
Journal of Computer Sciences 1(4): 450-453, 2005
ISSN 1549-3636
© Science Publications, 2005

Corresponding Author: J. Fiaidhi, Department of Computer Science, Lakehead University, 955 Oliver Road, Thunder Bay,
 Ontario P7B 5E1, Canada E-mail: jinan.fiaidhi@lakeheadu.ca

450

A Note towards Reshaping Java's Features

N.S. Kutti, Z.A. Al-Khanjari, H. A. Ramadhan and J. Fiaidhi
Department of Computer Science, Sultan Qaboos University,

P.O. Box 36, Al-Khodh 123, Sultanate of Oman

Abstract: Programming Languages continually go through the refinement process due to several findings
such as lack of robustness, lack of flexibility, lack of simplicity and lack of standard. This may require
pruning undesirable features, sometimes softening of hard nature of some features and adding new features
to improve the scope of the languages. Recently Java has emerged as a refined language in the line of C
and C++ with the aim of providing simplicity and robustness[1]. Because of these features Java is getting
more attention than its predecessors. The language is, however, overshadowed with some inconsistencies in
the syntax and semantic aspects of data declarations. The study also identifies several other redundant
features that could be safely removed from the language. The aim of this study is to underline these findings
that make java programs somewhat obscured. The discussion carried in this study may be an useful hint for
the Java reviewers as well as any new language developers in validating their specifications. Java has
definitely a long future and its current review will extend its scope even to support hard real-time
applications[2].

Key words: variables, lvalue parameter, rvalue parameter, pointers, objects, data memory, heap storage

INTRODUCTION

Java has evolved as a refined object-oriented

language from its predecessor, C++. Because of its
simplicity and versatile nature it is gaining its popularity
as a general-purpose language within the computer
Science community. Java developers must be praised
for retaining the most of the C/C++ syntax and
removing several unreliable and unnecessary features of
C/C++ at the same time[1]. While more attention was
paid towards simplifying hard nature of C++, it seems
that some inconsistencies have somehow escaped from
the attention of the Java developers. The inconsistencies
are noticed in several forms. This study discusses the
lack of standard in reference declaration, mixing C++
convention with object declarations and inheriting C++
features without any concrete reasoning. This study may
be a useful hint for the programming community in
general.

Inconsistent notation with object declaration: A
language usually provides one or more means of
accessing data from memory. The most common way of
accessing a stored data is by using the variable concept.
A variable by definition is a direct reference to a stored

data in memory. It comes with lvalue and rvalue
parameters[3]. The lvalue parameter acts as a frame and
the rvalue parameter acts as a picture in the frame[4]. A
variable is nothing but framed picture (Fig. 1). The
variable name is a reference or a symbolic address
created to locate the frame. When we use the reference
in the left hand side of an assignment operator it
represents the address of the frame and in the right side
it represents the picture (or value) that it holds.
Alternate mode of accessing data is through indirect
means. In this mode, data is accessed via an address
held in a pointer. There are basically two types of
pointers: primitive and abstract pointers. A primitive
pointer can hold the physical address of a variable in
memory. Both C and C++ support primitive pointers
particularly to cater for system programming. An
abstract pointer on the other hand holds a frame address
or simply a reference of a variable. Hence, an abstract
pointer can be referred to as either frame pointer or
reference pointer. Pascal, Modula-2 and Ada use this
mode of addressing for managing dynamic data
structures. Java also uses the frame pointer concept
exclusively to manage all objects. Using a convenient
notation:

 INTEGER :: K // DECLARE AN INTEGER VARIABLE
 INTEGER (MEMORY):: *MP // DECLARE A MEMORY POINTER
 INTEGER (FRAME):: *FP // DECLARE A FRAME POINTER
 *MP = &K // ASSIGN MEMORY ADDRESS OF K
 *FP = K // ASSIGN FRAME ADDRESS OF K

J. Comp. Sci., 1(4): 450-453, 2005

 451

Fig. 1: Concept of Variable

Table 1: Declaration syntax for data variables and pointers

Language Normal Variable Address(or Primitive) Pointer Reference (or Abstract) Pointer
C int k; int k;

int *pk;
 pk = &k;
 *pk = 100;

None

Pascal k: integer; None var
 ip1, ip2: ^integer; (* declare null FRAME pointers *)
 . . .
 NEW(ip1); (* create a variable and assign its frame to ip1*)
 NEW(ip2); (* create a variable and assign its frame to ip2*)
 ip1^ := 99; (* assign 99 to ip1’s reference variable*)
 ip2^ := 1; (* assign to ip2’s reference variable*)
 ip1 := ip2; (*both ip1 & ip2 point to same frame, ip2^ *)

Modula-2

K:INTEGER; None VAR (* declare IP as a null integer pointer *)
 IP : POINTER TO INTEGER; (* create a frame pointer *)

 ALLOCATE(IP,TSIZE(INTEGER)); (* create a variable
 and assign its frame to IP *)
 IP^ := 27; (* assign a value to IP’s variable *)

Ada K:INTEGER; None type Node_ptr is access Node; -- declare a Node_ptr type
 type Node is -- declare Node type
 record
 value: integer;
 next: Node_ptr
 end record;
np: Node_ptr; --
np := new Node; construct a node
np.next := null

C++ int K;

int *p;
X_Class:*ptr_to_obj;

int j, k; // y is simple variable
int &jj = j; // declare an alias to frame j
j = jj; // same as j =j; or jj=jj; j and jj refer to same frame
X_Class x; //x is an object
X_Class &x_ref = x; //a constant reference to x

It is conceivable that when a language supports

more than one type of access (i.e. direct as well as
indirect), there must be a clear distinction between the
declarations of these two types. This distinction is
usually achieved by maintaining separate syntax for
each type of declaration. In fact, this has been normal
tradition followed by almost all languages. As an
example, Table 1 shows the notations adopted in some
of the popular languages.

From Table 1[3,5-9] we notice that Pascal, Modula-2
and Ada implemented reference pointers without any
ambiguity. They use a special syntax to declare a
reference variable. Similarly, C clearly distinguishes
declaration of a memory pointer from the declaration of
a normal variable declaration. Taking the case of C++
declarations of all four types (i.e. normal variables,
objects, memory pointers and reference-aliases) show
clear distinctions and avoid any misinterpretation. In
Java, a deviation is detected in the case of declaring

Memory rvalue
or

Picture
(K)

Memory Address (&K)

Frame Address (K)
lvalue (or frame)

MP: Memory Address Pointer

FP: Reference (or frame)

K

J. Comp. Sci., 1(4): 450-453, 2005

 452

reference pointers. The declaration syntax of a reference
pointer looks like declaring a normal variable. The
consistency maintained by C and C++ is somehow lost
in Java. See the following declarations in Java:

int k; // k is an instance of integer type, i.e. a variable
class_X x; // x is not an instance of class_X, but a
reference pointer to class_X . . .
x = new class_X; // create an instance of class_X and

assign its frame address to x

Finally, distinguishing the types of entities created
in these two declarations and interpreting their
meanings are entirely left to the intuition of the
programmers. Even experienced programmers may find
it difficult to interpret an ambiguous situation created by
the language implementation. According to
implementation the new operator returns an address of
created object and this returned address can be assigned
to a reference declared as per Java’s notation.
According to the original definition the term
“reference” means the actual lvalue (or an alias to this
lvalue) of a variable and it can only be assigned with an
rvalue of the same type. Therefore, assigning an address
to a reference is an ambiguous expression.

Informal notation in passing parameters: Java
encourages an informal protocol while passing
parameters to methods. Unlike in C++, the Java
compiler has to interpret which formal parameter is
passed as a value and which one as a reference. Java
assumes that a parameter of primitive type is always
passed as a value and an object as a reference. While
Java encourages strong typing on one hand, it fails to
support a strict discipline in the explicit declaration of
formal parameters in the method definitions. This is
another inconsistency in Java. One reason for this
inconsistent convention is due to the omission of
declaration of constant reference variable (or declaring
an alias to reference) of primitive types. Particularly,
after omitting both the memory-based pointers and
aliases to references in the inherited Java there is no
way that a method can use parameter passing by
reference for primitive variables. Java’s assumption that
all simple variables are going to be global within an
object may not be strictly true. We should not forget the
presence of local variables in a method.
Inconsistency with array declaration: Unlike in C
and C++ arrays in Java are created as objects. That is,
an object creation takes two steps: a reference pointer to
array class is first declared and then the reference
pointer is made to point to frame of the object created in
the heap memory. These steps are expressed in different
ways as shown below:

(a) int[] arr; // declare a reference pointer

arr = new int[10]; // create an array object and
assign its frame address to arr

(b) int[] arr = new int[10]; // declare a reference
pointer and assign frame address
// of the created array object

(c) int arr[] = new int[10]; // same as (b) style, but
with C/C++ style

In both (a) and (b) declarations, int[] acts as a key

word for integer-array class. First arr is declared as a
reference pointer of int[] type, secondly the new
operator returns the address of created array object in
the heap memory and finally the lvalue (or frame
address) of the created object is assigned to the
reference pointer. But the syntax adopted in (c) shows a
bad influence of C/C++ on Java. Java programmers
with C/C++ background may tend to interpret the use of
square brackets with the reference pointer as an array of
reference pointers rather than a reference to the array
type. On one hand Java does not recognize a construct
such as
 int arr[10] = new int[];

and on the other hand allows similar syntax shown in
(c). Java should, in fact, stick to the syntax adopted in
(a) and (b). That is, the notation “int[]” will suffice to
indicate the integer array class.

Another inconsistency is also noticed in the array
declarations. Consider the following Java declaration of
an array object with initialization:

 int[] arr = {0,1,2,3,4,5,6,7,8,9};

Again this implicit notation happens to be in Java
because it is simply inherited from C/C++. But it can be
interpreted as if an initialized object is created in data
memory. Similar ambiguous syntax is adopted for
declaration of character arrays and String objects with
initialization. In fact, Java uses the “new” operator
explicitly to indicate that the class object is created in
the heap storage. This shows a further deficiency in the
clarity of declaration syntax. As a result a C/C++
programmer may tend to interpret that Java can create
objects in heap as well as in data memory. Java has
failed to maintain the consistency in pronouncing the
concept of “Java Object” to the programming
community.

Array bounds: Java simply inherits the C/C++
convention in specifying the array boundaries.
Declarations require only the sizes of arrays as their
dimensions. The lower boundary of a dimension is
always assumed to be 0. This feature became significant
in C/C++ due to the requirement of several machine
level programming features to support system
programming. But Java has unnecessarily adopted
C-convention in this respect and created a confusion
among application programmers. Java could have
adopted either a simple abstract notation with the lower
boundary, as 1 or more structured notation as in Ada to
avoid programmers making any wrong assumption on

J. Comp. Sci., 1(4): 450-453, 2005

 453

the boundaries. Java with similar C-conventions may
require a previous knowledge of C/C++. It creates
somewhat a soft constraint on the learning of Java!

Redundant data types: Java has unnecessarily retained
the short data type. This integer category was
introduced in C due to non-standard definition of int
category. Portability issue with integers worked very
well with short and at the same time short was tagged as
a memory saving integer type. With the current VLSI
technology almost all microprocessors have settled with
32-bit word length and the cost of main memory has no
barrier any more to have almost unlimited memory with
the current processors. Because of this factor concept of
using short has become obsolete.

The long data type can be merged with the 64-bit
int category to satisfy all applications without any loss
of generality. This may not pose any considerable
problem in embedded and other low-end applications.
Similarly, double gives a redundant feature over float.
The float type can also be made to provide a wider role
without any loss of generality. Such reductions will
further simplify the language and improves the
portability of written programs.

Useful data types: The unsigned data type in C/C++ is
used for addressing memory particularly in system
programming. Java developers in the process of
simplifying the language have omitted not only memory
pointers but also unsigned integer. The unsigned
discrete data type can be useful in driving embedded
real-time applications. Several abstract data structures
such as stack and hash table can use unsigned integers
to emulate memory addresses such as stack pointer and
hashed address. Another minor note is on the use of the
final key word in defining data constants. The const key
word has been traditionally used in many languages
(e.g. Pascal, Modula-2, C and C++) to define data
constants. It is a mystery how Java ignored to inherit
this feature from C/C++. The keyword final is rather
more appropriate as an operator for freezing variables
or methods at particular state.

CONCLUSIONS
C was, in fact, an unbeatable system programming

language until late eighties. Then C ++ with its
object-oriented feature continued the C’s role. Both
languages enjoyed their importance in system
programming because of the powerful pointer
addressing. C++ became too cumbersome to handle
because of too many additions over its predecessor, C.
After C and C++, Java has evolved as a refined, simple
and robust language. Subsequently Java has been tested
for its level of robustness and reliability[10]. Since the
study focuses on the lack of consistency it cannot spare
any comment on the robustness aspect of java.

According to Java’s declarative syntax with
reference and the new operator creates a type conflict.
In other words, the concepts of reference pointer and
new operator need proper recognition. If Java had
inherited the dynamic object declaration based on the

reference pointers as well as object declaration in the
data memory of programs, it would be as versatile as
C++. The garbage collection involved with dynamic
memory objects may not be suitable for some
applications. For instance, use of Java coming with its
garbage collection facility in real-time applications may
have some influence on the unpredictability factor in
real-time scheduling.

The redundant notations like short and long can be
removed or retained as aliases for 64-bit int type.
Similarly, float and double can be synonyms for a
standard real type. This would reduce a constraint on
type selection and in turn normal application
programmers will feel less burden on their
programming tasks. A pruning is needed in array
declarations. A conservative syntax specification should
be maintained for array declarations with initialization.
At the same time, Java can also extend the array
declaration syntax to include the specification of lower
and upper boundaries without affecting the existing
convention that can be treated as a special case. These
would not only make the language more sound but
also robust.

Java has taken a right step in upgrading the
character size to 16-bit for the bigger Unicode character
set. The const qualifier can be introduced for declaring
constants without any side effect on the language.

Now Java has lost the pointer facility, the most
useful mechanism for system programming. This has
created a situation where C and C++ can still be
considered as unbeatable language tools for system
programming applications. In the evolution of Java,
pruning C++ has created C++--- rather than transformed
into a graceful C+.

REFERENCES

1. Singhal, S. and Binh Nguyen, 1998. Java factor:

Introduction. Communications of the ACM, 41: 38-42.
2. Bollella, G. et al., 2000. The real-time specification

for java. Addison-Wesley, Boston.
3. Kernighan, B. and D. Ritchie, 1991. The C

Programming Language. 2nd Edn., Prentice-Hall, NJ.
4. Kutti, N.S., 2002. C and Unix programming: A

comprehensive guide with ANSI and POSIX
standards. Light Speed Books, Mt. Pleasant, SC.

5. Dale, N. and Chipp Weems, 1987. Pascal: D.C.
Heath and Company, Lexington.

6. Wirth, N., 1982. Programming in modula-2,
springer-verlag, 2nd Corrected Edn.

7. Barnes, J.G.P., 1998. Programming in Ada-95, 2nd
Edn. Addison-Wesley.

8. Stroustrup, B., 2000. The C++ programming
language. Addison-Wesley, NJ.

9. Arnold, K. and James Gosling, 1998. The java
programming language, 2nd Edn. Addison-Wesley,
Reading, MA.

10. Hunt, J. and F. Long, 1998. Java’s reliability: An
analysis of software defects in java. IEEE Proc.
Software, 145: 41-50.

