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Abstract: Problem statement: Glia cells outnumber neurons but their role in synaptic 
transmission is still matter of debate. The recycling of Glutamate, the main excitatory 
neurotransmitter, carried out by the glutamate/glutamine shuttle, requires the involvement of glia, 
suggesting their involvement in neurotransmission. Approach: This review focuses on novel 
functions of glia proteins involved in this cycle. Results: An activity-dependent interaction of 
glial glutamate transporters, the Na+/K+ ATPase, the glutamine and glucose transporters might 
support glutamatergic neurotransmission. Conclusion: Glia cells that surround glutamatergic 
contacts, respond to synaptic activity and modify accordingly, the amount and function of the 
proteins involved in their interaction with neurons thus assuring a synaptic transmission.  
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INTRODUCTION 
 
 Regarded as passive elements, the functions of glia 
cells are nowadays re-evaluated. The description and 
characterization of neurotransmitter receptors expressed 
in their plasma membranes, attracted the attention of a 
number or researchers which over the years have 
contributed to the study of glia physiology in the context 
of neurotransmission (Parpura and Verkhratsky, 2012). 
The concept of the tripartite synapse: pre-synapsis, post-
synapsis and glial cells, often referred as non-existent, 
has its better example in glutamatergic as well as 
gabaergic synapses, the reason is simple, the turnover of 
both of these transmitters require the synthesis of the 
neutral amino acid glutamine by glutamine synthetase, a 
glial enzyme (Albrecht et al., 2010). A review of the 
most recent findings concerning the so-called 
glutamate/glutamine shuttle that provide strong support 
the concept of the tripartite synapse follows. 
 
Glial cells: The contribution of neurons to brain 
function has been widely evaluated and actually gave 
birth to The Neurosciences. Nevertheless, glia cells 
outnumber neurons approximately by a factor of ten. In 
the Central Nervous System (CNS) different types of 
glial cells regulate aspects like architecture, function 
and plasticity. Glia cells are divided into two main 

types: microglia and macroglia. The three main 
functional classes of macroglial cells in the CNS are: 
Ependymoglia, myelinating glia and astrocytes. 
Ependymoglia includes radial glia from the retina and 
the cerebellum (Müller and Bergmann cells). Myelin 
forming cells include oligodendroglia in the CNS and 
Schwann cells in the peripheral nervous system. 
Astrocytes have an important role in brain development 
and function (Perea and Araque, 2010). For example, 
astrocytes release heparin sulphate proteoglycans and 
by these means promote the formation of excitatory 
synapses (Allen et al., 2012). Therefore it is clear that 
these cells are fundamental for neuronal survival and 
have been usually associated with support and 
replenishment of metabolic substrates. Despite of this, 
recent findings have called the attention to the 
involvement of glia in synaptic transactions throughout 
the CNS (Eroglu and Barres, 2010). Astrocytes, through 
a battery of neurotransmitter receptors and transporters 
present in their plasma membrane, are capable to 
release neuroactive molecules (glutamate, D-serine, 
ATP, glutamine, GABA,) that bind to pre and 
postsynaptic receptors. Additionally, classical 
transmitters evoke a transient increase in [Ca2+] 
intracellular levels in cultured astrocytes, or in brain 
slices, displaying a rough form of excitability, although 
astrocytes are considered as non-excitable cells, since 
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they are not capable to generate action potentials (Perea 
and Araque, 2010). These and other studies led to the 
proposal of the so-called “tripartite synapse” in which 
the astrocyte listens to synaptic activity and provides a 
feedback modulation of the strength of the synaptic 
connection (Haydon and Carmignoto, 2006). The 
synaptic control of the astrocyte Ca2+ signal is based in 
spatially restricted areas called “microdomains” of the 
astrocytic processes (Grosche et al., 1999). 
Ultrastructural studies have shown the presence of 
small synaptic-like vesicles located in close proximity 
to synapses, apposed either to presynaptic and 
postsynaptic elements that are thought to contain the 
mentioned neuroative substances (Jourdain et al., 
2007). Glutamate was one of the first neuroactive 
molecules known to be released by astrocytes that exert 
an effect on neural excitability.  
 
Glial glutamate receptors: Glutamate receptors have 
been classified in terms of their signalling strategy in 
ionotropic (iGluRs) and metabotropic (mGluRs) 
receptors. The iGluRs are ligand-gated ion channels 
that are activated by selective agonists: N-methyl-D-
aspartate (NMDA), α−Amino-3-hydroxy-5-
Methylisoxazole-4-Propionate (AMPA) and Kainate 
(KA) each one of them was representing a family of 
homo or heteroligomer receptors (Gasic and 
Heinemann, 1992). Metabotropic receptors are G-
protein coupled receptors that are divided based on their 
primary structure into group I, group II and group III 
and are activated preferentially by quisqualate (Quis), 
1-Amino-4, 5-Ciclopentane-trans-1, 3-Dicarboxylate (t-
ACPD) and L-2-amino-phosphonobutanoate (L-AP-4) 
(Pin and Duvoisin, 1995). Glia cells of different brain 
structures express both types of receptors, of particular 
interest is to mention that these receptors have been 
extensively studied in glial cells that surround 
glutamatergic synapses like cerebellar Bergmann glia 
and retinal Müller glia cells (Bellamy, 2006). 
Bergmann glia cells display a glutamate-dependent 
continuous dialogue with Purkinje and granules cells, 
through Ca2+-permeable AMPA receptors. A series of 
elegant experiments transducing the Na+-determinant 
AMPA subunit, GluR2 into Bergmann glia cells, 
modifies its architecture and its physical contacts with 
Purkinje cells (Iino et al., 2001). It also should be noted 
that neuronal stimulation elicits glutamate-dependent 
changes in glial membrane potential in a number of 
preparations and that these electrical responses are 
carried out not only by GluRs but also by the Na+-
dependent glutamate transporters (see below). In any 
event, glial GluRs, like their neuronal counterpart, are 

linked to gene expression regulation both at the 
transcriptional as well as the translational level (Gallo 
and Ghiani, 2000; Rosas et al., 2007). In this context, it 
is pertinent to emphasize that among the genes that are 
regulated by glial GluRs are the glutamate 
transporters. It is quite possible then that glutamate 
released activates neuronal and glial receptors, 
modifying gene expression patterns in both cell types 
and that among the target genes, those involved in 
glia/neuronal interactions are represented. 

 
Glial glutamate transporters: Glial glutamate 
transporters are important for the removal of this 
neurotransmitter from the synaptic cleft. Five glutamate 
transporters have been characterized: the Na+-
dependent glutamate/aspartate transporter 
(GLAST/EAAT-1), the glutamate transporter 1 (Glt-
1/EAAT-2), the excitatory amino acid carrier 1 (EAAC-
1/EAAT3), the Excitatory Amino Acid Transporter 4 
(EAAT-4) and the Excitatory Amino Acid Transporter 
5 (EAAT-5) (Danbolt, 2001). GLAST and Glt-1 are 
expressed mainly in glia cells while the other three 
transporters are expressed in neurons. The importance 
of glial glutamate transporters in pathological scenarios 
has been deduced from the knock out studies, that 
demonstrated an elevation of glutamate extracellular 
levels, neurodegeneration and progressive paralysis 
(Rothstein et al., 1996). The bulk of glutamate transport 
in the cerebellum is carried out by GLAST, whereas in 
the other brain areas it is accomplished by Glt-1. 
Therefore, glial glutamate transporters are key elements 
in the prevention of over-stimulation of glutamate 
receptors, a process that triggers neuroplastic changes 
and excitotoxic cascades in several pathological 
conditions (Trotti et al., 2001). In this sense, it has been 
postulated that disruption of glial glutamate transport 
affects the time course, fidelity and modulation of 
excitatory transmission.  
 The mRNA levels of GLAST and Glt-1 have been 
investigated during development and in pure glial 
preparations. At the early stages of development both 
mRNAs are present in significant amounts, especially at 
the time of gliogenesis (mouse E15-E19). At birth, 
GLAST is present in abundance while Glt-1 is barely 
detectable. In fact, GLAST has been considered as a 
glia lineage marker (Kriegstein and Alvarez-Buylla, 
2009). Glial glutamate transport is regulated in the short 
and the long term. Short-term regulation includes cell-
surface expression and post translational modifications 
like phosphorylation, ubiquitination and/or acetylation 
that in one way or another modifying transporter 
expression at the plasma membrane (Robinson, 2006). 
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Long-term regulation includes transcriptional as well as 
translational control (Lopez-Bayghen and Ortega, 
2011). Diverse stimulus are known to affect glial 
glutamate transporters function, among them glutamate 
is the most important. It has been shown that glutamate 
regulates GLAST at the short and long-term, in both 
cases the net result is a decrease in glutamate uptake 
activity, albeit the molecular mechanisms are different. 
In the short-term, glutamate decreases the amount of 
plasma membrane transporters by interfering with the 
traffic of the protein to and from the membrane. This is 
a transporter-dependent effect (Gonzalez and Ortega, 
2000). In contrast, in the long-term glutamate, acting 
through its receptors, down regulates the transcription 
of the GLAST gene (Rosas et al., 2007). It should be 
mentioned that this regulation takes place in the 
cerebellum, while an opposite effect has been recorded 
for long-term effects of glutamate in the cerebral 
cortex, where an increase in glast has been detected 
(Gegelashvilli et al., 2000). 
 Recently, the role of transporters as signalling 
entities has began to emerge and glial glutamate 
transporters are no exception. A transporter dependent 
increase in p42/44 mitogen kinase activity and in activity 
of the Mammalian Target of Rapamycin (MTOR) has 
also been reported (Martinez-Lozada et al., 2011). 
Furthermore, a signalling complex containing GLAST 
and the Na+/K+ ATPase has also been described 
(Gegelashvilli et al., 2007; Rose et al., 2009).  
 
Glial glutamine transporters: Glutamine is the most 
abundant amino acid in plasma and in the brain 
extracellular space (Hamberger and Nystrom, 1984). It 
is the main precursor of glutamate and GABA 
(Hamberger et al., 1979; Paulsen et al., 1988). 
Glutamine uptake activity in the brain presents a 
particular challenge since it is substrate of multiple 
transporter proteins that also move other neutral amino 
acids (Barker and Ellory, 1990). The molecular and 
functional properties of the various amino acid 
transport systems are characterized by their overlapping 
substrate specificities, generally low substrate affinities 
and widespread cellular distribution (Collarini and 
Oxender, 1987; Broer and Brookes, 2001). The solute 
carrier families in mammalian cells are the solute 
carriers SLC1, SLC7 and SLC38 (Hediger et al., 2004; 
Kanai and Hediger, 2004). SLC1 are Na+ dependent 
neutral amino acid exchange proteins that prefer the 
substrates alanine, serine and cysteine and therefore are 
known as the ASC family. Two members ASCT1 and 
ASCT2 comprise this family and function as 
exchangers capable to uptake or release amino acids 
(Christensen et al., 1967). ASCT1 is the most 

abundant isoform in the brain, despite of this; 
glutamine is a poor substrate for this transporter 
(Zerangue and Kavanaugh, 1996). In contrast, 
ASCT2 transports glutamine and is expressed in 
mainly in primary cultures of rat astrocytes but also 
at lower levels in adult and embryonic brain (Broer 
et al., 1999). The evidence for a neuronal ASCT2 
activity is weak (Su et al., 1997) although recent data 
demonstrates ASCT2 immunoreactivity in cerebellar 
Purkinje cell bodies and dendrites (Giddon et al., 2009).
 SLC7 is a Na+ independent transporter and its 
preference for leucine, gave rise to its cognate name as 
System L. This family was originally described in 
kidney tubule cells and includes the heterodimeric 
transporters LAT1 and LAT2. A low-affinity, high-
capacity glutamine uptake activity was described by 
this system in astrocytes and neurons (Nagaraja and 
Brookes, 1996; Su et al., 1997). Functional studies 
suggest a minor role for system L-mediated glutamine 
transport in astrocytes, contributing with approximately 
10% of the total uptake (Broer and Brookes, 2001; 
Sidoryk-Wegrzynowicz et al., 2011).  
 The SCL38 family corresponds to a Na+-dependent 
neutral amino acid transporters that are divided in two 
different systems, known as system A and system N, 
based on the ability of the former to transport alanine 
and the capacity of the latter to transport amino acids 
with Nitrogen in its R group. Both systems respond to 
hormonal regulation and their function and expression 
are associated with volume regulation, nutrition and 
metabolism (Rennie et al., 1998; Haussinger, 1990). 
System A members include Sodium-Dependent Neutral 
Amino acid Transporter 1 (SNAT1); SNAT2 and 
SNAT4, all of them transport small zwitterionic amino 
acids and are pH sensitive (Albers et al., 2001; 
Chaudhry et al., 2002). SNAT1 protein expression is 
confined to the brain, retina, placenta and heart. Within 
the CNS, SNAT1 its expression is restricted to neurons 
(Mackenzie et al., 2003; Mackenzie and Erickson, 
2004) as does that of SNAT2, both transporters are 
particularly associated to glutamatergic neurons 
(Gonzalez-Gonzalez et al., 2005; Melone et al., 2006). 
In contrast, SNAT4 is expressed in perivenous 
hepatocyates (Gu et al., 2003), glutamine is not the 
preferred substrate and it also transports cationic amino 
acids independent of Na+ (Sugawara et al., 2000).  
 System N has two isoforms: SNAT3 and SNAT5, 
both coupled to Na+ and H+ gradients. These 
transporters are extremely important since these 
proteins are glutamine carriers capable to mediate 
glutamine influx and efflux (Baird et al., 2004; Broer et 
al., 2002; Boulland et al., 2003). It is not surprising that 
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its expression in the brain is largely confined to 
astrocytes (Chaudhry et al., 1999; Boulland et al., 2003). 
 
Glutamate/glutamine shuttle: Glutamine is required 
as a precursor for other amino acids, protein synthesis 
and metabolism processes. Particularly, glutamine has 
an important role in kidney ammoniagenesisis (Wadoux 
and Welbourne, 1975), driving the urea cycle in the 
liver nitrogen metabolism (Haussinger, 1990) and in the 
glutamate/glutamine cycle in the brain (Rothstein and 
Tabakoff, 1984). This shuttle provides an interesting 
model to understand the cooperative function of 
different transporters that interact in synaptic 
transmission and the release of neurotransmitters. In 
glutamatergic synapses, the Vesicular Glutamate 
Transporters (VGLUT) (Takamori et al., 2000) located 
in the presynaptic neuron; charge the synaptic vesicles 
with the glutamate produced by the hydrolysis of 
glutamine by Glutaminase. Synaptic vesicles contain 
large amounts of glutamate and release it by exocytosis 
to the synaptic cleft, where it interacts with 
glutamatergic receptors and transporters. Glutamate is 
cleared from the synaptic space by the glial glutamate 
transporters (GLAST and Glt-1) (Schousboe, 1981) 
where Glutamine Synthetase (GS) converts it to 
glutamine. Glia cells, using system N transporters 
(SNAT3 and SNAT5) mediate the efflux of glutamine 
to the extracellular milieu (Chaudhry et al., 2002), to be 
taken up by neurons by system A transporters (SNAT1 
and SNAT2) (Varoqui et al., 2000) completing the 
cycle (Daikhin and Yudkoff, 2000).  
 It should be note, however that neurons do not depend 
exclusively on the astrocytic shuttle cycle for the 
replenishment of glutamate. The glutamate uptake via 
EAAC1/EAAT3 transporter and the glutamate synthesis 
from the tricarboxylic cycle, are two potential 
glutamatergic sources involved in the neuron 
replenishment of glutamate (Hertz et al., 2000; Broer and 
Brookes, 2001). The dysfunctionality of any of the steps in 
the cycle is associated whit a variety of neurological 
disorders and conditions (Cruz and Cerdan, 1999). 
 
A tripartite synapse: The Glia connection: 
Glutamatergic synapses are unique structures in which 
the actual contribution of glial cells to 
neurotransmission has been reported (Iino et al., 2001; 
Lopez-Bayghen et al., 2007; Uwechue et al., 2012). It is 
tempting to speculate that once the presynaptic terminal 
is stimulated and glutamate released, the amino acid is 
taken up avidly by the glial glutamate transporters 
(either GLAST in cerebellum or Glt-1 in most of the 
other brain structures) resulting in a net Na+ influx.  

 
 
Fig. 1: Summary of the molecular transactions 

involved in the glia/neuronal interactions upon 
glutamatergic stimulation. Glutamate released 
from the presynaptic terminal reaches 
postsynaptic and glial glutamate receptors and 
transporters (see text for details). 
Abbreviations: GluRs, glutamate receptors, 
GLAST, Na+-dependent glutamate/aspartate 
transporter. Glut-1, glucose transporter 1. GS, 
glutamine synthetase, Lac, lactate, MCT-4, 
monocarboxylate transporter 4. SNAT, sodium-
dependant neutral amino acid transporter  

 
Increased intracellular Na+ triggers glucose uptake 
(Maekawa et al., 2006) and glutamine release 
(Uwechue et al., 2012) to be finally pumped out 
through that transporter-associated Na+/K+ATPase 
(Rose et al., 2009). A sustained glutamatergic activity 
would envisage a reduction in ATP levels, which would 
shut down transiently protein synthesis (Barrera et al., 
2010). The properties thus far described for the glial 
proteins involved in this hypothesis support this elegant 
and exquisite coupling. A schematic diagram of our 
interpretation of the role of glial cells in the tripartite 
synapse is depicted in Fig. 1. 
 

CONCLUSION 
 
 Glial cells participate actively in the formation and 
function of glutamatergic synapses. The glial protein 
repertoire is constantly responding to synaptic activity 
and therefore these cells should be considered as an 
integral part of the synapses. 
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