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ABSTRACT 

The model is an abstraction of the reality. The selection of the usual inverse binomial as an underlying 

model for the number of patients waiting in months for heart and lung transplant is questionable because 

the data exhibit not the required balance between the dispersion and its functional equivalent in terms of 

the mean but rather an over or under dispersion. This phenomenon of over/under dispersion has been a 

challenge to find an appropriate underlying model for the data. This article offers an innovative approach 

with a new model to resolve the methodological breakdown. The new model is named Imbalanced 

Inverse Binomial Model (IIBM). A statistical methodology is devised based on IIBM to analyze the 

collected data. The methodology is illustrated with a real life data on the number of patients waiting in 

months for heart and lung transplants together. The results in the illustration do convince that the new 

approach is quite powerful and brings out a lot more information which would have been missed 

otherwise. In specific, the odds of receiving the organs are higher under an estimated imbalance in the 

data than under an ideal zero imbalance in all the states except Alabama. The odds are consistently higher 

under an estimated imbalance in the data than under an ideal zero imbalance across all the age groups 

waiting in months. Further research work is needed to identify and explain the factors which might have 

caused the imbalance between the observed dispersion in the data and its functionally equivalent amount 

according to the underlying inverse binomial model for the data. The contents of this article remains the 

foundation on which the future research work will be built. 
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1. INTRODUCTION 

Various factors trigger Cardiovascular Disease (CVD) 

which damage kidney, brain, lung and heart. An ounce of 

prevention is worth a ton of treatment. To reduce the risk 

to contract CVD, the knowledge of its causal factors 

would help (Marieb and Hoehn, 2010). Such factors are: 

High blood pressure, high serum cholesterol levels, 

excessive alcohol consumption, sugar level in food, family 

history of genetics, obesity, lack of physical activity, 

psychosocial factors, diabetes mellitus, air pollutions and 

smoking among others. About 20.55% men and 15.9% 

women smoke according to a survey in 2012. Based on 

their measured serum cotinine levels above 0.05 ng mL
−1

, 

about 40.1% of non-smokers had been exposed to the 

second hand smoke. Consequently, the risk of getting 

CVD has become a serious issue in the United States of 

America (USA) like in other world nations. About 31.9 

million above the age 20 years have heart and lung 

ailment. In 2010 alone, 1 in 9 death certificates (279 098 

deaths) in USA showed heart failure. In every 40 sec, 

someone in the USA experience a stroke and in every 4 

min, someone dies. Arcasoy and Kotloff (1999); Budiani-

Saberi and Delmonico (2008) and Finn (2000) for details 

of issues with respect to heart and lung transplants. A 

recent article by Shanmugam (2013a) discusses the 
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issues and their resolutions of finding matching kidney 

and liver organs for transplant. These numbers suggest 

the gravity of the heart and lung related illness and 

hence, it is the theme of this article. 

Dr. Norman Shumway is widely regarded as the 

father of heart transplantation although the world’s first 
adult human heart transplant was performed by a South 

African Doctor, Christian Barnard. Dr. Christian N. 

Barnard performed the world’s first human heart 
transplant operation on 3 December 1967, with the 

assistance of his brother, Marius Barnard and a team of 
thirty people. The operation lasted nine hours. The 

heart transplantation is not a cure for heart disease, but 

rather a life-saving treatment intended to improve the 
quality of remaining life for the recipients. Worldwide, 

about 3,500 heart transplants are performed annually. 
The vast majority of these are performed in the United 

States (2,000-2,300 annually). Sayeed (2009) warns 
about the ethical issues in transplants. Morris (2004); 

Reitz et al. (1982); Schlich (2010); Trzepacz and 

DiMartini (2000) and WHO (2008) for further details 
on heart and lung transplant.  

Due to birth defects, pulmonary hypertension, 

emphysema, bronchiectasis, cystic fibrosis, many CVD 

cases require both heart and lung transplanted. Most of 

them are above 55 years old. About 115,152 people are 

waiting for right organ in the USA. The wait time and 

success rates for organs differ significantly. The 

combined heart-lung transplant is not an uncommon 

procedure. In year 1981, the first successful heart-lung 

transplant was performed by Dr. Bruce Reitz of Stanford 

University on a woman with idiopathic pulmonary 

hypertension. Due to the shortage of suitable donors, the 

combined transplant is a rare procedure; only about a 

hundred such transplants are performed per year in the 

USA. The waiting time to find both heart and lung is 

longer. The donor organs have to be healthy, right sized 

for the patient to adequately oxygenate and match the 

blood type. Until 2005, the United Network in Organ 

Procurement and Transplant Network (OPTN) allocated 

the organ to the recipient on first come first served basis. 

Later on, it is based on lung allocation score, an 

improved system which accommodates various measures 

of the recipient’s health and need rather than how long 

has been waiting. The length of the waiting time matters 

when multiple patients with same lung allocation scores 

wait. Most candidates for heart-lung transplants have 

life-threatening damage to both their heart and lungs. In 

the USA, most prospective candidates have between 

twelve and twenty-four months to live. At any one time, 

there are about 250 people registered for the heart-lung 

transplantation at the United Network for Organ 

Sharing (UNOS) in the USA, of which around forty 

will die before a suitable donor is found. Once suitable 

donor organs are found, the surgeon makes an incision 

starting above and finishing below the sternum, cutting 

all the way to the bone. In 2004, there were only 39 

heart-lung transplants performed in the entire USA and 

only 75 worldwide. For a comparison, note that in the 

same year, there were 2,016 heart and 1,173 lung 

transplants. The aim of this article is to analyze the 

uncertainty pattern of the waiting time (in months) of 

patients for both organs in a random sample of twelve 

states: Alabama (AL), California (CA), Florida (FL), 

Kentucky (KY), Maryland (MD), Minnesota (MN), 

Missouri (MO), Ohio (OH), Pennsylvania (PA), Texas 

(TX), Utah (UT) and Washington (WA) in the year 

2008. Next, we will examine the waiting time data in 

Table 1 and come up with an appropriate underlying 

model for the data. 

1.1. Why a New Model is Necessary? 

The model is an abstraction of the reality. 

Recently, Shanmugam (2013b) demonstrated the 

importance of having an appropriate model to capture 

the fear among women in several nations to report the 

incidence of rape. Another article by Shanmugam 

(2013c) pointed out that the exponential model had to 

be tweaked to address the the chance for more 

survival time if a cancerous kidney is removed.  

Let the Random Variable (RV) Y = 0,1,2,3,…, be the 

number of months a patient is waiting for suitable lung 

and heart organs from donor. Suppose that the 

probability of finding both organs is 

r

r

r

 
 + µ 

where 

r≥1and µ>0 denote the number of organs in need and an 

unknown average number of months to wait for the 

recipients. In our discussion, note that r = 2 because of 

need for lung and heart. Trivially, the probability of not 

finding both organs in a month is
r

µ

µ +
. Consequently, 

the odds of receiving both the organs in a month is 

Odds
r

µ
= suggesting the odds decrease when r increases. 

The underlying probability model for the data on Y is the 

Inverse Binomial Distribution (IBD) Equation (1): 
 

r y
r y 1 r

Pr[Y y r, ) ;
y r r

y 0,1,2,...; r 1; 0

+ −    µ
= µ =     + µ µ +    

= ≥ µ >

 (1)  
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Table 1. Number of patients waiting for heart and lung transplant 

Months

States

→

↓
  <1 1-3 3-6 6-12 12-24 24-36 36-60 >60 

AL 0.00 0.00 0.00 0.00 0.00 1.00 0.00 2.00 

CA 2.00 3.00 1.00 0.00 1.00 0.00 1.00 3.00 

FL 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 

KY 0.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 

MD 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 

MN 0.00 2.00 1.00 1.00 0.00 0.00 0.00 0.00 

MO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 14.00 

OH 0.00 1.00 0.00 1.00 2.00 0.00 0.00 0.00 

PA 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

TX 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 

UT 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 

WA 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

y  0.17 0.60 0.30 0.42 0.33 0.16 0.33 1.75 
2

ys  0.33 1.00 0.20 0.27 0.42 0.15 0.24 15.80 

φ̂  0.30 0.10 -0.20 -0.30 0.04 -0.09 -0.23 0.65 

p-value 0.09 0.83 0.25 0.13 0.91 0.72 0.25 0.01 

Power for φ1 = 0.5  0.58 0.36 0.44 0.41 0.44 0.58 0.44 0.24 

Odds when φ = 0 0.08 0.29 0.17 0.21 0.17 0.08 0.17 0.88 

Odds under 
mle

φ̂  2.42 51.70 1.15 0.77 14.40 3.44 1.15 1.64 

 

The model (1) has mean µ = r Odds and dispersion 

Equation (2): 

 

Var[Y y r, )

1 rOdds(1 Odds)
r

υ = = µ

µ = µ + = + 
 

 (2) 

 

The inverse binomial is employed in many other 

application areas. For example, Khan et al. (2010) 

applied inverse binomial to estimate the benefits of 

breast feeding. Khan and Khan (2010) investigated the 

impact of over-,eaui-and under-dispersion in insurance 

data. Shanmugam (2011) utilized the over or under 

dispersion to create an index to assess how much the 

Poissonness has been diluted in the collected data. 

Notice that the mean increases when the number, r of 

needed organs or the odds of finding them increases. 

Furthermore, the dispersion υ is more than its functional 

equivalent 1
r

µ µ + 
 

, there is an over-dispersion 

indicating of an imbalance in the model requirement. 

Likewise, when 1
r

µ υ < µ + 
 

, there is an under-

dispersion indicating an opposite imbalance. Hence, we 

define the imbalance parameter Equation (3): 

 

1
r

1
r

µ υ − µ + 
 φ =

µ υ + µ + 
 

 (3) 

 

Which is normed to fall in the closed interval [0,1]. 

Blending (3) into the model (1), we generalize it to 

Equation (4): 

 

r y

Pr[Y y r, , , )

r y 1 r[1 ] [1 ] 2r ]
;

y [ r][1 ] [ r][1 ]

y 0,1,2,.....; r 1; 0; 0; 1 1

= µ υ φ

+ −    + φ µ − φ − φ
=     µ + − φ µ + − φ    
= ≥ µ > υ > − ≤ φ ≤

 (4) 

 

The model (4) is new to the literature and hence, it is 

named here as imbalanced inverse binomial distribution 

(IIBD). Notice that when there is a balance (that is, φ = 0), 

the IIBD (4) reduces to the IBD (1) as a special case. The 

mean and dispersion of the IIBD (4) are respectively 

Equation (5 and 6): 

 

( [1 ] 2r ])

[1 ]
φ

µ − φ − φ
µ =

+ φ
 (5) 

 

And: 
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2

( r)(1 )( [1 ] 2r ])

r[1 ]
φ

µ + − φ µ − φ − φ
υ =

+ φ
 (6) 

 

Notice that when there is balance (that is, φ→0), the 

mean (5) and dispersion (6) reduce to the mean µ and 

dispersion 1
r

µ µ + 
 

of the usual inverse binomial 

distribution (1). With the coordinates z = µφ, the mean in 

the y-axis (that is, y = µ) and the imbalance in x-axis 

(that is, x = φ), the mean (5) and dispersion (6) are 

displayed in a 3-dimension graph in Fig. 1 and 2 

respectively. Under zero imbalance, both the mean and 

dispersion are planes. But, under a non-zero imbalance, 

the mean is a bent plate (Fig. 1) and the dispersion is 

convexly bent plane (Fig. 2). The impact of imbalance 

on mean and dispersion is clear.  

The IIBD (4) suggests that under an imbalance φ ≠ 0 

between the dispersion and its functional equivalence in 

terms of the mean (that is, with over or under dispersion), 

the odds of receiving the organs becomes Equation (7): 

 

r[1 ]
Odds

[1 ] 2r
φ

 + φ
=  µ − φ − φ 

 (7) 

When there is a balance (that is, φ = 0), the odds (7) 

of IIBD (4) reduces to the odds
0

r
Oddsφ= =

µ
 of IBD (1) as 

a special case. In other words, the Oddsφ under an 

imbalance is related (Fig. 1) to the odds, Oddsφ = 0 under 

balance and it is Equation (8): 

 

( [1 ] 2r )(Odds ) r(1 )φµ − φ − φ = + φ  (8) 

 

With the coordinates z = Oddsφ, y = µ and x = φ, the 

odds (8) is displayed in a 3-dimension graph in Fig. 3. 

Under zero imbalance, the odds is smooth platonic. 

Under a non-zero imbalance, the odds is influenced and 

volatile by the mean µ and the level of imbalance φ. 

1.2. Is the Imbalance Significant?  

The  practitioners  might  want to judge whether 

the   collected  data  y1,  y2,…,  yn  of  size  n≥2 

exhibit  a   significant   imbalance  measure  to 

warrant the application of IINBD (4) instead of the 

usual NBD (1). Let y and 2

ys be the data mean and 

dispersion respectively. 

 

 

 

Fig. 1. Mean (5). Bent-plate (φ ≠ 0) plane (φ = 0) 
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Fig. 2. Dispersion (6) Bent (φ≠0) plane (φ = 0) 

 

 
 

Fig. 3. Relations among the two odds in (8) 
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Then, the Maximum Likelihood Estimator (MLE) of 

the imbalance, mean, dispersion, odds parameters are 

respectively Equation (9 to 12b): 
 

2

y

mle 2

y

rs y(r y)
ˆ

rs y(r y)

− +
φ =

+ +
 (9) 

 

( )
mle

mle mle

ˆ

mle

ˆ ˆy[1 ] 2r ]
ˆ

ˆ1
φ

− φ − φ
µ =

 + φ 
 (10)  

 

( )( )
mle

mle mle mle

ˆ 2

mle

ˆ ˆ ˆ(y r) 1 y[1 ] 2r ]
ˆ

ˆr 1
φ

+ − φ − φ − φ
υ =

 + φ 

 (11)  

 

( )
mle

mle

ˆ

mle mle

ˆr 1
ˆOdds

ˆ ˆy(1 ) 2r
φ

+ φ
=
 − φ − φ 

 (12a) 

 
And: 

 

0

rˆOdds
y

φ=

 
=  
 

 (12b) 

 

Is the estimated imbalance measure
mle

φ̂ in the data 

significant? This amounts to finding the probability value 

(that is, p-value) for the null hypothesis Ho: φ = 0 to be 

true according to the collected data. For this purpose, we 

resort to Neyman’s C(α) technique. What is it?  

Based on the regression concept, Neyman outlined a 

powerful methodology. Shanmugam (1992) for step-by-

step details about deriving Neyman’s C(α) test statistic. 

In our situation, the test statistic turns out to be 
2

yrs
T

y(r y)
=

+
. Imposing the formulas: 

 

2

2

w

U E(U) Var(W) Cov(U,W)
E 1 ,

W E(W) [E(W)] E(U)E(W)

E(h[W]) h[E(W)],Var(h[W]) ( h[W]) Var(W)

   ≈ + −  
   

≈ ≈ ∂

 

 
And: 
 

2

2 2

U E(U) Var(U) Var(W) Cov(U,W)
Var 2

W E(W) [E(U)] [E(W)] E(U)E(W)

     ≈ + −   
     

 

 

From Stuart and Ord (2009) with 2

yU rs=  and 

W y(r y)= + , we find after algebraic simplifications that: 
 

E(T r, , , ) 1µ υ φ ≈  

And: 
 

(1 )
Var(T r, , , )

n

φ

φ

+ υ
µ υ φ ≈

υ
 

 
Hence, the standardized statistic Z follows the 

standard normal distribution. It means that the p-value of 
rejecting the null hypothesis Ho: φ = 0 in favor of the 
research hypothesis Ho: φ ≠ 0 is Equation (13): 
 

2

y

mle mle mle

2

mle mle mle mle

rs
p 2Pr[Z ( 1)

y(r y)

ˆ ˆ ˆn(r y)(1 ) y(1 ) 2r
]

ˆ ˆ ˆ ˆ[r(1 ) (r y)(1 ) y(1 ) 2r ]

= ≥ −
+

+ − φ − φ − φ

+ φ + + − φ − φ − φ

 (13) 

 
When the null hypothesis is rejected at a α level and 

the true value of imbalance measure is known to be φ1, 
the probability of accepting the true value φ1 is called the 
statistical power and it is Equation (14): 
 

1 1 1

/ 2 2

1 1 1 1

1 1 1

/ 2 2

1 1 1 1

power Pr[

(1 )[r y(r y)] y(1 ) 2r
z

ny[r(1 ) (1 )(r y) y(1 ) 2r ]

Z

(1 )[r y(r y)] y(1 ) 2r
z

ny[r(1 ) (1 )(r y) y(1 ) 2r ]

α

α

=

− φ + + − φ − φ
−

+ φ + − φ + − φ − φ

≤ ≤

− φ + + − φ − φ

+ φ + − φ + − φ − φ

 (14) 

  

1.3. Illustration  

Now, we would illustrate the above mentioned 

methodology using the data in Table 1 on the number, Y of 

patients waiting in months for heart-lung transplant in a 

random       sample     of    twelve      states   in  U.S.A. The 

sample mean, y and dispersion 2

ys are calculated for each 

state and for each time period in months: Less than one, 

1-3, 3-6, 6-12, 12-24, 24-36, 36-60, more than 60. The 

underlying model for Y is inverse binomial with r = 2 

(the number of organs) when there is a zero imbalance 

between the data dispersion and its functional equivalent 

in terms of the mean.  

To check out whether there is a zero imbalance, we 

first compute and display (Table 1 and 2) the 

imbalance measure, 
mle

φ̂ using (9). Their significance 

levels (that is, p-values) are calculated using (13). 

Smaller the p-value means the estimated imbalance 

measure is significant. In this sense, the estimated 

imbalance for those waited less than one month and 

those waited more than 60 months are significant. 
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Table 2. Number of patients waiting for heart and lung transplant 

     Power for Odds when Odds under 

States ↓  y  2

ys  
mle

φ̂  p-value  (φ1 = 0.5) φ = 0 
mle

φ̂  

AL 0.38 0.55 0.10 0.85 0.51 5.33 22.4 

CA 1.38 1.41 -0.24 0.29 0.32 1.45 0.56 

FL 0.38 0.26 -0.25 0.32 0.51 5.33 1.03 

KY 0.25 0.21 -0.14 0.61 0.59 8.00 2.10 

MD 0.13 0.12 -0.03 0.94 0.74 16.00 7.76 

MN 0.50 0.57 -0.04 0.86 0.46 4.00 2.72 

MO 1.75 24.5 0.760 0.01 0.29 1.14 1.34 

OH 0.50 0.57 -0.04 0.86 0.46 4.00 2.72 

PA 0.13 0.12 -0.03 0.94 0.74 16.00 7.76 

TX 0.50 0.28 -0.37 0.14 0.46 4.00 0.58 

UT 0.13 0.12 -0.03 0.94 0.74 16.00 7.76 

WA 0.13 0.12 -0.03 0.94 0.74 16.00 7.76 

 

Likewise, the estimated imbalance is significant in the 

state: Missouri. In other words, the research 

hypothesis H1: φ≠0 is acceptable in these two groups: 

Waited below one month, more than 60 months and in 

the state Missouri. Only in the groups waited 3 to 6 

months, 6-12 months, 24 to 36 months and 36 to 60 

months, there is under dispersion. Likewise, in the 

states: California (CA), Florida (FL), Kentucky (KY), 

Maryland (MD), Minnesota (MN), Ohio (OH), 

Pennsylvania (PA), Texas (TX), Utah (UT) and 

Washington (WA), there is under dispersion. Are 

these under dispersions significant?  

Next, let us examine the power of the methodology 

in an event the true value of the imbalance parameter 

H1: φ = φ1 = 0.5. The power is the probability of 

accepting the true H1: φ = φ1 = 0.5 according to the 

collected data. The value of the power is calculated 

using () and are displayed in the Table 1 and 2. The 

power is excellent in all groups with different waiting 

times and in all states. 

The odds of receiving the organs are calculated 

separately under an ideal zero imbalance using (12.b) as 

well as under an estimated imbalance using (12.a). The 

odds are consistently higher under an estimated 

imbalance, 
mle

φ̂ than under a zero imbalance, φ = 0 across 

all groups of waiting times. In the states: California 

(CA), Florida (FL), Kentucky (KY), Maryland (MD), 

Minnesota (MN), Ohio (OH), Pennsylvania (PA), Texas 

(TX), Utah (UT) and Washington (WA), the odds of 

receiving the organs are consistently lower under an 

estimated imbalance, 
mle

φ̂ than under a zero imbalance, φ 

= 0. The odds of receiving the organs are higher under an 

estimated imbalance,
mle

φ̂ than under a zero imbalance, φ 

= 0 in the states: Alabama. 

2. CONCLUSION 

This article has contributed a methodology by 

extending the usual inverse binomial distribution based 

on the existing over or under dispersion in the data. In 

some cases, the over or under dispersion is significant 

enough to tilt the odds, mean and dispersion.  

What factors are causing the over or under 

dispersion? To make an assessment of this, data on 

more covariates are needed. Also, a regression type 

methodology has to be devised. The contents of this 

article remains the foundation for future development 

of the regression methodology and it is likely to 

emerge for the benefits of the health and medical 

professionals.  
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