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Abstract: A traction elevator is a control system that can be driven by 

Direct Current (DC) motors. Premised on the reviewed literature, 

operations of control systems incorporated with DC motors are restrained 

by nonlinearities that deviate the controlled variables (position, speed, 

and torque) from the reference input. Controllers designed with 

appropriate gains annul the nonlinearities inhibiting the operation of a 

traction elevator. However, the literature did not account for detailed 

mathematical designs for the controller gains. Also, the modeled 

elevators had complex architectures. Hence, this research is aimed at 

modeling a simplified traction elevator and using the dynamics of its 

subsumes to mathematically design the gains of three controllers 

arranged in a cascaded topology to mitigate errors in the three control 

loops of the elevator. The Position of the elevator's car was controlled 

using a Proportional (P) controller while the Proportional-Integral (PI) 

controller controlled individually the speed and torque of the elevator’s 

cabin. A novel objective function which was based on Integral Time 

Absolute Error (ITAE) was incorporated into the elevator’s model to 

measure the deviation of the control variables from the input reference. 

The MATLAB Simulink environment was used in the modeling and 

simulation of the elevator system. The result obtained for the gain of the 

P controller for the elevator position, speed, and torque were 0.3652, 

25.8, and 2.19, respectively. The gains of the integral controllers for the 

elevator speed and torque were 1372.3 and 219 respectively. A position 

reference of 100 m was used to verify the utilization of the controller 

gains. The result of the study improved existing literature because of the 

clarified elevator model and the output responses of the three controlled 

loops which were intuitive with lesser errors at steady state. For instance, 

steady-state errors of 3.54, 10.45, and 5% were obtained respectively in 

the position, speed, and current responses of the modeled elevator. 

 

Keywords: Elevator, Controller, Cascade, MATLAB, Modelling, 

Simulation 

 

Introduction  

A vehicle that efficiently conveys passengers or 

cargo vertically (up or down) through building floors is 

called an elevator or a lift system. The elevators are 

becoming integral infrastructures in buildings because 

of the global population growth, blistering movement 

of people, and technological advancements in building 

architecture. Electric motors and pumped hydraulic 

fluids are two different types of prime movers that can 

be found in any elevator control system. 
The subsumes of the traction elevator which are 

important to its functionality are the pulley drive, the 
counterweight, the motor, the power supply, the control 
system, the car, and the power converter. The car journeys 
up and down on guided vertical rails that are pendulous 
on a pulley system fitted on the motor shaft. 
Counterweights are also suspended on the pulley system 
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to counterbalance the weight of the car. The 
electromechanical device called the electric motor 
functions as the driver of the traction elevator which 
can be powered by either an Alternating Current (AC) 
or a Direct Current (DC) source system. The control 
sub-block coordinates the operation of the elevator 
system (Daka, 2018). 

There are two types of elevator systems which 

include hydraulic and traction elevators. The car of the 

hydraulic elevator is driven by electronic pumps which 

transmit hydraulics to the cylindrical jack or piston. 

The piston beneath the lift raises and lowers the 

elevator’s car. The traction elevator was explored in 

this research work because its electric motor can be 

modeled mathematically. Furthermore, the traction 

elevator’s system has a regenerative energy capacity 

and greater speed efficiency when likened to hydraulic 

elevators. Hence, making the traction elevators most 

commonly used in medium to high-rise buildings.  

Contemporary passenger elevator designs that are 

widely used today were founded by Elisha Otis 1811-1861, 

a mechanic for a mattress firm in Yonkers, New York. 

Pebbles Kids Learning (2016). The traditional elevators 

were mired with intricate circuitries and complex wiring. 

This was because the elevators were controlled by relay-

dependent controllers. These challenges can be ameliorated 

by automating the control circuitry of the elevator using the 

designed controllers in this research. For instance, in the 

research of (Yang et al., 2008) the elevator’s controller was 

developed around a Programmable Logic Controller 

(PLC). Furthermore, (Sharkawy and Abdel-Jaber, 2022) 

presented a controller design for an elevator using a 

microcontroller called Arduino Uno.  

Since the electric motor is the core driver of the traction 

elevator, special control measures were introduced to the DC 

motor that formed the hub of the traction elevator presented 

in this research work. The control measures aim at improving 

the performance of the DC motor which will invariably 

reduce errors in the entire elevator drive. The errors arise 

from the fact that process control systems making use of the 

DC motor are usually challenged by parameter variations, 

perturbations, and varying loads.  
Peculiar insights were drawn from the research of 

(Khan et al., 2015) who utilized a Proportional Integral 
Derivative (PID) controller to control the speed of a DC 

motor under varying loads. Furthermore, (Adel et al., 2018) 
introduced a graphic user interface on MATLAB to visualize 
the behavior of a permanent magnet direct current motor. A 
microcontroller was used to control the speed of a DC motor 
in the research of (Vikhe et al., 2014). In another 
development, (Hummadi, 2012) controlled the speed of a DC 

motor using Linear Quadratic Regulator (LQR). Also, a 
vector-controlled scheme that utilized fuzzy logic was used 
to develop a controller for synchronous motors integrated 
into an elevator in the research of Yu et al. (2007). However, 
none of the literature was able to outline explicit design 

procedures for the parameters of the controllers used. Also, 
the modeled elevator had complex architectures void of a 
system for measuring errors in the control loops. 

In this research, Proportional (P) and Proportional 

Integral (PI) controllers were deployed individually in a 
cascaded topology to control the position, speed, and torque 
of the elevator after detailed mathematical designs of the 
controllers’ gains. The proportional controller for the 
position control was void of an integrator because it made 
position tracking sluggish. In a cascade topology, the set 

value of the first controller functions to control the set value 
of the next controller to mitigate errors in the system. The 
incorporated objective function in the elevator model of this 
research was used to measure errors in the controlled loops. 
“The advantages of cascade controller topology compared to 
single loop are flexibility, anti-jamming capability, and 

rapidity. Moreover, this control configuration reduces the 
time constant of the system.” (Gücin et al., 2015). 
Furthermore, this research maximized two mechanical 
equations from the work (Daka, 2018) to simplify the 
architecture of the modeled elevator model. 

 Novelties of the Research in Summary 
 
1. Mathematically obtained in detail, the gains of P and 

PI’s controllers cascaded to mitigate errors 
retrogressing the control of the position, speed, and 
torque of a traction elevator 

2. Modeled a simplified traction elevator on MATLAB 

and simulated it to visualize the improved responses 
with classically designed controllers  

3. Successfully integrated an objective function to 
detect and measure the errors in the modeled elevator 
and to set the stage for the utilization of optimization 
algorithms to improve the overall control efficiency 

of the elevator 
 

Materials and Methods 

The methodology adopted in the research surpassed the 

referenced literature in that it was segmented into two. 

Firstly, mathematical representations of the elevator’s 

subsumes were distinctly derived. Secondly, the 

mathematical representations were incorporated into 

respective MATLAB blocks (research materials) to model 

the elevator as shown in Fig. 11. Furthermore, the modeled 

elevator was simulated to obtain output responses for the 

individual control loops at various position references. 

Mathematical Modelling of the Elevator’s Three-Phase 

Full Wave Controlled Converter 

 The three-phase controlled rectifier of Fig. 1 was 
utilized in this research. This was because a higher DC 
output voltage was required which was higher than the 
voltage from a single-phase controlled rectifier. 

The DC voltage (Vdc) that can be obtained from the 

rectifier of Fig. 1 was given by Eq. 1. 
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Fig. 1: A three-phase full wave-controlled rectifier 

 

3 3
dc m

V = V cos
π

   (1) 

 

where,  

Vm = The peak value of the phase voltage (v)  

 = The firing angle of the thyristor 

 

The maximum value of Vdc (max) was obtained when 

cos  = 1. Hence Eq. 1 transforms to Eq. 2: 

 

( )
3 3

dc
V = max

π
=   (2) 

 

The normalized control voltage (Vcm) of a single-phase 

controlled rectifier was given by Eq. 3: 

 

-1c c
cn

cm cm

V V
V = cosα= cos

V V
=  (3) 

 

where, 

Vc = The instantaneous control voltage  

Vcm = The maximum limit of control voltage substituting 

Eq. 3 into Eq. 1: 

 

3 3
dc m

cm

Vc
V V

π V
=  (4) 

 

where: 

 

2
m s

V = ×V  (5) 

 

where, 

Vs  = The Root Mean Square (RMS) phase voltage 

Substituting Eq. 5 into Eq. 4: 

 

= 2.33× s
dc c

cm

V
V ×V

V
 

 

Let: 

2
= 2.33× s

cm

V
K

V
 

 

The transfer function Gr(S) of the three-phase full 

wave-controlled converter was given by Eq. 6: 

 

2.33
( )

1 1

Vs

cm2
r

r r

/ VK
G s = =

+ ST + ST
 (6) 

 

where, 

Tr  = The converter time delay 

 

Transfer Function Modelling of the Permanent 

Magnet DC Motor 

The Fig. 2 represents the schematics of the permanent 

magnet DC motor that functions as the prime mover of the 

traction elevator utilized in the research. This section gave 

a detailed mathematical derivation for the DC motor model.  

From the Fig. 2 since the field current if of the motor was 

kept constant (its source was from a constant DC supply) it 

implied that the induced e.m.f was proportional to the speed 

of the DC motor according to Eq. 7 in Laplace domain: 

 

( ) ( ) ( )g m g b m
E ω E S =K S ×ω S   (7)  

 

 where,  
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Eg = The induced emf 

Kb = A proportionality constant 

m = The speed of the DC motor 

 

The armature voltage equation of the motor was obtained 

by taking KVL in the armature loop to obtain Eq. 8: 

 

a
a a a a g

dI
V = R I + L + E

dt
 (8) 

 

where, 

Ra = Armature resistance 

I  =  Current through the armature 

La  = Inductance of the armature coil 

 

Equation 9 was obtained by taking the Laplace 

transform of Eq. 8: 

 

( ) ( ) ( ) ( )a a a a a g
V S = R I S +SL I S +E S  (9) 

 

By simplifying Eq. 9 further, Eq. 10 was obtained: 

  

( )
( ) ( )a g

a

a a

V S = E S
I S =

R + SL
 (10) 

 

The developed torque (Td) of the dc motor relied on 

the current in the armature and field circuit according to 

Eq. 11: 

 

d t f a
T = K ×I ×I  (11) 

 

where,  

Kt = A constant of proportionality 

If  = The field's current 

Ia  = The armature current 

 

Since If  was kept constant, the product of Kt and If  

gave rise to a new constant Kb. Eq. 11 was then written as 

shown in Eq. 12: 
 

d b a
T = K × I  (12) 

 

The mechanical equation which is the developed 

torque was given by Eq. 13: 
 

m
d 1 m L

dω
T = J + B ω +T

dt
 (13) 

 

where, 

 m
dω

J
dt

  = The Torque as a result of the inertia of the 

motor 

 m = The speed of the DC motor 

 TL = The torque developed as a result of the load 

connected to the machine 

 B1 = The frictional coefficient of the DC motor 

 

Taking the Laplace transform of Eqs.12-13 then 

Eqs.14-15 were obtained respectively: 

 

( ) ( )d b a
T S = K × I S  (14) 

  

( ) ( ) ( ) ( )1d L m m
T S -T S = JSω S +B ω S  (15) 

  

Simplifying Eq. 15 will gave rise to Eq. 16: 

 

( )
( ) ( )

1

d L

m

T S -T S
ω S =

B + SJ
  (16) 

 

The load attached to the shaft of the motor was 

modeled using Eq. 17: 

 

L L m
T = B ×ω  (17) 

 

where,  

BL = The friction constant of the load 

 

Taking the Laplace transform of Eq. 17 then Eq.18 

was obtained: 

 

( ) ( ) ( )L L m
T S = B S ×ω S  (18) 

 

Using Eq. 7, 10, 12, 14, 16, and 18 the control diagram 

of the DC motor was developed as shown in Fig. 3. The 

position control transfer function was obtained by placing 

an integrator at the output of the speed control loop. 

The aim of the control diagram of Fig. 3. was to 

develop the DC motor transfer function and the 

respective transfer function equations for the current, 

speed, and position control loops using the block 

diagram reduction techniques. By using Eq.19, the load 

feedback loop in Fig. 3. was minimized to its equivalent 

Transfer Function (T.F) model: 
 

( )
( ) ( )

G S
T.F =

1+G S H S
 (19) 

 

where: 

 

( ) ( )L

1

1 1 L 1 L

1
H S = B and G S =

B + SJ

1 B1+ SJ 1
T.F = × =

B + SJ B + SJ + B B + SJ + B
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Fig. 2: Model of a separately excited DC motor 

 

 
 
Fig. 3: Control diagram of a permanent magnet direct current motor 

 

 
 
Fig. 4: Minimization effect of moving a take-off point 

 

The sum of BL and B1 gave rise to Bt which was the 

total frictional constant. The control diagram of Fig. 3. 

was redrawn to what was shown in Fig. 4. 

By applying Eq. 19 the feedback path of Fig. 4. was 

minimized: 

 

( ) ( )
2

1 b

a a

K
G S = and H S =

R + SL Bt + SJ
 

 

( )( )
( )( )

1

a a b

Bt + SJ Ra+ SLa
T.F = ×

R + SL Bt + SJ Ra+ SLa + K 2
 

 

The transfer function of the DC motor was given by 

Eq. 20:  
 

( )
( ) ( )( )

m b

2
a t a a b

ω S K
=

V S B + SJ R + SL + K
  (20) 

 

The transfer function relating the armature current Ia 

and voltage Va was given by Eq. 21: 

 

( )
( ) ( )( )

a t

2
a t a a b

I S B + SJ
=

V S B + SJ R + SL + K
  (21) 

Simplifying Eq. 21: 
 

( )
( )

1
a t

2 2

a a t a a t a b

SJ
Bt +

I S B
=

V S R B + R JS + L B S + L JS + K

 
 
   

 
Substitute: 

m

t

J
= T

B
 

 
where, 

Tm = The time constant of the mechanical system. It is of 

the order of seconds 

J = The machine inertia 
 

( )
( )

( )

( )
( )

2

2

2

1

1

1

t ma

2

a a t a a t a b

a m

2a a a ta b a t

2

b a t b a t

B + sTI S
=

V S R B + R JS + L B S + L JS + K

I S + STBt
=

L J R J + L BV S K R B
S S +

K + R B K + R B

 
 
 
 

+ 
 

 (22) 

 
By solving the quadratic equation of the denominator 

of Eq. 22 the roots (S1 and S2) were determined using the 

almighty equation: 
 

( )
( )2

1 2

4

2

-b ± b - ac
S ,S =

a
 

 
where: 
 

a a a t

2 2

b a t b a t

L J R J + L B
a = b = C = 1

K + R B K + R B
 

 
Substituting the variables of the almighty equation and 

simplifying will begat Eq. 23: 
 

( )
2

1 2

1 2

1 1 1 1

2 4

2

a t a t b a t

a a a

R B R B K + R B
S ,S ,= , = - + ± + -

T T L J L J L J

                      

 (23) 

 
T1 and T2 were the poles of the current loop.  

From Eq. 22 suppose:  
 

( )( )1
1 1

1

t
1 12

b a t

2a a a t

2 2

b a t b a t

B
K = and + ST + ST =

K R B

L J R J + L B
S + S +

K + R B K R B+

 

 
Bearing in mind that T1 and T2 are also called time 

constants which depended on the electrical and 

mechanical parameters of the DC motor.  

The Eq. 22 was rewritten as shown in Eq. 24: 

 

( )
( )

( )
( )( )

1

1 1

1

1 1

ma

a

K + STI S
=

V S + ST + ST
 (24)  
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Fig. 5: Simplified control block for the DC motor 

 

 
 
Fig. 6: Most simplified control block for the DC motor 
 

 
 
Fig. 7: Detailed current control loop 
 

The block diagram of Fig. 5. was simplified based on 

the foregoing equation to yield Fig. 6. 

The transfer function relating the speed of the motor 

m and the armature current Ia from Fig. 6. was given by 

Eq. 25. It is also called the transfer function of the 

mechanical part of the motor: 
 

( )
( )

m b t

a m

ω S K / B
=

I S 1+ ST
 (25) 

  
The transfer function relating the position of the motor 

 (S) and the armature voltage Va was given by Eq. 26: 
 

( )
( )

( )
( )( )( )

1

1 1 1

1 0 m

t 1 1 m

K K + Stθ S
=

Va S B S + ST + ST + ST
 (26)  

 
Classical Design Approach for the Current Controller Gain 

The current controller is the innermost loop and should 

possess the fastest response. Consider the structure of the 

current control loop of the DC motor shown in Fig. 7. 

The open loop transfer function of Fig. 7. was gotten by 

multiplying the whole content of the block to give a fourth 

order transfer function equation. The fourth order arises 

from the four poles in the transfer function equation: 
 

( ) ( )
( )( )

( )( )( )
1

1 1

1 1 1

c mC r C

c 1 2 r

+ ST + STK K K H
G S H S = ×

T S + ST + ST + ST

 (27) 

 
where, 

Kc = Gain of the current controller  

Kr = Gain of the regulator 

Hc = Current sensor gain 

Tc = Current controller time constant 

Tc = Motor time constant  

 

The current loop equation was minimized with the 

help of a second-order equation via approximations.  

Since the time constant of the mechanical system was 

smaller than that of the electrical system then: 

 

( )1
m m

+ ST ST  (28) 

 

Equation 27 was rewritten based on the approximation 

in Eq. 28: 

 

( ) ( )
( )

( )( )( )
1

1 2

1

1 1 1

cC r m

c r

+ STK K K T
G S H S = ×

T + ST + ST + ST
  (29)  

 

Since Tr < T1 < T2 by setting Tc = T2 the zero in the 

transfer function canceled one of the poles to give Eq. 30: 

 

( ) ( )
( )( )

1 1

1 1

C r m C

c 1 r

K K K T H
G S H S = ×

T + ST + ST
 (30) 

 

Let: 

 

1C m C

c

K K K T H
K =

T

r   (31) 

 

where, K is the open loop gain of the current loop: 

 

( ) ( )
( )( )1
1+ 1+ γ

K
G S H S

ST ST
=  

 

The characteristic equation was obtained from Eq. 31: 

 

( ) ( )1 0G S H S+ =  (32) 

 

( )( )

( )( )

1

2

1 1

1 1

1 0
1 1

1 1 0

1 0

1
0

r

1 r

r

2 r 1

r r

K
+ =

+ ST + ST

+ ST + ST = K =

+ ST + ST + S T T + K =

T +T + K
S + S + =

T T T T

r

 (33) 

 

By comparing Eq. 32 with the general second-order 

system equation given by Eq. 34: 

 
2 22 0

n n
S + ξω S +ω =   (34) 

 

where, 
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 = Damping factor 

n = Natural frequency of the control system  

 = selected as 
1

2
 in other to make the control system 

critically damped without overshoot: 

 

( )

( )

( )

2

1 1

2

1 1

1

2

1

1

1 1

2
1

2

1
2

n n

r r

1 r

r r
n

r

1 r

r

1

r

+ K + K
ω = ω =

T T T T

T +T

T = T T T
ξω = ξ =

T T K +

T T

T +T

T T
K + =

T T

 
 
 

 
 
 
 

  
  
  

 
 
 
 
 
  
 

r

 (35) 

 

Suppose K >>1 and T1>> Tr then T1+Tr  T1.  

From Eq. 35: 

 
2

1

2 2

1

1 r r

T T
K

T T T

 
  
 

 

 

Substituting the approximate value of K in Eq. 35: 

 

11

1

2

1 1

2

C C M

r C

C
C

r 1 C m

K K H K TT
=

T T

T T
K =

T K K H T

  
  

  

r

r

 (36) 

  

Equation 36 is the Gain of the current controller. 

First Order Approximation of the Current Loop 

In other to minimize the content of Fig. 7. the 

following assumptions were made. Suppose Tc = T2 T3+Tr 

and 1+ STm  STm (1 is ignored in the approximation 

because STm is very close to the gain cross-over 

frequency.) The Fig. 7. was minimized to obtain Fig. 8.  

From Eq. 19 the closed loop transfer function of Fig. 8. 

can be represented by Eq. 37: 

 

( )
( )

1

1

1

1

1

1
1

1

C
1 m

a C 3

C r C ma

C r C m

C 3

K
K K T

I S T + ST
=

+ K K K H TI *

K K K H T
+

T + ST

 
 
 

r
 (37) 

 

( )

( )
1

1
1

a C m

a C 3 r C C m

I S K K K T
=

I * T + ST + K K K H T

r  (38) 

 

Representing Eq. 38 with a first-order transfer 

function given in Eq. 39 

( )
1

a i

a i

I S K
=

I * + ST
 (39) 

  

where, 

Ki = The Gain of the current loop  

Ti = The time constant of the current loop 

 

Rearranging Eq. 38 to become the mirror image of Eq. 39 

then Eq. 40 was obtained: 

 

( )

( )

1

1

a C r m c C

1 r C C ma C
C C 3

C

I S K K K T H T
= ×

K K K H TI * T
H T + ST +

T

 (40) 

 

Suppose: 

 

1C m C

fi

C

K K K T H
K =

T

r   (41) 

 

( )

( )
1

1

a

fi

a C 3 fi

I S
= K ×

I * H + ST + K
 

 

 
( )

( )
1

1
1

fia

a C fi 3

fi

KI S
= ×

I * H 1+ K ST

K

 
+  
 + 

  (42) 

 

Comparing Eq. 42 with Eq. 39 then Eqs. 43-44 were 

obtained: 

 

1

1

fi

i

C fi

K
K = ×

H K+
  (43) 

 

1

3
i

fi

T
T =

+ K
  (44) 

 

Classical Design Approach for the Speed 

Controller Gain 

The open loop transfer function equation of Fig. 9. was 

given by Eq. 45: 
 

( ) ( )
( )( )( )

1

1 1 1

S i b w S

t S i m w

K K K K + ST
G S H S = ×

B T S + ST + ST + ST

  
  
    

 (45) 

 

Approximately, 1 + STm  STm and Tw  Ti  0.  

Let: 
 

4 w i
T = T +T  

 
where,  

Tw = The delay time of the speed loop  

Ti = The delay time of the current loop 
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Fig. 8: First-order approximation of the current loop 
 

 
 
Fig. 9: Detailed Speed Control loop 
 

Let: 
 

( ) ( )
( )

1

1

S i b w S

2
t S m 4

K K K K + ST
G S H S = ×

B T T S + ST

  
  
    

 

 

S i b w
2

t S m

K K K K
K

B T T
=  

 

( ) ( ) ( )
( )

1

1

S
2 2

4

+ ST
G S H S = K

S + ST

 
 
 
 

 

 

( ) ( )
( )

1

1

2 S S

2
S 4

K K + ST
G S H S =

T S + ST
  

 
Now, using Eq. 19 the closed loop transfer function of 

the speed loop was given by Eq. 46: 
 

( )
2

2

11 2 S S Sm

*
3 Sm w

4 2 S

S

K K T + STω
=

K Kω K
S T + S + SK K +

T

 
 
 
 
 
 

 (46)  

 
The transfer function of Eq. 46 was represented in 

generic form as given in Eq. 47: 
 

1

2 1 0

1m 0

3 2

m w 3

ω a +a S
=

ω * K a S +a S +a S +a

 
 
 

 (47) 

 
By comparing Eq. (46) with Eq. (47) 

 

0 1 2 3 4
1 a2 S

S 2

S

K K
a = a = K K a = T

T
=  

 

( ) ( )

22 2

1

2 2 2 4 2 6 2

1 2 1 3

1

2 2

m 0

*

m w 0 0 3

ω a +w a
=

ω K a w a - a + w a - a a + w a

 
 
 +
 

 

To widen the bandwidth w2 and w4 terms are made zero: 
 

2

2 2
22 2 2 2 S

1 0 2 S S

S S 2

K K
a = a a K K = T =

T K K
 (48) 

 

2 2 4
2 1 3

2

2 1
2 1

2

S
S

S 4

K K T
a = a a = K =

T T K
  (49)  

 

Substitute the value of KS (gain of the speed controller) 

of Eq. 49 into Eq. 48: 
 

4
4

S
T = T  (50) 

 

Classical Design Approach for the Position 

Controller Gain 

The position control loop transfer function was 

obtained by taking the integral of the DC motor speed 

control loop as shown in Fig. 10 to obtain Eq. 51: 
 

( )
1

1

b S

S a

in 2a a t b b S

a a a

KK K
×

θ S K R J
=

θ L R B + K KK K
S + S + S +

R R J R J

   
   
   

    
     

    

 (51) 

 

where,  

KS = The gain of the position sensor 

K = The position controller gain 
 

Since 0a

a

L

R
  Eq.51 was reduced to Eq. 52: 

 

( )

2

1 b S

S a

in a t b b S

a a

KK K
×

θ S K R J
=

θ R B + K KK K
S + S +

R J R J

   
   
   

  
   

  

 (52) 

 

 By comparing Eq. 52 with the general second-order 

system transfer function equation of Eq. 53: 
 

2

2

n

2 2

n n

W
T.F =

S + ξω S +ω
 (53) 

 
1

1 1
S

S

= K =
K

 

 

2
2

a t
n

a

R B + Kb
ξω =

R J
  (54)  

 

b S
n

a

KK K
ω =

R J

 
 
 

  (55) 

 

Substituting Eq. 55 in 54 where 
1

=
2

ξ  
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Table 1: Parameters of the DC motor used  

Parameters Rating 

DC Motor rating 220V, 60H, 20A, 

Motor-rated speed (N) 1570 rpm 

Armature resistance of the motor (Ra)  6.5 Ὠ 

Moment of inertia of motor (J) 0.060 kg-m2 

Armature inductance of motor 67mH 

Viscus friction coefficient (Bt) 0.087 Nm/rad/sec 

The maximum control voltage of the rectifier (Vcm)  10v 

Line-to-line AC voltage to the converter 230v 

Current Imax was taken in by the DC motor 20A 

Torque constant (Kb)  1.24 rad/sec 

Speed Sensor transfer function ( )
0.065

=
1+ 0.002

G S
S

 

Rated power of machine (watts) 4400 

 

2

2

2

b S a t b

a a

KK K R B + K
× =

R R J

 
 
 

 

 

2

2

a a t b

b S a

R J R B + K
K =

K K R J

 
 
 

  (56) 

 

Equation 56 is the gain of the position controller. 

Numerical Substitution for the DC Motor Drive 

Equations 

The numerical substitutions in this section were 

achieved by utilizing the necessary parameters from 

Table 1 Phase voltage: 
 

( )
3

L
S

V
V =  

 
where,  

VL = The line-to-line voltage of the AC source fed to 

the converter: 
 

( ) 127.02L
S

V 230
V = = = ν

3 3
 

 

127.02
2.339 2.339× = 29.71

10

S
2

cm

V
K = ×

V
=  

 

( ) 2dc c
V max = K ×V  

 
(Here at maximum values, Vc = Vcm): 

 

( ) 29.71×10 = 297.10
dc

V max = ν  

 

The control voltage Vc at which the rated 220v of the 

motor was obtained is given by: 
 

( )
220

= ×10 = 7.41
297.10

dc
c cm

dc

V
V ×V ν

V max
  

Converter time delay: 

  

1 1
= = 0.00138

12 12×60
r

T sec
f

 

 

From Eq. 6 ( )
29.71

=
1 1+ 0.00138

r
r

r

K
G S =

+ ST sec
. 

 

7.41
= 0.3705

20

C

Maximumcontrol voltage for the rated voltage
H =

maximumcurrent drawnbythemotor fromsupply

ν A=

 

 

By substituting the value of the variables in Eq.23 

from Table 1 and simplifying: 

 

1 1 2 2
= -5.64 T = 0.18 and = -92.83 T = 0.01S S sec  

 
Mechanical time constant: 

 

𝑇𝑚 =
𝐽

𝐵𝑡
=

0.06

0.087
= 0.69𝑠𝑒𝑐   

 

( ) ( )( )2

0.087
= 0.0404

1.24 + 6.5 0.087

t
1 2

b a t

B
K = =

K R B
 

 

( )
( )

( )
( )( )

( )
( )( )

1
1 0.0414 1+ 0.069S

=
1+ 0.18S 1+ 0.01S1 1

ma

a 1 1

K + STI S
=

V S + ST + ST
 

 

( )
( )

14.253
=

1+ 0.69

m

a

ω S

I S S
 

 

( )
( ) ( )( )

1.24
=

0.087 + 0.06 6.5 + 0.067 +1.5376

m

a

ω S

V S S S
 

 

2
= 0.01

C
T = T sec  

From Eq. 36: 
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Table 2: Mechanical parameters of the elevator (Daka, 2018) 

Parameters Ratings 

The radius of the elevator’s car pulley (R) 0.0955 m 

Pulley inertia (JP) 0.1kg. m2 

Motor frictional coefficient (bm) 0.0869 N.m.s 

Motor Inertia (Jm) 0.05 kg. m2 

Gravitational acceleration (g) 9.81 m/s2 

Maximum elevator car load 390 kg 

Mass of the elevator’s car 100 kg 

Counter mass (Mcw) 300 kg 

 

( )( )
( )

0.18 0.011 1
= × × = 2.19

2 0.00138 0.0414× 29.71×0.37025×0.69
C

K  

 

The transfer function of the current controller: 

 

 
( ) ( )1 2.19 1+ 0.01

=
0.01

C C

C

K + ST S

ST S
  (57) 

 

By comparing Eq. 57 with the general transfer 

function equation of the PI controller given in Eq. 58: 

 

( )
( )

1a

P

E S K
= K +

E S S

 
 
 

 (58) 

 

where, Kp is the gain of the proportional controller and KI 

is the gain of the integral controller: 

 

2.19 = 219
pcurrent I current

K = K  

 

( )( )( )( )( )
1

2.19 29.7 0.0414 0.69 0.3705
= = 68.77

0.01

C r C
fi

C

K K K H
K =

T
 

 

From Eq. 43: 

 

1 68.77 1
× = × = 2.66

1+ 0.3705 1+ 68.77

fi

i

C fi

K
K =

H K
 

 

= 0.18 + 0.00138 = 0.18138
3 1 r

T = T +T sec  

 

0.00138
= 0.0026

1 1+ 68.77

3
i

fi

T
T = = sec

+ K
 

 

Substituting the values of the variables in Eq. 38: 

 

( )
( )

2.66
=

1 1+ 0.0026

a i

a i

I S K
=

I * S + ST S
 

 

4
= 0.0026 + 0.00216 = 4.76

i W
T = T +T ms  

1× 2.66×1.24× 0.0741
= = 4.0715

0.087× 0.69

S i b w
2

t S m

K K K K
K =

B T T
 

 

2 4

1 1
= = = 25.8

2K T 2× 4.0715× 4.76×0.001
S

K  

 

S 4
T = 4× T = 4× 4.76 = 0.0188ms S  

 

Speed controller transfer function: 

 

( )1+ 0.01881
25.8

0.0188

S
S

S

S+ ST
K

ST S
=  (59) 

 

Comparing Eq. 59 with Eq. 58 

 

= 25.8 =1372.3
p speed I speed

K K  

 

From Eq. 56: 

 

( ) ( )2

6.5× 0.06
= ×

2 2×1.24×1

6.5× 0.087 + 1.24

6.5× 0.06

b

2

a ta
p position

b S a

R B + KR J
K =

K K R J

 
 
 
 

 
 
 
 

 

 

0 15726 2 322 0 3652
p position

K =  =. . .  

 

 
 

Fig. 10: Detailed position control loop 
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Fig. 11: A simplified circuit diagram of the elevator system with cascaded controllers 
 

Mathematical Modelling of the Mechanical 

Structures of the Elevator System 

Assumptions were made in other to successfully 

model the elevator’s mechanical system. These 

assumptions are as follows. 

The frictional effect from the traveling rope, the 

governor, and the effect of air pressure on the elevator 

are neglected. 

The suspending pulleys are considered massless from 

the research (Daka, 2018) Eqs. 60-61 were obtained 

which described the ascending and descending motion of 

the elevator's car respectively: 
 

( )( ) ( )2 m
em m c l p p m m l c CW p

dω
τ = J + M +M R +J +b ω + M +M -M gR

dt
 (60) 

 

( ) ( )2 m
em m CW p p m m CW l C p

dω
τ = J +M R +J +b ω + M -M +M gR

dt
 (61) 

 
where, 

em = The electromagnetic torque developed by the motor 

Jm = The motor moment of inertia 

bm = The viscous friction coefficient of the motor 

m = The angular speed of the motor 

Ml = Mass of the load 

Mc = Mass of the car 

Mcw = Mass of the counterweight 

Vc = Linear speed of the car 

G = Acceleration due to gravity 

Rp  = Radius of the car pulley 

When the elevator’s car deaccelerate, the mass of the 

counterweight is taken into numerical consideration but 

the mass of the elevator car (Mc) is neglected. (Daka, 

2018). Hence during the deceleration of the elevator’s car, 

Eq. 61 becomes approximately equal but opposite in 

magnitude to Eq. 60. The Eqs. 60-61 were modeled on 

MATLAB as shown in Fig. 11 to form the mechanical 

section of the elevator system. The parameters of Table 2 

were substituted in the individual blocks forming the 

mechanical section of the modeled elevator. 

Overview of the Integral Time Absolute Error (ITAE) 

The objective function block of Fig. 11. received 

input signals from the error path. The absolute value of 

the error is multiplied by the simulation time and 

thereafter integrated to get an accumulated error over 

time. This error is thereafter sent to the MATLAB 

workspace (using the ITAE subblock). The ITAE will 

hub the integration of optimization algorithms into 

future controller designs for the elevator. 

Results and Discussion 

The graphical responses of this section were obtained 

when the modeled elevator was simulated with a reference 

position command of 100 m. This implied that passengers 

had the intention of either traveling 100 m above the 

ground floor of a building utilizing the elevator or 

descending by 100 m to the ground floor.  
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Fig. 12: Ascending responses of the elevator without controllers 

 

 

 

Fig. 13: Descending responses of the elevator without controllers 

 

 

 

Fig. 14: Ascending responses of the elevator with classically 

designed controllers 

Based on the result obtained from Fig. 12. the 

position output of the elevator was supposed to track the 

reference position (since the elevator was ascending to a 

height of 100 m) and maintain a steady state at that value. 

However, the elevator never attain a steady state value but 

diverged from the reference height by decreasing in 

position. This implied that the elevator system will 

practically descend when loaded with users whose 

intention is for the elevator to transport them up to a 

specified height. It should also be noted that none of the 

output responses of the elevator reflected the curvature of 

a second-order control system that the elevator represents.  

Considering the speed output response of Fig. 12, it 

can be inferred that the elevator speed is increasing in the 

negative direction without settling to zero at a steady state 

where the maximum height of 100 m was reached. In 

other words, the motor attained a speed of -200 m/s at a 

steady state when it was expected to have a speed of zero 

when reference height was attained. Furthermore, it can 

be said that the motor was spinning in an anticlockwise 

direction (negative speed) which was forcing the elevator 

car to move downwards even when users intended to use 

the elevator to ascend. 

The current output of Fig. 12 (which is proportional to the 

elevator motor torque) showed that the elevator motor draws 

a high current of 20 A at a steady state when it was expected 

to draw a current that was approximately zero. Further 

inference revealed that the elevator system driven by the 

motor will continuously run without coming to a halt for 

passengers to alight when the reference position is reached. 

This high current of 20 A at a steady state is what is 

maintaining the elevator speed at -200 m/s at a steady state. 

Going on, the acceleration response of Fig. 12. was the 

derivative of the speed output. At a steady state, the 

elevator deaccelerates at 34 m/s2 to maintain a speed of 

200 m/s in an anticlockwise direction. It can be concluded 

from the foregoing that the operation of the elevator is 

unsatisfactory because of the anticlockwise revolution of 

the elevator motor when passengers intend to ascend, the 

divergence of the elevator position from reference, the 

excessive current drawn, and a settling time of more than 

one second. These challenges emphasize the need for 

controllers to be integrated into the elevator system.  

 The output response of the elevator when 

descending by 100 m was displayed in Fig. 13. In this 

regard, the mass of the elevator car (mc) car became 

neglected during simulation. The descending outputs of 

the elevator were not satisfactory. The curvature of the 

position output descended as expected but cut across 

the reference position without tracking it. The speed 

output attested that the elevator descended 

(anticlockwise rotation) but did not achieve an 

approximately null speed when reference height was 

achieved. The current drawn by the elevator was lower at a 

steady state while descending compared to when ascending.  
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Fig. 15: Descending responses of the elevator with classically 

designed controllers 

 

This current was measured at 11.5 A at a steady state 

when it was expected to have a value of almost zero. The 

current dropped while descending because the mass of 

the elevator car was negligible. 

From Fig. 14 it was inferred that the position 

response produced the desired curve. However, on 

zooming out the result, it was found that there was a 

steady state error of 3.54% which made the settling 

time of the position output to become infinite. This 

result which is an improved controller effect may not 

be suited for an elevator system that requires precision 

for operation. Further tuning of the controller using 

algorithms is required to get an updated controller gain 

for the position controller. The improved gain will be 

able to annul or mitigate the identified challenges.  

For the speed response of Fig. 14, the system was able 

to also obtain the required curve. However, there were too 

many damping or oscillations in the system before 

arriving at a steady state value of 10.45 rad/s. This steady 

state value is an error because it is desired that at a steady 

state, the speed of the elevator is zero. Hence, the 

parameters of the speed controller designed by classical 

design will introduce an error of 10.45% with an infinite 

settling time. An improved output will be achieved using 

tuning algorithms. 

For the current response of Fig. 14, there was 

excessive damping in the system before settling at 5A at 

an infinite time. Appropriate tuning of the controller gains 

is required to restore the steady-state current value to at 

most 0.5A. This current value will keep the elevator ON 

for the next command by users. The acceleration response 

curve was desired but the excess damping, overshoot, and 

settling time of 5 sec will affect the accuracy of the 

elevator system. 

Based on Fig. 15 the descending response of the 

elevator is opposite of the ascending response of Fig. 14. 

However, there are two exceptions which are: The 

acceleration output achieved a steady state at 6 sec which 

was considered much. Secondly, the current response 

achieved a steady state response at 1.4 sec but deviated at 

2 sec to settle at infinity. 

Conclusion 

From the result obtained with the classically designed 

controllers, the errors in the system became mitigated 

which improved the performance of the entire system. 

Hence, making linear controllers significant in control 

systems. Errors were not fully eradicated from the system 

because of the numerous approximations and assumptions 

made during the design of the controllers and the 

modeling of the elevator. However, with the introduction 

of the objective function block, measured errors will be 

approximately eradicated with the help of optimization 

algorithms in future research. Furthermore, irrespective of 

the position reference chosen, the position output 

asymptotically tracked its reference while the speed and 

torque responses at steady state aligned with the curvature 

of a second-order control system in which the elevator 

represented bearing approximate errors with the 100m 

reference. The output responses of the modeled elevator 

improved the result of reviewed literature based on the 

asymptotical tracking of the position reference, lesser 

steady-state errors of the control loops, and the second-

order control system curvature of the speed and torque 

responses at different position references.  
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