and go to End. 

 STEP 6.5. End do 

 End 

 

Illustrative Examples 

Four Nodes Network 

Consider the following network given in Fig. 1 with 

link capacities and probabilities are shown in Table 1. 

This network with the given information studied in    

(Lin et al., 1995; Lin, 2001b; Yeh, 2018; Yeh, 2005;   

Zuo et al., 2007; Yeh, 2010; Niu and Xu, 2012). 

The Following Steps Show How to use the 

Proposed Algorithm to Determine dmax 

Begin 

 STEP 1. The source and sink nodes are 1 and 4 

respectively. 

 STEP 2. Determine the cut-set for 1 and 4 are: 

  

mc(1) = {a1, a5} and mc(4) = {a2, a6} 

 

 STEP 3. Calculate 1 and 4: 

 

1 = M1 + M5 = 4 and 4 = M2 + M6 = 4 

 

 STEP 4. Determine the value of dmax as: 

 

dmax = Minimum(1, 4) 

= Minimum (4, 4) = 4 +  
 

 STEP 5. Because  = |1-4| = |4-4| = 0, then dmax = 4. 

End 

 

Then, the maximum demand accommodated by this 

network is 4. 

 

 
 
Fig. 1: Four nodes network 

 
Table 1: The Arcs’ information 

Arc Capacities   Probabilities 

a1 0 1 2 3 0.05 0.10 0.25 0.60 

a2 0 1 2 - 0.10 0.20 0.70 - 

a3-a4 0 1 - - 0.10 0.90 - - 

a5 0 1 - - 0.20 0.80 - - 

a6 0 1 2 - 0.10 0.20 0.70 - 

a1 a2 

a3 
a4 

a5 a6 

S 
D 
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Four Nodes Network with Ten Components 

In the case of a node failure, the network given in 

Fig. 2 with the information is shown in Table 2 studied 

in (Lin, 2001a). 

Applying the Proposed Algorithm to Determine dmax  

 STEP 1. The source and sink nodes are 1 and 4 

respectively. 

 STEP 2. Determine the cut-set for 1 and 4 are:  

 

mc(1) = {a1,a5} and mc(4) = {a2,a6} 

 

 STEP 3. Calculate 1 and 4: 

 

1 = M1 + M5 = 5 and 4 = M2 + M6 = 6 

 

 STEP 4. Determine the value of dmax as: 

 

dmax = Minimum (1, 4) = Minimum (5, 6) + = 5+ 
 

 STEP 5. Because  = |1-4| = |5-6| = 1, then go to 

Step 6. 

 STEP 6. For  = 1 down to 0 do 

 STEP 6.1.  = 1 then dmax = 5+1 = 6.  

 STEP 6.2. Using section 2, no solution found for 

dmax = 6. 

 STEP 6.3.  = 0 then dmax = 5 and R5 = 0.824242. 

Then End the algorithm. 

 STEP 6.4. End do 

End 
 

Five Nodes Network 

This section presents another five nodes network with 

eight links, (Lin, 2003b), as shown in Fig. 3 and the 

components information are given in Table 3. 
 
Begin 

 STEP 1. The source and sink nodes are 1 and 4 

respectively. 

 STEP 2. Determine the cut-set for 1 and 4 are: 
 

mc(1) = {a1,a3} and mc(5) = {a4,a6,a8} 
 

 STEP 3. Calculate 1 and 4: 

 

1 = M1 + M3 = 5 and 5 = M4 + M6 + M8 = 8 

 

 STEP 4. Determine the value of dmax as: 

 

dmax = Minimum (1, 5) +  = Minimum (5, 8) = 5+  
 

 STEP 5. Because  = |1-4| = |5-8| = 3, then go to 

Step 6. 

 STEP 6. For  = 3 down to 0 do 

 STEP 6.1.  = 3 then dmax = 5+3 = 8.  

 STEP 6.2. Using section 2, no solution found for 

dmax = 8. 

 STEP 6.3.  = 2 then dmax = 5+2 = 7.  

 STEP 6.4. Using section 2, no solution found for 

dmax = 7. 

 STEP 6.5.  = 1 then dmax = 5+1 = 6. 

 STEP 6.6. Using section 2, no solution found for 

dmax = 6. 

 STEP 6.7.  = 0 then dmax = 5+0 = 5.  

 STEP 6.8. Using section 2, we found dmax = 5 and R5 

= 0.572599. Then go to End. 

 STEP 7. End do 

End 

 
Table 2: The Arcs’ information 

Arc Capacity Probability Arc Capacity Probability 

a1 2 0.980 a4 3 0.960 

 1 0.010  2 0.020 

 0 0.010  1 0.010 

a2 3 0.960  0 0.010 

 2 0.020 a5 3 0.970 

 1 0.010  2 0.010 

 0 0.010  1 0.010 

a3 2 0.980  0 0.010 

 1 0.010 a6 3 0.960 

 0 0.010  2 0.020 

a7 6 0.955  1 0.010 

 5 0.005  0 0.010 

 4 0.005 a9 4 0.966 

 3 0.005  3 0.050 

 2 0.010  2 0.050 

 1 0.010  1 0.010 

 0 0.010  0 0.010 

a8 5 0.965 a10 5 0.965 

 4 0.005  4 0.005 

 3 0.005  3 0.005 

 2 0.005  2 0.005 

 1 0.010  1 0.010 

 0 0.010  0 0.010 

 
Table 3: The Arcs’ information 

Arc Capacity Probability Arc Capacity Probability 

a1 3 0.80 a6 4 0.60 

 2 0.10  3 0.20 

 1 0.05  2 0.10 

 0 0.05  1 0.05 

a2 3 0.80  0 0.05 

 2 0.10 a7 5 0.55 

 1 0.05  4 0.10 

 0 0.05  3 0.10 

a3 2 0.85  2 0.10 

 1 0.10  1 0.10 

 0 0.05  0 0.05 

a4 1 0.90 a8 3 0.80 

 0 0.10  2 0.10 

a5 1 0.90  1 0.05 

 0 0.10  0 0.05 
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Table 4: More studied cases 

No. ncp np  dmax 
maxd

R  Studied by 

1 5 3 0 4 0.2041200 Lin et al. (1995; Lin, 2001a) 

5  14 7 0 10 0.5685590 Lin (2004) 

6* 21 13 0 5 0.9481130 Jane and Laih (2008) 

7 30 44 0 3 0.1110566  

3 5 3 0 18 0.7002650 Hassan (2016) 

4 6 4 0 11 0.1118240 Chen and Lin (2016) 

8 16 9 3 7 0.8338490 Xu et al. (2019) 

*The reliability values are different from those obtained by (Jane and Laih, 2008), we verified and asserted that our values are the 

correct ones after contacting the authors 
 

 
 
Fig. 2: Four nodes Network with ten components 

 

 
 
Fig. 3: Five nodes network with ten components 

 

More studied Cases 

This section presents additional examples taken from 

literature as shown in Table 4. 

Conclusion 

The paper studied how to calculate the maximum 

value of the demand (dmax) that can be accommodated by 

a flow network. A simple algorithm based on cut sets is 

presented to find dmax. In some cases, dmax is determined 

exactly and directly when there is no difference between 

the sum of maximum states of source and sink cut-sets 

(s-t) i.e.,  = 0. Otherwise,  ranges from 0 to the 

difference between the two sums (|s-t |), in this case, 

the value of dmax lies inside an interval, Minimum (s-t) 

 dmax  Minimum (s-t) + . 

Also, we got an important conclusion that 
maxd

R < Rd, 

for all dmax>d. Finally, this study helps the network 

administrator or decision-maker previously decide to 

accept the demand or refuse. 
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Notations 

n Number of nodes. 

m Number of arcs (links). 

ncp Number of components (n + m or m Only) 

np Number of paths. 

MC Minimal cuts 

mc(i) Minimal cut set for node i 

mc(s) Minimal cut set for source node s 

mc(t) Minimal cut set for destination node t 
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M M1, M2,…,Mm), Me is the maximum capacity of a 

component ae. 

dmax The maximum demand accommodated by the 

network. 

s The maximum capacity of a source cut-set. 

t  The maximum capacity of a destination cut-set. 

MPs Minimal paths. 

mpj Minimal path no. j; j = 1, 2, …, m. 

Lj The maximum capacity of mpj; Lj = 

min{Mi|aimpj}. 

Rd The reliability of a multi-state network under the 

demand d. 

 


